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Next-generation colliders

Standard Model: A success story, but incomplete
= Dark Matter, neutrino mass, CP violation ...

Physics goals for post-LHC Lepton Colliders:

= Higgs/Z Factory
= Precision measurements of Higgs, EW, heavy quarks

. Indirect BSM searches

Excellent tracking performance needed
o < ~Future
=  Flavour tagging: c, b _ Geneya”
. e a7 ShiCircular. o
=  Precise measurement of leptonic final states R R

¢ Collider = My

mzurICh B. Ristic - Fibre to the Pixel | 2023/05/17 | 2



Next-generation colliders

Challenges for trackers
= No pile-up and less radiation

= Material budget < 0.5% X/Xo

2> Power consumption and cooling o
N s =350 GeV

= High pointing resolution of few pm a5 [ L =500 o
2 Fine granularity '
2> Multiple scattering

= Trigger-less readout
2> Close to no buffering

e'e - ZH - u'u X

250
225 [

200 |-

AM, (MeV) ' —
= High readout bandwidth
(- Material ) _
Resolution budgeu 00
5pt L b 75 7
2 _a@ Sln9 so Ll b b e e
\pt p'[; ) 0 1 2 3 4 5 8 7 8 9

o a X10° or b x107°
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Fourth generation light sources

Advances in photon science

= Novel materials and quantum technologies

= Real-time recording of chem./biol. processes

2 Nanoscale resolution X-ray imaging E“mpea"XFEL
=2 High-speed photography

Novel detectors

= High-granularity detectors (<30um pixel size)
= 100 kHz full-frame readout

= Large dynamic range

= Precise time of arrival of single photons
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Next-generation imaging and particle detection

Challenges for modern detectors

10000.00
= Extreme data-rates |
= High resolution and frequency Collider 100000
= Increase by orders of magnitude S
= Significant power densities CEIRENT | oo
= Limitation on material and services
= Miniaturisation 10.00
CMS 2029
1.00
BELLE 2%
PXD
0.10

100 90 80 70 60 50 40 30 20 10 O
Pixel pitch [um]

Digital 5 Bit ADC 5 Bit ADC+ 8 Bit timing
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Optical data transmission

= Common in data centres
= Link bandwidths up to several 100Gbps
=  Low power and light-weight
= Immune against EM interference
2 Use in HEP experiments
= Detector to back-end transmission
= High-speed <> Power < Radiation

custom-made,
radiation-hard
optical transceivers

particle sensors
read-out & control
__electronics

experimental cavern
(radiation zone)

commercial off-the-shelf
optical transceivers

‘ back-end
electronics

computer control cavern
(no radiation)
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State of the art in HEP: The Versatile Transceiver+

= Dedicated electro-optical converter

= Modification of commercial technology
= Vertical-Cavity Surface-Emitting Laser
= PIN diode receiver
= Both GaAs based

= Direct modulation of laser amplitude

= 10Gb/s uplink, 2.5Gb/s downlink

= Moderately radiation tolerant
= Uptol MGy TID and 1x10*n/cm?
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Digital I/0
connec tor
(elink)

Example: CMS Phase-2 Pixel Detector

Detector module
\

Electro-optical conversion in detector volume 160 Mbps
= Laser generators and DC-DC converters in detector conam o
= Differential copper connections per module

2> Material budget

> Maximum speed per link: 1.28 Gbps
2> 1.2 KW of electrical power

Electrooptical
converter

100 B
. i ] optical fibrn;s<_ )
2 Restriction on granularity and trigger rate 2.56 Gbps__ 10.24 Gbps

= Limits physics reach!

Back-end

ETH:zurich
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Transmission systems

= Miniaturisation is key for technological advancement
= Speed, power consumption

= Limits due to losses in electrical connections

Length Loss Application

<10 mm/0.4 in 1.5dB@14GHz EUGIE-55 {50
3dB@28GHz Inside MCP or

I 3D Stack

<50 mm/2.0 in 4dB@14GHz Ball-to-Ball

= 8dB@28GHz Across PCB

<200 mm/7.9 in 10dB@14GHz Ball-to-Ball

<500 mm/19.7 in 20dB@14GHz Bal-to-Bal

] 40dB@28GHz e

<1000 mm/39.4 in
|

ETH:zurich

35dB@14GHz Ball-to-Ball

Ayar Labs — Technical Brief: Optical I/O Chiplets Eliminate Bottlenecks to Unleash Innovation
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Co-packaging technology

