

CTA Status and Future at IHEP

Yujiang Bi, IHEPCC

EOS Workshop 2023

26/04/2023

Outline

CTA at IHEP

Tape SE Practice

CTA Roadmap

Summary

Tape Storage Overview

- 3 physical libraries and 2 under construction at IHEP
 - BESIII & DYB: LTO4/LTO7, IBM TS3500
 - 24 drives, ≥ 5000 tapes, ≥ 22PB
 - LHAASO&HXMT: LTO7, IBM TS4500
 - □ 20 drives, 4500 tapes, 25PB
 - JUNO: LTO9, IBM TS4500
 - □ 3 drives, 120 tapes, 2.2PB
 - LHCb TIER1(middle of this year): LTO9
 - ☐ 4 drives, 560 tapes
 - HEPS(late this year?): LTO9?
- 1 library phased out YBJ
 - Free up more space to expand LHASSO tape library

Tape Storage Overview

- ALL experiments managed by CTA
 - LHAASO since late 2021
 - BESIII & JUNO ready since late 2022
- Some old data managed by Castor
 - LHAASO, HXMT, BESIII
 - Will be migrated to CTA in late this year(?)
- CTA deployment
 - 3 production instances: BESIII&LHAASO, JUNO, LHCb Tier 1
 - 1 testbed with IBM TS2900 for test and evaluation
- EOS deployment
 - 4 instances: BESIII, LHAASO, JUNO and LHCb Tier 1
 - 1 testbed for upgrading test and evaluation

Setup for LHAASO & BESIII

Hardware

- LHAASO & HXMT
 - Library: TS4500
 - 12 LTO 7 drives & 3 tape servers
 - ~ 45000 LTO 7 tapes
 - Servers:
 - □ 2 nodes each with 12x12TB HDDs
 - □ Network: 25 Gb/s Fibric

- BESIII & DYB
 - Library: TS3500
 - 8 LTO7 drives & 2 tape serves
 - ~ 1600 LTO7 tapes
 - Server:
 - □ 1 node with 12x12 TB HDDs
 - □ Network: 25Gb/s Fibric

Software

No SSD

- CTA 4.7.7 & Ceph 15.2.15
- EOS 4.8.86 & XRootD 4.12.8
- PostgreSQL 14 with active-passive setup
- Authentication
 - KRB5 added to LHAASO & BESIII

Shared services between LHAASO & BESIII Frontend, catalogue, objectstore

Setup for JUNO & LHCb Tier 1

Hardware

- Tape
 - Library: TS4500

Shared tape hardware between JUNO and LHCb temporarily

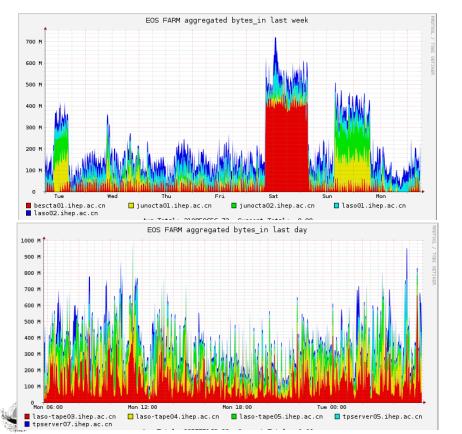
- 3(JUNO) + 4(LHCb) LTO 9 drives
- 120(JUNO) + 590(LHCb) LTO 9 tapes
- Server
 - JUNO: 2 nodes and 1 DELL 4084 Disk Array with 84x20TB HDDs
 - LHCb: 2 nodes and 1 DELL 584 Disk Array with 84x12TB HDDs
 - ☐ RAID DDP mode instead of JBOD
 - Network: 25 Gb/s Fibric

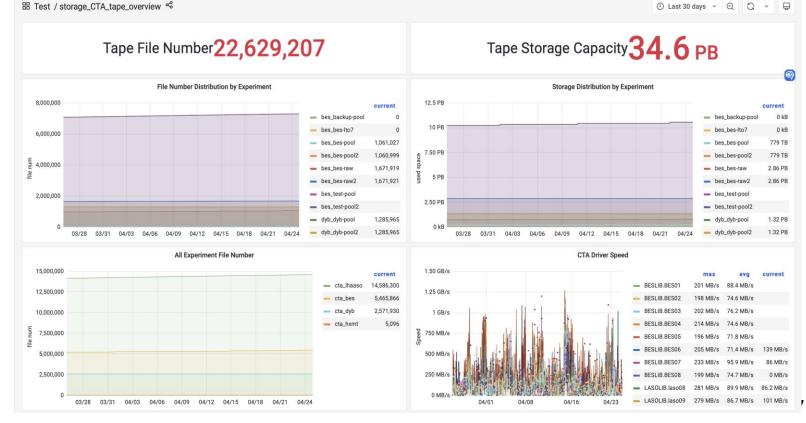
Software

- CTA 5.7.14 and Ceph 15.2.15
- EOS 4.8.86 with XRootD 4.12.8

Seperated services between JUNO and LHCb

PostgreSQL 14 with active-passive setup




Usage Statistics

- Experiment usage overview
- Compression is turned on
 - More space than expected

