

The Phase-II Upgrade of the ATLAS Tile Calorimeter

Tigran Mkrtchyan (KIP, Heidelberg)

05.04.2023, HighRR Bi-Weekly

The ATLAS Detector

The ATLAS Detector

The ATLAS Detector

- Largest detector at the LHC
- pp collisions at $\sqrt{s} = 13 \text{ TeV}$
- Multi-purpose detector
 - Precision Measurements
 - Searches for BSM signatures
 - Flavour Physics & Heavy-Ion Physics

The ATLAS Detector

The ATLAS Detector

- Largest detector at the LHC
- pp collisions at $\sqrt{s} = 13 \text{ TeV}$
- Multi-purpose detector
 - Precision Measurements
 - Searches for BSM signatures
 - Flavour Physics & Heavy-Ion Physics

The coordinate system used in ATLAS

Pseudorapidity:

$$\eta = -\ln[\tan(\frac{\theta}{2})]$$

The ATLAS Detector

- Central hadronic calorimeter $\eta = 1.7$
- Sampling calorimeter with steel absorbers
- Plastic scintillators as active medium

- Central hadronic calorimeter $\eta = 1.7$
- Sampling calorimeter with steel absorbers
- Plastic scintillators as active medium

LAr forward (FCal)

ATLAS & the Tile Calorimeter

- Central hadronic calorimeter $\eta = 1.7$
- Sampling calorimeter with steel absorbers
- Plastic scintillators as active medium
- ~ 5000 cells
- ~10000 Photomultipliers (PMT)
- Each cell is read out by 2 PMTs using wavelength shifting (WLS) fibers

Tile barrel

Tile extended barrel

- Central hadronic calorimeter $\eta = 1.7$
- Sampling calorimeter with steel absorbers
- Plastic scintillators as active medium
- ~ 5000 cells
- ~10000 Photomultipliers (PMT)
- Each cell is read out by 2 PMTs using wavelength shifting (WLS) fibers

Tile barrel

Tile extended barrel

- Central hadronic calorimeter $\eta = 1.7$
- Sampling calorimeter with steel absorbers
- Plastic scintillators as active medium
- ~ 5000 cells
- ~10000 Photomultipliers (PMT)
- Each cell is read out by 2 PMTs using wavelength shifting (WLS) fibers
- Critical for physics signatures:
 - Jets, Missing p_T
 - Muons & Electrons/photons

- Cells
- Trigger Tower

- Cells
- Trigger Tower

- 3 Radial layers:
- A-layers: $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
- BC-layers: $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
- D-layers: $\Delta \eta \times \Delta \phi = 0.2 \times 0.1$

- Cells
- Trigger Tower

- 3 Radial layers:
- A-layers: $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
- BC-layers: $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
- D-layers: $\Delta \eta \times \Delta \phi = 0.2 \times 0.1$
- 2x Long Barrels & 2 Extended Barrels
- 256 wedge-shaped modules with $\Delta \phi = 0.1$

- Cells
- Trigger Tower

- 3 Radial layers:
- A-layers: $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
- BC-layers: $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
- D-layers: $\Delta \eta \times \Delta \phi = 0.2 \times 0.1$
- 2x Long Barrels & 2 Extended Barrels
- 256 wedge-shaped modules with $\Delta \phi = 0.1$
- Current energy resolution: $\sigma/E \sim 50 \% / E \oplus 3 \%$

The HL-LHC

The HL-LHC

- The instantaneous luminosity will increase by a factor of ~ 7
- 200 proton-proton collisions per bunch crossing
- Increased particle flux through TileCal 2 to 24 Gy for 4000 fb⁻¹

Employ electronics components with higher radiation tolerance

- Employ electronics components with higher radiation tolerance
- Add reliability by means of redundancy
 - Minimise single point of failures

Simulated radiation levels

- Employ electronics components with higher radiation tolerance
- Add reliability by means of redundancy
 - Minimise single point of failures
- New readout architecture
 - Digital Trigger at 40 MHz
 - Higher trigger rates ~ 1MHz
 - Larger data buffering all done off-detector
 - High-speed optical transmission

- Employ electronics components with higher radiation tolerance
- Add reliability by means of redundancy
 - Minimise single point of failures
- New readout architecture
 - Digital Trigger at 40 MHz
 - Higher trigger rates ~ 1MHz
 - Larger data buffering all done off-detector
 - High-speed optical transmission
- Replacement of Photomultipliers most exposed to radiation