Gen

Pluggable optics
On-board optics
R 4 T
: 2.5D co-packaged optics
% TR packaged op
e | : ’,‘(y 'Q 3D co-packaged optics
7. S , ~ 4 e
Gen I v 3D co-packaged

optics with

optical links
e S8 integrated lasers

~_~ electrical links
<>

' pluggable optical transceiver .~ disaggregated laser supply

” on-board optics module « co-packaged PIC Gen

Appl. Phys. Lett. 118, 220501 (2021)
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Silicon Photonics

= Developed by telecommunication industry (first idea in 80’s)
= |ntegrate optical data transmission in silicon

:>. :
Digital
data in

Uplink -
LASER > Commecial
source receiver
Tx
Rx
Downlink -
; Commercial
Digital TIA Photodiode \ransmitter
data out
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Silicon Photonics

= Developed by telecommunication industry (first idea in 80’s)
= |ntegrate optical data transmission in silicon
= Light generation = light manipulation on silicon-chips

= Separation of light generation and modulation

= Laser source outside electro-optical converter
= Integration on chip, chiplet or board level

—> Photonic Interface Chip
Digital
data in v
Uplink

Optical > Commecial
modulator receiver
CW LASER
LASER
L T)_( __________________________________________ < source
Rx
Downlink -
; Commercial
Digital TIA Photodiode < ransmittor
data out
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Light guide

Coating
and Jacket

Basic principle: total reflection in fibre

" Ncore @ Ncladding Cladding

Core

ETH:zurich
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Light guide

Coating
and Jacket

Basic principle: total reflection in fibre
" Ncore @ Ncladding Cladding
= Silicon-on-Insulator technology

= Silicon core in SiO; or Si ridge on SiO; Core

= Losses due to scattering (roughness of walls)
= Doping of ridges, refined processing

Si0, (n=1.5)
ny

Ly "2 / n2

—| Si (n=3.5)

SIO, cladding
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Light manipulation

Absorption and/or phase shifts = control of refractive index
= Thermo-optic effect = large change, but slow (<1MHz)

= Plasma dispersion effect
= Concentration of free charge carriers changes refractive index

= Carrier accumulation, injection or depletion

Oxide barrier
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Mach-Zehnder Modulators (MZM)

Two-arm travelling wave interferometer

= Phase shift in one or both arms by application of electric field
= Large bandwidth

= Temperature insensitive

= Rather big footprint (lengths ~1mm)

= High switching voltage (up to 2V)

pn phase shifters

P AVAV
/ Peak
nput 452 MmI : : 2x1 MMl output
_— —_—
Quad- Quad+
» T
.W@/ W) Nl
T, ™ 7

on-chip resistor
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Ring modulators (RM)

Amplitude modulation by resonant absorption
= Tune resonance frequency by applied voltage
= Small footprints (~10um diameter) and voltages (<1V)
= Temperature sensitive

= Narrow bandwidth

ETH:zurich
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Waveguide

Normalized transmission (dB)

o
il

Probe wavelength
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Data transmission with optical modulators

Up to >25 Gbps through a fibre
= Driven by external modulators
= Fibre coupling at edge of PIC

Ccor (“fibre ) (fibre | O _
Coupling Coupling
\Coupling) \Coupling)

I
Signal Dri
generator rve

S R R R R R R R
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Data rate maximisation techniques

Pulse amplitude modulation (PAM-4)

= Multiple bits per symbol

= Needs wide open region in eye-diagram
= Already in use e.g. by gigabit ethernet

= Needs support from electrical drivers

300

Power (UW)
2

20
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Data rate maximisation techniques

Wavelength division multiplexing (WDM)

= Manipulate multiple wavelengths at
the same time il

1
i

---------

= Broadband laser light necessary 1470 1490 1510 1530 1550 1570 1590
] " ' L:>w Densi:y 20nm B.etween Cl:annels '
Frequgncy comb | CWDM _
= Compatible to MZM and RM CHANNELS  Multicom inc.

