Building a fully cloud-native ATLAS Tier 2 on Kubernetes

Ryan Taylor on behalf of UVic Research Computing Services

Background

CHEP 2019 presentation

Using Kubernetes as an ATLAS computing site

<u>Fernando Barreiro Megino</u>, Jeffrey Ryan Albert, Frank Berghaus, Danika MacDonell, Tadashi Maeno, Ricardo Brito Da Rocha, Rolf Seuster, Ryan P. Taylor, Ming-Jyuan Yang on behalf of the ATLAS experiment CHEP 2019, Adelaide, Australia

CA-VICTORIA-WESTGRID-T2 uses Kubernetes for container-native batch computing. Harvester submits ATLAS grid jobs to k8s API, which runs them as pods. No traditional batch system or Compute Element.

The eventual goal: a fully k8s-native T2

Installable with Helm

- Helm: application manager for Kubernetes
 - One command to install/upgrade everything
 - Comprehensive configuration via one YAML file
- helm install T2Site
 - (K)APEL accounting
 - frontier-squid
 - compute (security rules, Harvester setup)
 - EOS SE
 - CVMFS-CSI
 - Compute Element
 - Batch system

done

done (static YAML)

in progress

optional

built-in

built-in

EOS SE on k8s with CephFS

- Physical consolidation: all storage on Ceph (CephFS)
- Logical consolidation: services on k8s
- EOS can be installed on k8s via Helm chart
 - reproducible, single step deployment
 - easier to manage and maintain
 - easy to set up another instance, e.g. for dev
- EOS + CephFS is an established solution
- Opportunity: <u>direct data access for jobs</u> on CephFS
 - Thanks to Andreas

EOS Helm chart

- Generally only used for internal clients so far
 - Different from typical grid storage use case
- Need enhancements for T2 SE use cases (#74, #75)
 - configure X509 VOMS authz/authn
 - install host certs via secrets
 - fetch-crl, grid-security CAs, etc.
 - external network access

Big thanks to Enrico for collaboration and support on Helm charts!

Network architecture on k8s

- Simple architecture for typical k8s app
 - Web app, minimal bandwidth
 - Single ingress IP
 - Ingress controller and LBaaS
 - L7 (HTTP) routing
- Won't work for EOS
 - Need to scale bandwidth >> 1 NIC
 - FSTs need to be individually addressable
 - Ingress (Traefik) can do L4 (TCP) routing
 - but only with SNI (Server Name Indication)
 - XrootD can not support SNI

Network architecture on k8s for EOS

- One LB service for each of N FSTs
 - Total bandwidth = 1 NIC * N
 - L3 routing: 1 IP per FST
 - Ingress controller not a bottleneck
 - Solves multi-homing
 - With hostAliases (/etc/hosts)
- Challenges
 - Requires manual certificate management
 - instead of using Ingress (certs-aaS)
 - Need a way to specify FST hostnames #7
 - Since EOS does its own routing/redirection

EOS CephFS layout on k8s

"Usual" way: separate volume per FST /volume01 /volume01/fst01 /volume02 /volume02/fst02 /volume03 /volume03/fst03

Instead try one volume for all FSTs

- /volume01
 - /volume01/fst01
 - /volume01/fst02
 - /volume01/fst03
- Hopefully simplify cloud volume management
- Facilitate direct data access for compute jobs on k8s cluster
- Ideal: any/all FSTs on CephFS could serve data together
 - proxy groups?
- CephFS bug encountered: <u>55090</u>
 - Ceph fixes: #46902 #46905

Summary

- All services/resource for UVic T2 are on k8s, except storage
- Developing proof-of-concept EOS SE deployment with k8s, CephFS
- Enhancements of EOS Helm chart
- Scalable k8s network architecture for external access to EOS
 - Need a way to specify FST host names

Why Kubernetes?

We are a cloud site

Arbutus Science Cloud

- Cloud + k8s provides:
 - Flexible & dynamic infrastructure
 - Resilience and automated remediation
 - Rapid application deployment
 - Application lifecycle management
 - Horizontal scalability

VMs as pets

Openstack

VMs as cattle

Openstack + ???

containers as cattle

Openstack + k8s

Prior talks on UVic k8s T2

- 2019 Nov <u>CHEP</u>
- 2019 Dec <u>pre-GDB</u>
- 2020 Dec <u>k8s HEP meetup</u>
- 2020 Dec <u>WFM SW TIM</u>
- 2021 May <u>ADC TCB</u>
- 2022 June <u>pre-GDB</u>
- 2022 Nov <u>WLCG workshop</u>
- 2022 Dec <u>US ATLAS Computing Facilities F2F</u>

Ingress and LBaaS

- Initial basic approach used keepalived and nginx-ingress to receive traffic from outside world into clusters
- Migrated to PureLB and Traefik
 - More maintainable/manageable, via Helm charts
 - Cohesive access to dashboards etc across all clusters
- PureLB: like MetalLB but simpler, lightweight
 - relies on Linux network stack of host
 - Programmable (LB -> LBaaS)
- Traefik Ingress controller
 - Widely used, full featured, nice web UI, CRDs
 - Better TCP and UDP support

PureLB