- Employ electronics components with higher radiation tolerance
- Add reliability by means of redundancy
 - Minimise single point of failures
- New readout architecture
 - Digital Trigger at 40 MHz
 - Higher trigger rates ~ 1MHz
 - Larger data buffering all done off-detector
 - High-speed optical transmission
- Replacement of Photomultipliers most exposed to radiation
- Detector components (absorbers, scintillators, most PMTs) will not be replaced

Simulated radiation levels

The new Mini-Drawer

Replacement of the entire Front- and Back-End Electronics

The new Mini-Drawer

- Replacement of the entire Front- and Back-End Electronics
- New modular mechanics (Mini-Drawers)

The new Mini-Drawer

- Replacement of the entire Front- and Back-End Electronics
- New modular mechanics (Mini-Drawers)
- Increased Radiation Hardness & Redundancy

The new Mini-Drawer

- Replacement of the entire Front- and Back-End Electronics
- New modular mechanics (Mini-Drawers)
- Increased Radiation Hardness & Redundancy
- Redesign of the High-Voltage and Low-Voltage Systems

The new Mini-Drawer

- Replacement of the entire Front- and Back-End Electronics
- New modular mechanics (Mini-Drawers)
- Increased Radiation Hardness & Redundancy
- Redesign of the High-Voltage and Low-Voltage Systems
- Faster readout electronics

The new Mini-Drawer

- Replacement of the entire Front- and Back-End Electronics
- New modular mechanics (Mini-Drawers)
- Increased Radiation Hardness & Redundancy
- Redesign of the High-Voltage and Low-Voltage Systems
- Faster readout electronics

Overview of the Upgrade Electronics

The TileCal Readout and Trigger chain

Current Architecture

The TileCal Readout and Trigger chain

Current Architecture

HL-LHC Architecture

- Each TileCal drawer is made-up of four new Mini-Drawers (MD)
 - Each MD equipped with 12 PMTs
 - Highly modular ease of maintenance
 - Independent low- and high-voltage distribution
 - Independent readout electronics
 - Minimisation of single point of failure

- Each TileCal drawer is made-up of four new Mini-Drawers (MD)
 - Each MD equipped with 12 PMTs
 - Highly modular ease of maintenance
 - Independent low- and high-voltage distribution
 - Independent readout electronics
 - Minimisation of single point of failure

 Each TileCal drawer is made-up of four new Mini-Drawers (MD)

- Each MD equipped with 12 PMTs
- Highly modular ease of maintenance
- Independent low- and high-voltage distribution
- Independent readout electronics
- Minimisation of single point of failure

Photomultipliers

Photomultipliers

Hamamatsu PMTs used in TileCal

Photomultipliers

- Photomultiplier Tubes (PMTs) from Hamamatsu
- 9582 PMTs currently in use
- 1024 PMTs to be replaced due to ageing and response degradation
- Replacement with newer R11187 models
- PMT qualification & characterization test-benches prepared - all 10k PMTs will be re-qualified

Hamamatsu PMTs used in TileCal

Photomultipliers

- Photomultiplier Tubes (PMTs) from Hamamatsu
- 9582 PMTs currently in use
- 1024 PMTs to be replaced due to ageing and response degradation
- Replacement with newer R11187 models
- PMT qualification & characterization test-benches prepared - all 10k PMTs will be re-qualified

Light-tight box for testing new PMTs

Hamamatsu PMTs used in TileCal

The Very Front-End

Functionality of the front-end card

The Very Front-End

- 1st processing stage of the PMT signal
- Preparing PMT signal for fast and slow readout
- Shaping & amplification
- Fast readout:
 - Two gains:
 - x16 High Gain
 - x0.4 Low Gain
- Slow readout:
 - PMT current integration for calibrations
 - 6 Programmable Gains
- 11 000 cards to be produced

Functionality of the front-end card

The Front-End: Mainboard

Overview of the Mainboard

Production Mainboard

The Front-End: Mainboard

- 16-layer board 69 cm long
- Divided into two independent halves
- 6 PMT signals per side
- Hosts the ADCs (12-bit/ 40 Msps)
 - Digitization of the analog PMT signals
- Control of the front-end cards
 - Gains and Charge Injection calibration
- Distribution of low voltage power on-detector
- 896 boards to be installed in ATLAS