Mach-Zehnder Modulators (MZM)

Aoy

INPUT

le > 1-5 mm

Microring Resonator Modulators (MRM)

Ao, Ay, Az, Ag : Ao,
@ O fe—> 5-10 um

OUTPUT

‘1l DOI:10.1117/12.2615266
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Silicon Photonics for particle detectors

High-speed links on read-out chips

= >25 Ghps per transmitter
=  Currently 1.28 Gbps via copper
= Clean and low-loss transmission

= Several technologies for light
modulation

= Data rate maximisation techniques
available

2 0O(100) Gbps per fibre

ETH:zurich
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Application in a detector

= Dedicated electro-optical converters - Integrated circuit
= Multiple copper connections - Single fibre

2 No converter PCBs
= No buffering on read-out chips
2> Room for additional circuitry (TDCs,...)
2> Smaller pixel size and higher trigger rates

| Waveguide
Micro-ring
manipulato

Downsize
1:300

Sun et al., Nature, 2015
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RD53 pixel read-out chip in CMS

CMS requires 12.5 ps for trigger decision

= Large buffer for read-out chips
2 Hit-rate limit due to buffering
2> Power and real estate

= Large gains of trigger-less readout
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RD53 pixel read-out chip in CMS

CMS requires 12.5 ps for trigger decision

= Large buffer for read-out chips
2 Hit-rate limit due to buffering
2> Power and real estate

= Large gains of trigger-less readout 1000} o
975 S 4
o
o
95.0 ° 4
L 4
> 925} 4
O °
c
Q0 *
2 90.0F . .
e
w 4
87.5F i 4
+
85.0F ¥  Specs for clustered hits il
Measured losses, 3.75 ps latency
825k <4 Mealsured losses, 12;5 ps latency : , | |
1 2 3 4 5

o Hit rate [GHz/cm?]
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Integration

= Silicon-photonics mostly not CMOS compatible
2> Dedicated PICs and module level integration

=  “Add-on” for modules » incremental change
= Opportunity for next detector upgrades
= Suitable for MAPS

=
S~

PIC —> <@

EIC. —»r 4 # >

Salience Labs

o smo@éa' Sy 0
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Opportunity for monolithic sensors

MAPS: Fusion of sensor and read-out chip
= Smaller pixels ‘
= Tailored electronics - less power consumption =
= Reduced material budget

= Baseline in many future collider experiments

Silicon photonics data transmission

= Hybrid module via flip-chipping / 3D integration
= Slight increase in material, but saving in power
= Complex data handling can be off-loaded

=2 Unlocks full low-material potential of MAPS

mzurICh B. Ristic - Fibre to the Pixel | 2023/05/17 | 26



Current status in HEP

Active development in HEP community

= Part of ECFA roadmap and Helmholtz strategy

=  Main centres: CERN, KIT, INFN

2 %)QEJ\ 6%3\
R f
S N7 E 8 FE
N) N
Q S > ¢ .8 & F 7
< 3 & L EEFT F FF 9
S & IS FE&Fes&sY
VI e v S F 5 2 & & & 5 &
Y X & o @ N = o
VLI & OO J g §
S ITIT RS ITOL LT & & O~
¥V I T ELC I Y YOO S
DRDT <2030 2030-2035 :::: 2040-2045 > 2045
Data High data rate ASICs and systems 71
density | New link technologies (fibre, wireless, wireline) Al
Power and readout efficiency 71
Novel microelectronic technologies, devices, materials 75
Emerging | Silicon photonics 7.5
technologies  3D-integration and high-density interconnects 15

Keeping pace with, adapting and interfacing to COTS 75

. Must happen or main physics goals cannot be met

* LHCb Velo

ETH:zurich

. Important to meet several physics goals

Desirable to enhance physics reach

B. Ristic - Fibre to the Pixel |

@ R&D needs being met
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Current status in HEP

PIC by CERN

S, M

Active development in HEP community =
= Part of ECFA roadmap and Helmholtz strategy ) |l

= Main centres: CERN, KIT, INFN

= Multiple prototypes produced
= Characterisation of Mach-Zehnder and ring modulators

= Radiation hardness
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Current status in HEP

PIC by CERN

T, By

Active development in HEP community
= Part of ECFA roadmap and Helmholtz strategy
= Main centres: CERN, KIT, INFN

= Multiple prototypes produced
= Characterisation of Mach-Zehnder and ring modulators

