
EOS Scheduler Plans

Abhishek Lekshmanan on behalf of the EOS team

EOS Workshop 2023 EOS Scheduler Improvements

• Scheduler in EOS

Introduction - GeoTree Scheduler

Advanced Parameters

Implementation

Performance Analysis

• Flat Scheduler`

Motivation

Design

Results

• Conclusion and Future plans

Outline

2

Current Scheduler
Introduction to GeoTree Scheduler

3

EOS Workshop 2023 EOS Scheduler Improvements

• Select Filesystems to place/access file replicas/stripes

Carried out at MGM - (GeoTreeEngine subcomponent)

Always chosen within placement group - Ensures a bare minimum host level
failure domain

- Groups can span across DCs

• Ensure files are evenly distributed considering

placement policies

Internal operations like draining/balancing

File Scheduler in EOS - Purpose

4

EOS Workshop 2023 EOS Scheduler Improvements

• Ensure Geographic redundancy when groups span across DCs

• GeoTags for nodes corresponding to Infrastructure eg: 0513::R::0050::CQ07::a2e2917f

Allows for entire subtrees to be disabled/enabled

For specific operations as well (placement vs drain)

• File Placement based on:

Filesystem geotag

State of filesystem + machine

Client geotag

File layout

A few admin params to control penalty

User supplied options for eg: placement policy(scattered, gathered), force scheduling group…

GeoTree Scheduler

5

EOS Workshop 2023 EOS Scheduler Improvements

• Also supports a few advanced
features:

Proxy Scheduling (eg. Kinetic)

Firewall based entry point

• Fine Tuned Parameters to control

Upload/Download penalties for
placement/access

Tree refresh times

Fill ratios…

GeoTree Scheduler Parameters

6

EOS Workshop 2023 EOS Scheduler Improvements

• Scheduler selects Group for placement in RR fashion (FsView Lock)

• GeoTreeEngine selects FS from within the groups

2 tree structures - SlowTree having accurate representation and thread local
FastTree snapshot

Double Buffer Mutex pattern to update TreeInfo

GeoTree Scheduler - Implementation

7

EOS Workshop 2023 EOS Scheduler Improvements

• Open times are logged with a per
subroutine time at INFO level

• Analyzing MGM Write Open times in
an EOS physics instance over a 10-
day period (11.1 million events)

Avg Open Write time: 3.96ms
(stddev- 58.76 Median 1.27)

Avg FilePlacement time: 2.34 ms
(stddev - 52.17 Median .112)

78K events have opens > 100ms

87% of 100ms+ open writes
caused by FilePlacement times

Performance Analysis

8

Flat Scheduler

9

EOS Workshop 2023 EOS Scheduler Improvements

• Have Simpler Scheduling Strategies

No need to pay for the cost of multiple site geo scheduling when dealing with
smaller sites

Have configurable scheduling algorithms

Understand heterogenous disk sizes and allow for weight based scheduling

• Ability to fallback to classic GeoScheduler or if it is requested

• Loosely couple with other dependencies so that it is easy to unit test and
benchmark

Dropping the dependency on MQ

• Performance - Can we perform better with these reduced constraints?

New Scheduler Motivation

10

EOS Workshop 2023 EOS Scheduler Improvements

• Simple Datatypes:

Disks: ID corresponding to FSID, atomic status and weights

Buckets: Any other element in Storage Hierarchy

- Root, Site, Room, Rack, Group…

- Negative ID

- Contains a list of items which may be buckets or disks

- Total weight is the weight of elements underneath

ClusterData: List of Buckets and Disks

• RuleMap

An array of rules of how many replicas to be chosen at each level, -1 denotes take as many items as
replicas requested

Easy to build frontends that can build this rule map

FlatScheduler Data Types

11

{fsid,status,wt}

EOS Workshop 2023 EOS Scheduler Improvements

• Essentially holds and constructs the ClusterData

• A simple builder to build any hierarchy and create this cluster data, delegated to a builder
class - 2 methods

adds a Bucket of a given type (room, group etc.) to its Parent

a Disk with Disk Params (default weight is size in TiB), parent Bucket ID

• Have a flat FsView based builder already implemented, that’ll build the current EOS view of
storage in a flat fashion

Holds a list of ClusterMgrs

Flat Hierarchy - Root element containing a list of Group IDs

Lock Free for readers wrt Cluster Map updates (using Atomic Ptrs and deferred reclamation)

