Fibre to the Pixel

Towards an all-optical data transmission for pixel detectors

2023/05/17 Branislav Ristić

Next-generation colliders

Standard Model: A success story, but incomplete

Dark Matter, neutrino mass, CP violation ...

Physics goals for post-LHC Lepton Colliders:

- Higgs/Z Factory
 - Precision measurements of Higgs, EW, heavy quarks
- **Indirect BSM searches**

Excellent tracking performance needed

- Flavour tagging: c, b
- Precise measurement of leptonic final states

Next-generation colliders

Challenges for trackers

- No pile-up and less radiation
- Material budget $< 0.5\% X/X_0$
 - → Power consumption and cooling
- High pointing resolution of few µm
 - Fine granularity
 - Multiple scattering
- Trigger-less readout
 - Close to no buffering
- High readout bandwidth

Fourth generation light sources

Advances in photon science

- Novel materials and quantum technologies
- Real-time recording of chem./biol. processes
- Nanoscale resolution X-ray imaging
- High-speed photography

Novel detectors

- High-granularity detectors (<30um pixel size)
- 100 kHz full-frame readout
- Large dynamic range
- Precise time of arrival of single photons

Next-generation imaging and particle detection

Challenges for modern detectors

- Extreme data-rates
 - High resolution and frequency
 - Increase by orders of magnitude
- Significant power densities
- Limitation on material and services
- Miniaturisation

Optical data transmission

- Common in data centres
 - Link bandwidths up to several 100Gbps
 - Low power and light-weight
 - Immune against EM interference
- Use in HEP experiments
 - Detector to back-end transmission
 - High-speed ↔ Power ↔ Radiation

State of the art in HEP: The Versatile Transceiver+

- Dedicated electro-optical converter
- Modification of commercial technology
 - Vertical-Cavity Surface-Emitting Laser
 - PIN diode receiver
 - Both GaAs based
- Direct modulation of laser amplitude
- 10Gb/s uplink, 2.5Gb/s downlink
- Moderately radiation tolerant
 - Up to 1 MGy TID and 1x10¹⁵n/cm²

Example: CMS Phase-2 Pixel Detector

Electro-optical conversion in detector volume

- Laser generators and DC-DC converters in detector
- Differential copper connections per module
 - Material budget
 - Maximum speed per link: 1.28 Gbps
 - → 1.2 kW of electrical power
- Restriction on granularity and trigger rate
- Limits physics reach!

Transmission systems

- Miniaturisation is key for technological advancement
 - Speed, power consumption
- Limits due to losses in electrical connections

Length	Loss	Application
< 10 mm/0.4 in	1.5dB@14GHz 3dB@28GHz	Bump-to-bump Inside MCP or 3D Stack
< 50 mm/2.0 in	4dB@14GHz 8dB@28GHz	Ball-to-Ball Across PCB
< 200 mm/7.9 in	10dB@14GHz 20dB@28GHz	Ball-to-Ball
< 500 mm/19.7 in	20dB@14GHz 40dB@28GHz	Ball-to-Ball
< 1000 mm/39.4 in	35dB@14GHz	Ball-to-Ball

Co-packaging technology

Silicon Photonics

- Developed by telecommunication industry (first idea in 80's)
- Integrate optical data transmission in silicon

Silicon Photonics

- Developed by telecommunication industry (first idea in 80's)
- Integrate optical data transmission in silicon
- Light generation → light manipulation on silicon-chips
 - Separation of light generation and modulation
 - Laser source outside electro-optical converter
 - Integration on chip, chiplet or board level

Light guide

Basic principle: total reflection in fibre

 $n_{\text{Core}} > n_{\text{cladding}}$

Light guide

Basic principle: total reflection in fibre

- $n_{Core} > n_{cladding}$
- Silicon-on-Insulator technology
- Silicon core in SiO₂ or Si ridge on SiO₂
- Losses due to scattering (roughness of walls)
 - Doping of ridges, refined processing

Light manipulation

Absorption and/or phase shifts → **control of refractive index**

- Thermo-optic effect \rightarrow large change, but slow (<1MHz)
- Plasma dispersion effect
 - Concentration of free charge carriers changes refractive index
- Carrier accumulation, injection or depletion

Nature Photonics volume 4, 518-526 (2010)

Mach-Zehnder Modulators (MZM)

Two-arm travelling wave interferometer

- Phase shift in one or both arms by application of electric field
- Large bandwidth
- Temperature insensitive
- Rather big footprint (lengths ~1mm)
- High switching voltage (up to 2V)

Proc. SPIE 6898, Silicon Photonics III, 68980D

Ring modulators (RM)

Amplitude modulation by resonant absorption

- Tune resonance frequency by applied voltage
- Small footprints (~10µm diameter) and voltages (<1V)
- Temperature sensitive
- Narrow bandwidth

Data transmission with optical modulators

Up to >25 Gbps through a fibre

- Driven by external modulators
- Fibre coupling at edge of PIC

Data rate maximisation techniques

Pulse amplitude modulation (PAM-4)

- Multiple bits per symbol
- Needs wide open region in eye-diagram
- Already in use e.g. by gigabit ethernet
- Needs support from electrical drivers

Data rate maximisation techniques

Wavelength division multiplexing (WDM)

- Manipulate multiple wavelengths at the same time
- Broadband laser light necessary
 - Frequency comb
- Compatible to MZM and RM

Silicon Photonics for particle detectors

High-speed links on read-out chips

- >25 Gbps per transmitter
 - Currently 1.28 Gbps via copper
- Clean and low-loss transmission
- Several technologies for light modulation
- Data rate maximisation techniques available
- O(100) Gbps per fibre

