CE/RW
\

N/ S

EOS Scheduler Plans

Abhishek Lekshmanan on behalf of the EOS team



Outline

 Scheduler in EOS
o Introduction - Geolree Scheduler
o Advanced Parameters
o Implementation
o Performance Analysis
* Flat Scheduler’
o Motivation
o Design
o Results

« Conclusion and Future plans

&N EOS Workshop 2023 EOS Scheduler Improvements

NS



Current Scheduler

Introduction to GeoTree Scheduler




File Scheduler in EOS - Purpose

« Select Filesystems to place/access file replicas/stripes
o Carried out at MGM - (GeoTreeEngine subcomponent)

o Always chosen within placement group - Ensures a bare minimum host level
failure domain

- Groups can span across DCs
* Ensure files are evenly distributed considering
o placement policies

o Internal operations like draining/balancing

&N EOS Workshop 2023 EOS Scheduler Improvements

N7



GeoTree Scheduler

« Ensure Geographic redundancy when groups span across DCs
« GeoTags for nodes corresponding to Infrastructure eg: 0513 ::R:: 0050 :: CQO7 :: a2e2917f
o Allows for entire subtrees to be disabled/enabled
o For specific operations as well (placement vs drain)
« File Placement based on:
o Filesystem geotag
o State of filesystem + machine
o Client geotag
o File layout
o A few admin params to control penalty

o User supplied options for eg: placement policy(scattered, gathered), force scheduling group...

&N EOS Workshop 2023 EOS Scheduler Improvements

N7



GeoTree Scheduler Parameters

* Also supports a few advanced
features:

o Proxy Scheduling (eg. Kinetic)
o Firewall based entry point

* Fine Tuned Parameters to control

o Upload/Download penalties for
placement/access

O Tree refresh times

o Fill ratios...

‘iEfD' EOS Workshop 2023 EOS Scheduler Improvements 6



GeoTree Scheduler - Implementation

* Scheduler selects Group for placement in RR fashion (FsView Lock)
 GeolreeEngine selects FS from within the groups

o 2 tree structures - SlowTree having accurate representation and thread local
FastTree snapshot

0 Double Buffer Mutex pattern to update Treelnfo
BACKGROUNQ"/?‘ROCESS/NG FOREGROU{\/'D“RR.OCESS/NG

QQ Q QW
n
WY

&N EOS Workshop 2023 EOS Scheduler Improvements

N7



Performance Analysis

« Open times are logged with a per

subroutine time at INFO level 106 - sched_time
: L open_time
* Analyzing MGM Write Open times in o |
an EOS physics instance over a 10- 1072
day period (111 million events) _
104 =
o Avg Open Write time: 3.96ms L \
(stddev- 58.76 Median 1.27) S 107 - )
S ~,
o Avg FilePlacement time: 2.34 ms B . 1 |
(stddev - 5217 Median 112) 10° | b "“Jj’!‘\Fﬁ
_ v 1 A
o 78K events have opens > 100ms 10! - l\
: 1.l
0 87% of 100ms+ open writes - ; 1 |
caused by FilePlacement times 071 I e es— oy
1071 10° 101 102 10° 10*
time(ms)
C\E\/RD' EOS Workshop 2023 EOS Scheduler Improvements 8



Flat Scheduler




New Scheduler Motivation

 Have Simpler Scheduling Strategies

o No need to pay for the cost of multiple site geo scheduling when dealing with
smaller sites

o Have configurable scheduling algorithms
o Understand heterogenous disk sizes and allow for weight based scheduling
* Ability to fallback to classic GeoScheduler or if it is requested

* Loosely couple with other dependencies so that it is easy to unit test and
benchmark

o Dropping the dependency on MQ

 Performance - Can we perform better with these reduced constraints?