Overview of the Mainboard

Production Mainboard

The Front-End: Daughterboard

The Front-End: Daughterboard

- Interface between on-detector and off-detector
- Communication via radiation-tolerant, high speed links (GBT)
 - 2x 4.6 Gbps downlinks & 2x 9.6 Gbps uplinks
- Downlink: Control and configuration commands for the front-end, clock and timing information
- Uplink:
 Continuous high-speed transmission of PMT signal data
- High redundancy: Independent halves with equal functionality
- 896 boards to be used in ATLAS

Current Architecture

Off-detector: The PreProcessor

Off-detector: The PreProcessor

- AdvancedTCA-based blades
- Hub between the on-detector and ATLAS Trigger & DAQ
- One PPr board includes:
 - 4x Compact Processing Modules (CPM)
 - 1x Carrier Board
 - 1x Trigger & DAQ interface (TDAQi)
- 8 TileCal module are read out by one PPr
- The total system is made up of 32 PPr boards
 - 128x CPMs
 - 32x Carrier boards
 - 32x TDAQis

The Compact Processing Module

CPM v2

The Compact Processing Module

- Configuration & Control of the On-detector electronics
- LHC Clock recovery & distribution
- Reception of signals from the Daughterboard
- Data calibration, processing (cell energy calculation) for every bunch crossing @ 40 MHz
- Data pipelining & awaiting Trigger decision
- Passes reconstructed cell energies to the TDAQi for triggering @ 40 MHz

CPM v2

The Compact Processing Module

- Configuration & Control of the On-detector electronics
- LHC Clock recovery & distribution
- Reception of signals from the Daughterboard
- Data calibration, processing (cell energy calculation) for every bunch crossing @ 40 MHz
- Data pipelining & awaiting Trigger decision
- Passes reconstructed cell energies to the TDAQi for triggering @ 40 MHz

CPM v2

Overview of the CPM Firmware

- Reception of cell energies from the CPMs
- Calculation of trigger primitives:
 - Summed Cells (Trigger-Towers)
 - Energy Flags
 - Sorted cell energies
- Transmission to Trigger subsystems identifying e/gamma, jet and muon signatures
- Data Buffering and transmission to the ATLAS DAQ system
- 70 high-speed links ranging from 9.6 Gbps to 11.2 Gbps

- Reception of cell energies from the CPMs
- Calculation of trigger primitives:
 - Summed Cells (Trigger-Towers)
 - Energy Flags
 - Sorted cell energies
- Transmission to Trigger subsystems identifying e/gamma, jet and muon signatures
- Data Buffering and transmission to the ATLAS DAQ system
- 70 high-speed links ranging from 9.6 Gbps to 11.2 Gbps

Overview of the TDAQi Firmware

Testbeam Area

- At the SPS H8 beamline
- An environment to validate hardware with real beam data and perform physics studies in parallel
- 3 modules from the calorimeter
 - 2 Long-Barrel and 1 Extended-Barrel modules
- Exposed to electron, muon and hadron beams at various energy ranges
- Today's focus are the hadron response studies:
 - Paper published in <u>EPJC</u>
 - Novelty: First measurement of isolated Kaon response in TileCal

Testbeam Area

- At the SPS H8 beamline
- An environment to validate hardware with real beam data and perform physics studies in parallel
- 3 modules from the calorimeter
 - 2 Long-Barrel and 1 Extended-Barrel modules
- Exposed to electron, muon and hadron beams at various energy ranges
- Today's focus are the hadron response studies:
 - Paper published in <u>EPJC</u>
 - Novelty: First measurement of isolated Kaon response in TileCal

Testbeam Area

The TileCal Testbeam

Experimental area

Testbeam Setup

- Configuration used in the study:
 - Projective $\eta = 0.25$
 - Beam pointed to the middle module
 - Hadron beams at 16, 18, 20 and 30 GeV

- Mix of muons, electrons, pions, kaons and protons
- Muons have low energy deposits
- Spurious particles rejected by using a wire chamber
- Taken into account only cells with energies > 60 MeV