= Radiation hardness

Laser

Signal

— Driver
generator
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Modulator results — some highlights

CERN and FALAPHEL designs tested up to 40 (26.5) Gbps

= External drivers for signal generation
= Commercial drivers and INFN rad-hard driver tested

= Open eye diagrams in both designs

25 Gb/s 40 Gb/s

s [ II\IRZZGI.S Gb/I ]
\%/ 1.2 s
5
5 |

00 | | | | | | |

30 20 10 0 10 20 30
Time (ps)
ETH:zurich
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Modulator results — some highlights

CERN and FALAPHEL designs tested up to 40 (26.5) Gbhps

= External drivers for signal generation
= Commercial drivers and INFN rad-hard driver tested

= QOpen eye diagrams in both designs
= Resonance wavelength of modulators tunable

—
0
0 Rzt
S 7
3 =N Re)
? \{] c
5 .10 | 2
% = t
= o
S as| ‘ £
a — L
o = 3
| | | S I
-20 ' : B ol
1549.0 1550.0 1551.0 8—50 S N
| 540 | 545 1550

Wavelength [
avelength (nm) Optical wavelength [nm]
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Multiplexing

PAM-.4 tested Wlth commgrmal driver board TAC7L] le
= Wide open optical eye diagrams T
2> Clean transmission at 53 Gbps

A =20
(77—
=

X
S

A
B,
2
A

L | | | | I M | | | I | | |
s ., NRZ 26.5 Gb/s |
\: s mm::;.,_i
5 . ,
2 0.8
o
© -
S 04F
o
@)
0.0 :
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
Time (ps) Time (ps)
EIrzuricn
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Multiplexing

1:4 wavelength division multiplexing
= 106 Gbps per fibre possible

= Individual drivers
2> Can be shared by four detectors

Modulated
outputs

Optical power (mW)
Optical power (mW)
o
[e)

T30 20 10 0 10 20 30
DC laser COMB XX Time (ps)

—_— T T T .
— = D S ——[
2 06 i -
3 04 o— 8
& o2t 4 &

ETH:zurich
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Multiplexing

1:4 wavelength division multiplexing "o ' |
= 106 Gbps per fibre possible _ b8
= Individual drivers < 08
2> Can be shared by four detectors é sl
= Clear separation, little cross-talk £ L
0.0 | |
Modulated 0 w < < =]
outputs |
DC laser COMB 3201 | ]
G =
— g
— O00O0 = ‘
P 3
L A M
B e I S A4 I | S | S
] | l I
1540 1545 1550 1555 1560 1565

Wavelength (nm)
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Radiation hardness

MZMs and RMs irradiated up to 10 MGy
= Pinch-off effect in p-doped region

++ +++++

++p+++t g

I IR e it o St SR L

pinch-off region buried oxide (Si0)

Si substrate

ETH:urich
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Radiation hardness

MZMs and RMs irradiated up to 10 MGy
= Pinch-off effect in p-doped region

e | |
0.3 Carrier Density (cm 3) _ 0 kGy

13 l016

03 | Carrier Density (cm ") ! ' 1000 kGy
§ 02 i I | | | | | | | Contact
~ 10 13 16
N 107 10”10 —
0.1
0.0 '
-1.0 -0.5 0.0 0.5 1.0

X (Lm)

ETH:zurich
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Radiation hardness

MZMs and RMs irradiated up to 10 MGy

= Pinch-off effect in p-doped region

= Optimisation of doping and etching profile
= Performance recovered by annealing

or forward biasing

I -
0.3 Carrier Density (cm 3)

0 kGy

-1.0 -0.5 0.0

X (um)
ETH:zurich
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L Ll bl il R i
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MZMs and RMs irradiated up to 10 MGy
= Pinch-off effect in p-doped region
= Optimisation of doping and etching profile
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Data transmission with the RD53 read-out chip

RD53A and IpGBT used as direct drivers for optical modulators

= 1.28 and 10.24 Gbps uplink
= Full-duplex link established

= Successful configuration and readout of chip

ETH:zurich

/ \ 2.56 Gbps
Back-end
PHE .
10.24 Gbps
—

-

SER/DESER ]

High-speed Tx output]

IpGBT

\

)