&N EOS Workshop 2023 EOS Scheduler Improvements

N7

10



FlatScheduler Data Types

« Simple Datatypes:

o Disks: ID corresponding to FSID, atomic status and weights

o Buckets: Any other element in Storage Hierarchy

Root, Site, Room, Rack, Group...

Negative ID

{fsid,status,wt}]

Contains a list of items which may be buckets or disks

Total weight is the weight of elements underneath

o ClusterData: List of Buckets and Disks

* RuleMap

o An array of rules of how many replicas to be chosen at each level, -1 denotes take as many items as
replicas requested

o Easy to build frontends that can build this rule map

CE/RW
\

N7

EOS Workshop 2023

EQS Scheduler Improvements

11



Cluster Manager

« Essentially holds and constructs the ClusterData

A simple builder to build any hierarchy and create this cluster data, delegated to a builder
class - 2 methods

o adds a Bucket of a given type (room, group etc.) to its Parent
o a Disk with Disk Params (default weight is size in TiB), parent Bucket ID

« Have a flat FsView based builder already implemented, that’ll build the current EOS view of
storage in a flat fashion

o Holds a list of ClusterMgrs
o Flat Hierarchy - Root element containing a list of Group IDs

o Lock Free for readers wrt Cluster Map updates (using Atomic Ptrs and deferred reclamation)

Easy to extend to geotag based or a more hierarchical aware builder in the future

&N EOS Workshop 2023 EOS Scheduler Improvements 12

N7



FlatScheduler

Simple interface
 Holds a list of PlacementStrategies

o Placement Strategies decide how to choose the
next elements (buckets, disks)

o Passed as argument, so ability to decide on a
per op basis

* Scheduling basically act of choosing n replicas at
each bucket type- BFS like walking through each
bucket picking replicas

* Default rule map is just to pick single group from
ROOT and find disks

&N EOS Workshop 2023 EOS Scheduler Improvements 13

N7



Current Results

&N EOS Workshop 2023 EOS Scheduler Improvements

NS



Benchmark Results

« Benchmarks were done with
« AMD EPYC 7302 16 core (64 threads)
« varying number of groups (32->512)
» Replica count (2,3, raid6)

» Different scheduling strategies for
the Flat Scheduler ie. RoundRobin,
Weighted Random

» Google Benchmark library which
runs benchmarks in a tight loop

» As the thread count kept increasing we
see increasing scalability

* Nearly lock-free code path, FsView
filled in flat lists which are lock free
(RCU like algorithm)

» Single Thread performance still ~1us

10° -

102 -

real_time(ns)

10! -

10° -

102 - {§

real_time(ns)

groups = 32

groups = 128

scheduler_type
= Scheduler
= ThreadLocalRRScheduler
- RandomScheduler
= FidScheduler
—— \WelghtedRandomScheduler
replicas

groups = 256 groups = 512

—_—2

1 1 1 1 1 1 1 1 1 1 1
50 100 150 200 250 0 50 100 150 200 250

threads threads

cw
\

N7

15



Conclusions & Future Work

A simple flat scheduler with a few placement strategies will make it soon to EOS
MGM

o Policies to be configured on a space/directory/op level

 Most of the subcomponents & strategies can be built and unit tested in isolation
o Makes debugging and functionality testing easier
o Mock Fixtures have already been written to test functionalities

* Current Benchmarks show promising results

o Evaluate how these translate in real workloads in test instances

&N EOS Workshop 2023 EOS Scheduler Improvements

N7

16



Future Work

* A static hierarchy based rules could be added in the Future
o Interface to be defined, but easy to build a mini crush map like language

o Not heavy on state, potential for passing down scheduling decisions to other
gateway nodes (& even clients?)

« Some advanced GeoScheduler features that is not planned in the immediate
timeline - ProxyGroups

o Firewall EntryPoint Scheduling
o Parameters like Plct/Access Ul/Dl Penalties

o Interested in community feedback on the usability of these!