Application in a detector

- Dedicated electro-optical converters → Integrated circuit

Multiple copper connections

→ Single fibre

- No converter PCBs
- No buffering on read-out chips
 - → Room for additional circuitry (TDCs,...)
 - → Smaller pixel size and higher trigger rates

Sun et al., Nature, 2015

RD53 pixel read-out chip in CMS

CMS requires 12.5 µs for trigger decision

- → Large buffer for read-out chips
 - → Hit-rate limit due to buffering
 - Power and real estate
- Large gains of trigger-less readout

RD53 pixel read-out chip in CMS

CMS requires 12.5 µs for trigger decision

- Large buffer for read-out chips
 - → Hit-rate limit due to buffering
 - Power and real estate
- Large gains of trigger-less readout

Integration

- Silicon-photonics mostly not CMOS compatible
 - → Dedicated PICs and module level integration
- "Add-on" for modules → incremental change
 - Opportunity for next detector upgrades
 - Suitable for MAPS

Opportunity for monolithic sensors

MAPS: Fusion of sensor and read-out chip

- Smaller pixels
- Tailored electronics → less power consumption
- Reduced material budget
- Baseline in many future collider experiments

Silicon photonics data transmission

- Hybrid module via flip-chipping / 3D integration
- Slight increase in material, but saving in power
- Complex data handling can be off-loaded
- Unlocks full low-material potential of MAPS

Current status in HEP

Active development in HEP community

Part of ECFA roadmap and Helmholtz strategy

^{*} LHCb Velo

Current status in HEP

Active development in HEP community

- Part of ECFA roadmap and Helmholtz strategy
- Main centres: CERN, KIT, INFN
 - Multiple prototypes produced
 - Characterisation of Mach-Zehnder and ring modulators
 - Radiation hardness

FALAPHEL PICv1

Current status in HEP

Active development in HEP community

- Part of ECFA roadmap and Helmholtz strategy
- Main centres: CERN, KIT, INFN
 - Multiple prototypes produced
 - Characterisation of Mach-Zehnder and ring modulators
 - Radiation hardness

FALAPHEL PICv1

Modulator results – some highlights

CERN and FALAPHEL designs tested up to 40 (26.5) Gbps

- External drivers for signal generation
 - Commercial drivers and INFN rad-hard driver tested
- Open eye diagrams in both designs

Modulator results – some highlights

CERN and FALAPHEL designs tested up to 40 (26.5) Gbps

- External drivers for signal generation
 - Commercial drivers and INFN rad-hard driver tested
- Open eye diagrams in both designs
- Resonance wavelength of modulators tunable

Multiplexing

PAM-4 tested with commercial driver board

- Wide open optical eye diagrams
 - Clean transmission at 53 Gbps

Multiplexing

1:4 wavelength division multiplexing

- 106 Gbps per fibre possible
- Individual drivers
 - Can be shared by four detectors

Multiplexing

1:4 wavelength division multiplexing

- 106 Gbps per fibre possible
- Individual drivers
 - Can be shared by four detectors
- Clear separation, little cross-talk

MZMs and RMs irradiated up to 10 MGy

Pinch-off effect in p-doped region

MZMs and RMs irradiated up to 10 MGy

Pinch-off effect in p-doped region

MZMs and RMs irradiated up to 10 MGy

- Pinch-off effect in p-doped region
- Optimisation of doping and etching profile
- Performance recovered by annealing or forward biasing

MZMs and RMs irradiated up to 10 MGy

- Pinch-off effect in p-doped region
- Optimisation of doping and etching profile
- Performance recovered by annealing or forward biasing

Data transmission with the RD53 read-out chip

RD53A and IpGBT used as direct drivers for optical modulators

- 1.28 and 10.24 Gbps uplink
- Full-duplex link established
- Successful configuration and readout of chip

Data transmission with the RD53 read-out chip

RD53A and IpGBT used as direct drivers for optical modulators

- 1.28 and 10.24 Gbps uplink
- Full-duplex link established
- Successful configuration and readout of chip

Data transmission with the RD53 read-out chip

RD53A and IpGBT used as direct drivers for optical modulators

- 1.28 and 10.24 Gbps uplink
- Full-duplex link established
- Successful configuration and readout of chip

CMOS and silicon photonics

Photonic Microprocessor Chip (SoC)

- Developed as "zero-change" process in 90nm SOI
- RISC microprocessor + memory
- Optical links between CPU and RAM
- 70 Mio Transistors & 850 photonic Devices
- Data transmission: 500Gb/s at 20 fJ/b

Sun et al., Nature, 2015

GF 45SPCLO: 45nm Silicon Photonics process

State of the art silicon photonics process

- Monolithic integration
 - CMOS circuitry and photonics on same chip
 - Unique and essential for integration into read-out chips
- Standard library of photonics components
- Supported by multiple design and simulation tools

GlobalFoundries

CMOS and silicon photonics for HEP

Fully integrated transceiver

- Versatile and generic due to separate data inputs
- Optimal vessel to introduce silicon photonics to various detectors
- Ultimate goal: Pixel read-out chip with integrated silicon photonics

CMOS and silicon photonics for HEP

Fully integrated transceiver

- Versatile and generic due to separate data inputs
- Optimal vessel to introduce silicon photonics to various detectors
- Ultimate goal: Pixel read-out chip with integrated silicon photonics

Opt. Express 20, 17667-17677 (2012)

Summary

The future of data transmission from the core of experiments

- High-speed optical links on detector modules
- Significant reduction of power consumption and material budget
- → New module concepts
- Up to 100 Gbps per fibre demonstrated
- Radiation hard up to 10 MGy

Essential to meet physics goals in HEP and photon science