____________ 160 Mbps ______ )
e-links Front-end
O LT PR g
- === eccmemmmeemeeaa—a chip
:ZI:I:ZII:ZZZZZZZ:I::IZI:ZZ RD53
1.28 Gbps
—
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Data transmission with the RD53 read-out chip

RD53A and IpGBT used as direct drivers for optical modulators
= 1.28 and 10.24 Gbps uplink
= Full-duplex link established
= Successful configuration and readout of chip

ETH:zurich
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Data transmission with the RD53 read-out chip

RD53A and IpGBT used as direct drivers for optical modulators
= 1.28 and 10.24 Gbps uplink
= Full-duplex link established

= Successful configuration and readout of chip

e N\ 256Gbps [ PD+TIA )
SiPh Rx
Back-end p +
Ring Modulator
i
10.24 Gbps
—— \_ SiPh Tx )
ETH:zurich

)

____________ 160 Mbps ______ )
e-links Front-end
R L LT R .
- === eccmemmmeemeeaa—a chip
:ZI:IZZIII:ZZIZZZII:ZIIIIZI RD53
1.28 Gbps
-
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CMOS and silicon photonics

transceiver test memory
sites bank

Photonic Microprocessor Chip (SoC)

= Developed as “zero-change” process in 90nm SOI
= RISC microprocessor + memory

= Optical links between CPU and RAM

= 70 Mio Transistors & 850 photonic Devices

= Data transmission: 500Gb/s at 20 fJ/b

6 mm

rx

T 3mm — '\

Processor and memory RISC-V
transceiver banks processor

Sun et al., Nature, 2015
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GF 45SPCLO: 45nm Silicon Photonics process

State of the art silicon photonics process ‘ [] .« _m
e . g GlobalFoundries
= Monolithic integration N

= CMOS circuitry and photonics on same chip
= Unique and essential for integration into read-out chips

= Standard library of photonics components
= Supported by multiple design and simulation tools

Nazcadesign-

photonic IC design framework

GIS FACTORY
SYNOPSYS

mzur/Ch B. Ristic - Fibre to the Pixel | 2023/05/17 | 43




CMOS and silicon photonics for HEP

Fully integrated transceiver

= Versatile and generic due to separate data inputs

= Optimal vessel to introduce silicon photonics to various detectors
= Ultimate goal: Pixel read-out chip with integrated silicon photonics

Ao oS - -STS T T T T ST o —me T TmoS TTom T oS T oIT I T TN
I fibre | |
I Coupling Soi |
,,,,,,,,,,,,,,,,, plitter Combiner fibre |
: : _@_ || Coupling I
11 N\ / : |
F— ||
3 —5 — Dri Photoni |
| : | river otonics
1 = LN = transmitter : I
] — I AN I
' 3 |
i Data : | Drive e i i
| . 3 | @ fiore Y|
| processing ! )I | Coupling |
1 o |
] |
- iT T T T Yo g
| )
| | transmitter | : | \/—_—_—_—_—_—::: - - - --=-=Z |
| - |
I Dat tout | 1| | Receiver - I
3 § -
| | | e ouping) |
| L . ; |
| l )' '\ Photonics receiver ,l
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CMOS and silicon photonics for HEP

Fully integrated transceiver

= Versatile and generic due to separate data inputs

= Optimal vessel to introduce silicon photonics to various detectors
=2 Ultimate goal: Pixel read-out chip with integrated silicon photonics

-~ s s s T T T T T TS EmeeTm T T T T e T T TN
|
1
| Combiner fibre |
L [ Coupling ]
- |
3
|
Photonics !
transmitter :|
i
fiore Y|
Coupling
il
|
. i ) I
| | transmitter | ; - T - —-——-—-——-—-—-— - --=-=-Z|
1 { |
! fore |
| Couping) |
[ .
|\l _____________________________________ Photonics receiver 1 Opt. Express 20, 17667-17677 (2012)
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Summary

The future of data transmission from the core of experiments
= High-speed optical links on detector modules

\\
"

= Significant reduction of power consumption _\

o
N

and material budget
2 New module concepts

= Up to 100 Gbps per fibre demonstrated
= Radiation hard up to 10 MGy

2 Enables trackers with unprecedented performance
=2 Essential to meet physics goals in HEP and photon science

ETH:zurich
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