• Easy to extend to geotag based or a more hierarchical aware builder in the future

Cluster Manager

12

EOS Workshop 2023 EOS Scheduler Improvements

• Simple interface

• Holds a list of PlacementStrategies

Placement Strategies decide how to choose the
next elements (buckets, disks)

Passed as argument, so ability to decide on a
per op basis

• Scheduling basically act of choosing n replicas at
each bucket type- BFS like walking through each
bucket picking replicas

• Default rule map is just to pick single group from
ROOT and find disks

FlatScheduler

13

EOS Workshop 2023 EOS Scheduler Improvements

Current Results

14

Benchmark Results
• Benchmarks were done with

• AMD EPYC 7302 16 core (64 threads)

• varying number of groups (32->512)

• Replica count (2,3, raid6)

• Different scheduling strategies for
the Flat Scheduler ie. RoundRobin,
Weighted Random

• Google Benchmark library which
runs benchmarks in a tight loop

• As the thread count kept increasing we
see increasing scalability

• Nearly lock-free code path, FsView
filled in flat lists which are lock free
(RCU like algorithm)

• Single Thread performance still ~1us

15

EOS Workshop 2023 EOS Scheduler Improvements

• A simple flat scheduler with a few placement strategies will make it soon to EOS
MGM

Policies to be configured on a space/directory/op level

• Most of the subcomponents & strategies can be built and unit tested in isolation

Makes debugging and functionality testing easier

Mock Fixtures have already been written to test functionalities

• Current Benchmarks show promising results

Evaluate how these translate in real workloads in test instances

•

Conclusions & Future Work

16

EOS Workshop 2023 EOS Scheduler Improvements

• A static hierarchy based rules could be added in the Future

Interface to be defined, but easy to build a mini crush map like language

Not heavy on state, potential for passing down scheduling decisions to other
gateway nodes (& even clients?)

• Some advanced GeoScheduler features that is not planned in the immediate
timeline - ProxyGroups

Firewall EntryPoint Scheduling

Parameters like Plct/Access Ul/Dl Penalties

Interested in community feedback on the usability of these!

Future Work

17

Class Diagram

19

• Disks and Buckets the main data types

• ClusterData just holds a vector of these data

• ClusterDataMgr actually manages the data

• Epochs every time the structure of data
changes

• Lock Free for readers, uses Atomic Unique
Ptrs and deferred GC strategy

• FlatScheduler the main class that does all the
logic

• Scheduling delegated to strategy classes
which ultimately decide how the data is
selected

EOS Workshop 2023 EOS Scheduler Improvements

• Pointer loads and stores are atomic (x86)

However nothing explicit about the instruction reordering

Compilers and hardware allowed to freely reorder instructions

• Introducing the concept of an Atomic Unique Ptr

Construction not thread safe, atomic loads

When resetting the pointer, we don’t remove the old pointer, instead it is returned
and the caller has to hold on to this and find a sufficiently safe point to GC

• Performance equivalent to a regular unique pointer in comparison to a Atomic
SharedPointer

Concurrency Interlude - Publishing Pointer

20

EOS Workshop 2023 EOS Scheduler Improvements

Benchmark results - AtomicUniquePtr

21

EOS Workshop 2023 EOS Scheduler Improvements

• For deferred memory reclamation there are some common techniques

RCU - Read Copy Update - a non blocking Reader pattern which kernel uses a lot
as a synchronization primitive

Hazard Pointers

• All of these techniques essentially track readers in a way that we know a safe point
to reclaim the memory

So we have a new pointer - how do we free?

22

EOS Workshop 2023 EOS Scheduler Improvements

• Mutex benchmarks with varying
critical sections

Mutex Benchmarks

23

EOS Workshop 2023 EOS Scheduler Improvements

• At the lowermost layer we’ve a Disk that has a integer fsid; atomic config/active
status, weight and filled%

• The rest of the storage hierarchy can be represented by a Bucket; here we use a
negative id; a bucket contains a list of ids representing things below its hierarchy

• ClusterData this way essentially contains a flat list of buckets and disks

An Epoch version tracks the version of Clusterdata

Any changes in the shape of the Cluster itself, ie. Addition/move of nodes/disks
will need a new version of Clusterdata

Regular activities like disks being offline etc do not need a change of cluster data
itself, so requires no scheduler pauses

Implementation

24