&N EOS Workshop 2023 EOS Scheduler Improvements

N7

17






Class Diagram

» Disks and Buckets the main data types
e ClusterData just holds a vector of these data
* ClusterDataMgr actually manages the data

 Epochs every time the structure of data
changes

 Lock Free for readers, uses Atomic Unique
Ptrs and deferred GC strategy

« FlatScheduler the main class that does all the
logic

« Scheduling delegated to strategy classes
which ultimately decide how the data is
selected

Disk

Bucket

int fsid

ActiveStatus status

uint8 weight ...

intid

List<item_id> items

int weight

Use

N

,
Use

;
/
l’/

ClusterData

vector<Disks>

vector<Bucket>

U'se

V

ClusterDataMgr

ClusterData data

addData(data&&)
data* getData()

Use

,
¥
l:/

EOS FSScheduler

Ptr FlatSchduler

map<space,ClusterData> cli

schedule()

StorageHandler (Builder)

+addBucket()

+ addDisk()

FlatScheduler

list<SchedulingStrategy>

schedule(data, Args)




Concurrency Interlude - Publishing Pointer

* Pointer loads and stores are atomic (x86)

o However nothing explicit about the instruction reordering

o Compilers and hardware allowed to freely reorder instructions
* Introducing the concept of an Atomic Unique Ptr

o0 Construction not thread safe, atomic loads

o When resetting the pointer, we don’t remove the old pointer, instead it is returned
and the caller has to hold on to this and find a sufficiently safe point to GC

 Performance equivalent to a regular unique pointer in comparison to a Atomic
SharedPointer

&N EOS Workshop 2023 EOS Scheduler Improvements 20

N7



Benchmark results - AtomicUniquePtr

benchmark

MQ

/ 4

_time/threads:
al_time/thr bde:?‘6

'threads:1

\

w
C]\

(a]

frequency
frequency=93
J.4 5726456832 *“quﬂac\,«::ﬁnﬁ“
:JﬂavedPtP?etfPealk'i e/threads: ) 3 ) : frequency=38.¢

T”@C}UEHC})’

real_tan

EQS Scheduler Improvements



So we have a new pointer - how do we free?

* For deferred memory reclamation there are some common techniques

o RCU - Read Copy Update - a non blocking Reader pattern which kernel uses a lot
as a synchronization primitive

o0 Hazard Pointers

* All of these techniques essentially track readers in a way that we know a safe point
to reclaim the memory

&N EOS Workshop 2023 EOS Scheduler Improvements 22

N7



Mutex Benchmarks

4000
3500
3000

2500

2000

* Mutex benchmarks with varying
critical sections

500

real_time

3500

3000

2500

2000

real_time

1500

1000

500

3500

3000

2500

2000

real_time

1500

1000

500

csns=1

cs_ns =20

cs_ns =50

¢s_ns = 200

cs_ns = 2000

1 2 4 6 8 12 16 24 32 48 64 961281925612022048
threads

1 2 4 6 8 12 16 24 32 48 64 9612819256612022048
threads

mutex
—— BM_Contended<std::mutex>
—— BM_Contended<std::shared_mutex>
—— BM_Contended<eos::common::RWMutex>
—— BM_Contended<eos::common::EpochRCUDomain>

O EOS Workshop 2023

N7

EQS Scheduler Improvements

23



Implementation

« At the lowermost layer we’ve a Disk that has a integer fsid; atomic config/active
status, weight and filled%

 The rest of the storage hierarchy can be represented by a Bucket; here we use a
negative id; a bucket contains a list of ids representing things below its hierarchy

* ClusterData this way essentially contains a flat list of buckets and disks
o An Epoch version tracks the version of Clusterdata

o Any changes in the shape of the Cluster itself, ie. Addition/move of nodes/disks
will need a new version of Clusterdata

o Regular activities like disks being offline etc do not need a change of cluster data
itself, so requires no scheduler pauses

&N EOS Workshop 2023 EOS Scheduler Improvements 24

N7