Experiment	LHAASO	HXMT	YBJ	BESIII	DYB	JUNO
Used/Capacity	9.6P/10.6P	22T/30T	185T/600T	3.3P/3.6P	1.2P/1.0P	800T/2.0P
Files	7.3M	3K	2.5K	600K	300K	170K
Drives	12 LTO7			8 LTO7		3 LTO9

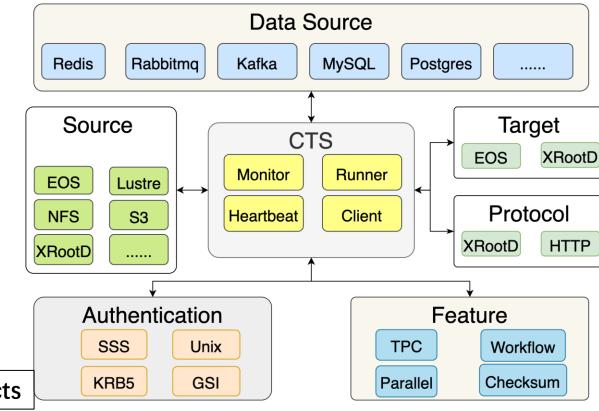
Service monitoring : Ganglia + Grafana

Some Problems

- EOS
 - WFE will lose triggered entries when MGM crashes
 - A cron job to filter missed files and add to archival queue
 - Atomic copy mode with Workflow for CTA
 - □ Temporary files beginning with .sys.# will trigger CTA Workflow and be archived
- CTA
 - Fail to recover files deleted by accident using cta-restore-deleted-files
 - ☐ Cannot get correct current container ID and file ID
 - cta-taped crashes on LTO9 drive when RAO is turned on
 - ☐ CTA 5.7.14 and IBM firmware P370/P380

CTA sent two consecutive Generate RAOs with a large amount of UDS (User Data Segments) to drive during reading, causing the drive to stop responding.

Normally, after sending a Generate RAO, backup software would use Receive RAO obtain the recommended read order from the drive, and then process all UDS according to the order.


CTA only processed a small amount of UDS before sending another Generate RAO, which caused the drive to spend a lot of resources processing the Generate RAO and subsequently stopped responding.

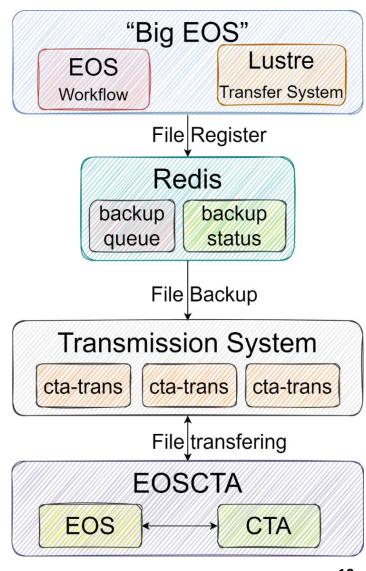
```
[root@cta ~]# cta-restore-deleted-files -I 12386910 -i eoslaso -v B02810
Created namespace endpoint laso01.ihep.ac.cn:50051 with token 263a2ef5-4a72-42f7-956b-7495dd616870
Created namespace endpoint bescta01.ihep.ac.cn:50051 with token 0bd92d00-e479-11eb-8e7d-3a68dd5ca0e7
Apr 24 19:54:55.976376 cta.ihep.ac.cn cta-restore-deleted-files: LVL="INFO" PID="2929675" TID="2929675" MSG="Listing deleted file in cta catalogue" userName="root" tapeVid="B02810" diskInstance="eoslaso" archiveFileId="12386910"
Apr 24 19:54:55.992476 cta.ihep.ac.cn cta-restore-deleted-files: LVL="INFO" PID="2929675" TID="2929675" MSG="Listed deleted file in cta catalogue" userName="root" tapeVid="B02810" diskInstance="eoslaso" archiveFileId="12386910" nbFiles="1"
Apr 24 19:54:56.227605 cta.ihep.ac.cn cta-restore-deleted-files: LVL="INFO" PID="2929675" TID="2929675" MSG="Restoring file in the eos namespace" userName="root" diskInstance="eoslaso" archiveFileId="12386910" diskFileId="8902740" diskFilePath="/eos/laso/raw/wcda/2019/1226/ES.35556.WCDA_EVENT.P1GRBM20M.20191226111349.035.dat.gz"
Aborting: FATAL ERROR: attempt to inject file with id=0, which exceeds EOS current file id=0
[root@cta ~]# eos whoami
Virtual Identity: uid=2 (2) gid=2 (2) [authz:unix] host=cta.ihep.ac.cn domain=ihep.ac.cn
```