Particle ID

- 2 CO2 and 1 He filled Cherenkov detectors
- Adjustable gas pressure for changing the refractive index
- Allows to separate particles up to 50 GeV max
- Inefficient at energies below 15 GeV

Energy Response

• The response can be parametrized:

- Kaon content is smaller in the beam dominated by statistical errors
- Protons have high statistics low systematic and statistical uncertainties

$$R^{\langle E^{raw} \rangle} = (1 - F_h) + F_h(\frac{e}{h})^{-1}$$

- . $(\frac{e}{h})$ ratio between the responses to the purely EM and hadronic components of showers
- F_h non-electromagnetic energy component of showers

Energy Resolution

- Energy resolution can be parametrized:
- a is consistent for kaon and pion data within large uncertainties
- **b** is ~5% and consistent for all particles

$$R^{\langle \sigma^{raw} \rangle} = \frac{a}{\sqrt{E_{beam}}} \oplus b$$

Comparisons to model predictions

E _{beam} [GeV]	Experimental Data	Simulated Data
	$F_{ m h}(K)/F_{ m h}(\pi)$	
16	$1.1165 \pm 0.0761 \pm 0.0354$	1.0756 ± 0.0028
18	$1.1102 \pm 0.0309 \pm 0.0276$	1.0608 ± 0.0028
20	$1.1101 \pm 0.0083 \pm 0.0186$	1.0669 ± 0.0028
30	$1.1371 \pm 0.0059 \pm 0.0098$	1.0805 ± 0.0027
	$F_{ m h}(p)/F_{ m h}(\pi)$	
16	$1.3512 \pm 0.0039 \pm 0.0418$	1.3617 ± 0.0034
18	$1.3173 \pm 0.0030 \pm 0.0326$	1.3382 ± 0.0033
20	$1.3144 \pm 0.0019 \pm 0.0217$	1.3091 ± 0.0033
30	$1.2373 \pm 0.0018 \pm 0.0107$	1.2807 ± 0.0031

	$a \ (\% \ \text{GeV}^{-1/2})$	b (%)	
Experimental data			
π	$46.68 \pm 0.30 \pm 2.22$	$4.99 \pm 0.11 \pm 0.58$	
\boldsymbol{K}	$49.9 \pm 2.60 \pm 2.46$	$1.78 \pm 2.78 \pm 1.03$	
p	$40.28 \pm 0.38 \pm 0.08$	$4.79 \pm 0.15 \pm 1.44$	
π [12]	52.9 ± 0.9	5.7 ± 0.2	
Simulated data			
Pions	42.25 ± 1	6.2 ± 0.4	
Kaons	42.8 ± 0.3	5.3 ± 0.1	
Protons	38.05 ± 0.23	5.12 ± 0.08	

- Results used to validate & improve Geant4 simulation showering models
- https://geant-val.cern.ch/

 Extracted ratio of purely EM and hadronic components of showers:

New Study

Past Study

$$e/h = 1.3535 \pm 0.0304$$

$$e/h = 1.33 \pm 0.02$$

Summary

- The TileCal will play a vital role in HL-LHC
- Entire detector readout electronics is being replaced & upgraded
 - Conform with new readout architecture requirements (transmission, latency)
 - HL-LHC has higher radiation levels
- The Upgrade R&D is finished moving to preproduction phase
- Testbeam campaigns are used to validate the new upgrade hardware & perform unique physics studies

Backup

Calibration scheme

Energy Reconstruction

Considered signal model for Optimal Filter:

$$y(n) = Ah(n) + A\tau \dot{h}(n) + ped + w(n)$$

- A The pulse amplitude
- τ Phase deviation
- h(n) normalized reference pulse shape
- $\dot{h}(n)$ time derivative of the reference pulse
- ped baseline added to the signal
- w(n) electronic noise
- Calculation of the weights:

Optimal Filtering based on weighted sums of the samples

$$E = \sum_{i=1}^{n} a(i)y(i) \qquad E\tau = \sum_{i=1}^{n} b(i)y(i)$$

- Fully digital Trigger system
- Only optical inputs from the detector
- Summed Trigger-Towers:
 - L0Calo Calorimeter Trigger
- Cell Energy Flags:
 - L0Muon Muon Trigger System
- Cell energies
 - Global Trigger
- Estimated allowed latency of ~10 μs

ATLAS Trigger System