

The CERN Tape Archive (CTA): Archival Storage for Scientific Computing

Michael Davis

CERN, IT Department, Storage Group

CTA is the tape archival storage back-end to EOS

CERN Tier-0 Data Rates (2022-2025)

Data archived to tape storage each month since 2008

Physics Data on Tape Total Data on Tape in CASTOR/CTA

Predicted Tape Archival Storage Needs

Comparing tape and disk technologies

IBM TS1160 Tape Drive 20 TB capacity

WD DC HC 530 Hard Drive 14 TB capacity

Comparing tape and disk

	Таре	Disk
Data transfer rate	400 Mb/s	200 Mb/s
Positioning type	Fast Sequential Access	Fast Random Access
Average positioning time	30 seconds (610 m @ 12 m/s)	5 milliseconds
Latency to first byte	A few minutes	5–10 milliseconds

Magnetic
Media:
Evolution of
Areal Density

The Outlook for Tape Technology

New Advanced Materials

- Very fine magnetic particles
- Smooth surfaces with low friction
- 3D stacking of magnetic particles

Spinning disk technologies are pushing the limits of storage density. Tapes have plenty of room to improve capacity.

Advantages of Tape : Reliability and Data Security

- Two heads are better than one : read after write verification
- No data loss if a drive fails
- Immutable files
- Air-gap security
- Long media lifetime (30+ years)

Advantages of Tape : Energy Efficiency

Hard disks are always on. They constantly consume power and generate heat.

- Expensive to run
- CERN Tier-0 Data Centre is at the limit of how much power and cooling it can deliver (3.5 MW)
- Disk storage requires power and cooling

Tape cartridges don't consume any power when they are not mounted in a drive.

■ Tape capacity can be increased without requiring additional power

Advantages of Tape : Cost!

Storage needs compared to budget (ATLAS)

- Storage needs are increasing exponentially
- Budget is not increasing to match needs
- Tape storage is 3–5× cheaper than disk storage

High-Luminosity LHC (2029–32)

Hi-Lumi LHC : Data Carousel Store data for **online analysis** on tape

Data storage challenge of HL-LHC:

- → 'Opportunistic storage' basically doesn't exist
- → Format size reduction and data compression are both long-term goals, require significant efforts from the software and distributed computing teams
- → Tape storage is 3~5 times cheaper than disk storage, increasing tape usage is a natural way to cut into the gap of storage shortage for HL-LHC

'Data Carousel' R&D \rightarrow to study the feasibility to use tape as the input to various I/O intensive workflows.

The Archival Storage Solution from CERN IT Storage Group

EOS+CTA: "Best of Both Worlds"

- CTA is the tape back-end to EOS
- Interface, file operations and disk pool management provided by EOS
- Scheduling and tape operations provided by CTA

EOS+CTA: "Best of Both Worlds"

Function	Provided by
File Metadata Operations	EOS (MGM/XRootD)
Namespace	EOS (QuarkDB)
Disk Buffer for Staging	EOS (FST)
Tape File Metadata Ops	CTA (Frontend)
Archive/Recall Requests	CTA (Scheduler DB)
Tape File Catalogue	CTA (Catalogue DB)
Tape Operations (libraries,	CTA (Tape Server)
drives, cassettes)	

EOS+CTA Architecture

EOS for Analysis vs. EOS for Staging

"Big EOS" (Analysis)

- Tens of PB of storage for physics jobs and staging to Tier–1s.
- File replicas have a long lifetime.
- Spinning disks.

"Little EOS" (Staging)

- Small buffer for copying files to/from tape.
- File replicas have a very short lifetime.
 Deleted as soon as tape copy exists (archival) or copied to "Big EOS" (retrieval).
- SSDs: reduce contention and give the best price/performance ratio.

WLCG Tape Landscape in 2021

FNAL, PIC, IINR CERN, RAL **DESY** Triumf **NDGF CNAF BNL** IN2P3 **SARA**

Alastair Dewhurst, 10th March 2021

Beyond CERN: CTA at other sites

- Wide diversity of tape software deployed at Tier-1 sites, consolidation likely in coming years
- Increasing license fees for commercial alternatives/ risk of lock-in
- CTA is Free and Open Source Software (GPLv3) https://cta.web.cern.ch
- Active and growing CTA Community https://cta-community.web.cern.ch/

CTA Day at the EOS Workshop:

Wednesday 26 April

- Site reports
- Technical presentations
 - Operations
 - Software development
- Hands-on session
- CTA Roadmap