[root@cta ~]# export EOS_MGM_URL=root://laso01.ihep.ac.cn/

CTA Transmission System (CTS)

- A simple system to handle CTA archive and recall
 - To satisfy the need of JUNO, LHAASO and BESIII
 - □ JUNO use Kafka to pass messages between subsystems
- Designed to support various source types and protocols
 - RabbitMQ, Kafka support only
 - Redis/Postgres under development
- Features
 - Using WFE to register files to SQL
 - TPC support and parallel mechanism

C CTA Transmission System


C Project ID: 1356 (2) https://code.ihep.ac.cn/biyujiang/cts

(3)

🗠 **54** Commits 🖇 **2** Branches 🗷 **0** Tags 🖫 **307 KB** Project Storage

CTS Situation at IHEP

- Two version: shell & python
 - Shell version used for LHAASO CTA and data transfer
 - Python version under benchmark for JUNO
- Components of Python version
 - Runner: archival routine
 - cli: a simple script to retrieve files
 - Monitor(not yet): monitoring threads
 - Checker(not yet): check if files are archieved
- Developing Plan
 - Fully implement Redis support for LHAASO
 - Implement monitor and check function
 - Add a Redis-like DB to track instance status

Solution is not CTS but FTS

- CTS is a temporary solution for LHAASO and other experiments
 - Works well so far but limited usage scenarios
 - Immature development and lack of manpower
 - Lack of many functions like user requests management
- FTS is more reliable and stable, but more efforts are needed
 - Some instances deployed at IHEP
 - Backup Workflow to be integraded
 - Monitor and alart to be developed

Tape Storage SE

- Tape storage is necessary accessed by WAN safely for HEP
 - JUNO、Herd、LHCb Tier1 at IHEP
- EOS as SE for both disk and tape storage?
 - Supporting various auth like krb5, GSI and scitokens
 - Supporting XRootD natively and HTTP(s) by XrdHTTP
 - Providing tape restful API to access CTA
- Things to do before into production
 - SE deployment and configuration
 - Necessary SE workflows to evaluation
- Testbed Setup
 - CTA 5.7.14 + EOS 5.1.9 + IBM TS2900

Tape SE Practice

- Deployment & configuration
 - Using Herd's & JUNO's IAM for testing
- Workflows to evaluate
 - File archival, staging, status query and recall
 - Replica evict, request cancel and delete
- Tools
 - XRootD: xrdfs, xrdcp or eos cp
 - HTTP(s): curl, wget and gfal
- Result
 - All workflows were passed with

```
XRootD + GSI & HTTPS + GSI/Token
```

Full test progress can be found at <u>here</u> in case any interest.

More details in **X.T Zhang**'s report

Tape SE Practice – Todo list

- More function to evaluate
 - Third-Party-Copy with XRootD and HTTP(S) protocols
 - XRootD GSI Delegation Proxy for TPC and auth for FST(?)
- Authentication to test and support
 - ztn: Tokens over XRootD protocol
- Automatically user mapping configuration
 - Scitokens and GSI gridmap-file
- IAM services for various experiments if possible
- Performance benchmark
- Join the joint DOMA Tape Restful API test(?)

Roadmap for CTA

- Phasing out Castor services
 - LHAASO, BESIII and Backup
- Monitoring and virtualization
 - Automatically and intelligently recovering CTA services
 - Refining Grafana dashboard for CTA
 - Alarming with Mattermost, Wechat or other IMs
- CTA Upgrading strategy
 - Upgrading all instances to EOS/CTA 5 in the middle of this year
 - Following the stable release pace of CTA

Roadmap for CTA

- Deploying and managing tape storage SE
 - Preparing tape SE for LHCb TIER1, JUNO, Herd...
 - Monitor, management, communication, collaborations...
- Deploying FTS for LHAASO, BESIII and JUNO CTA
 - Automatically handling retrieval requests
 - Virtualizing service status and statistics
- Separating CTA service for LHAASO and BESIII
 - Frontend, catalogue, objectstore
- Service containerization.....

Summary

- CTA is the dominant tape system at IHEP
 - Managing LHAASO, BESIII, JUNO, LHCb Tier 1, and other HEPs
- CTS takes care of migration between big and little EOSs
 - FTS shall be the solution for CTA migration
- Tape SE instances deployed and in testing
 - Function evaluation and performance stress test
- Tasks ahead to do
 - Castor retirement, CTA upgrading, FTS for CTA
 - Service monitoring and containerization.....

Thanks!

