Missing E_T Reconstruction in ATLAS X.Chen, L.Flores, B.Mellado, S.Padhi and Sau Lan Wu University of Wisconsin-Madison ATLAS Analysis Tutorial, TAU 11/02/07 ### Outline **Introduction** \$_Status of Cell-Based MET package in Athena **Status of Object-Based MET package in Athena** **MET** Tails and Fake MET studies **MET** checks with (first) data #### **ATLAS** Calorimetry (Geant) #### The LAr Calorimeter ### #ATLAS is developing a robust effort to understand MET issues produced in physics events ### Cell-based Refined Method (TP 1994 and TDR 1999) ### Object-Based Method (inspired by DO) ATLAS and CMS are moving towards the object-based method ### Topological Clustering (Sven Menke) - **Lesson** Cell clusterization is a crucial tool - > Define thresholds on the seed and the neighboring cells - *Cuts on seed, neighbor and rest of clustered cells - \Box Cut on rest of cells is as low as O_{\odot} - ☐ We do not observe bias on physics Figure 5.7: Schematic representation of the cell island clustering. ### Cell-Based Approach #### ATHENA MissingET: EtMiss Reconstruction and Calibration Refinement of Calibration for cells in different objects (e/ γ , τ , μ , jets...) a la TDR (implementation in 12.0.2) ### Montecarlo comparison $\sigma(Ex(y)miss)$ vs SumET in *CSC* Jets data (Pythia and Herwig) #### ATHENA Missing ET: Performance Good EtMiss measurement crucial for mass reco in $Z \rightarrow \tau \tau$ and $H \rightarrow \tau \tau$ #### Performance depends on: - Noise suppression, Calibration, Dead material correction ... - ■Physics channel topology: presence of leptons, Eleptons, Njets, Ejets, energy outside phys objects, activity out of coverage... - No dependence on Montecarlo observed (Pythia QCD jets very similar to Herwig jets) #### **EtMiss resolution vs SumET** For CSC linearity within 5%, resolution slightly worse respect to TDR parametrisation ($\sigma(EtMiss)=0.46*sqrt(SumET)$) #### **Linearity vs EtMiss_Truth** #### ATHENA MissingET: First look at LocalHadronCalibration - \Rightarrow looked at some CSC samples (low statistics!) using cell weights from LocalHadronCalibration implemented in 12.0.1 (including Dead Material corrections up to $|\eta|$ < 3) - \Rightarrow W \rightarrow ev, Z \rightarrow $\tau\tau$ sample, minimum bias events: EtMiss resolution and linearity comparable to the ones from default H1-like calibration - ⇒in QDC J5 (280<pT<560GeV) sample, EtMiss resolution is worse respect to H1-like calib and there are larger tails to be understood ⇒New simulation/weights determination with 12.0.1 →hopefully more significant results for Barcelona Calorimeter Calibration workshop ## Object-Based Approach (In Athena since 12.1.0/12.0.2) #### Object-Based Missing E_T Object Based Calibration The Object-Based approach is very FLEXIBLE. It accommodates any calibration strategy Local Hadronic calibration Use local hadronic calibration or in-situ calibration or a combination of both | Object | Calibration Sample | Calibration Method | |------------------|--|---| | Electrons | Z→ee | Mass constraint | | Photons | Ζ→εεγ,μμγ | Mass constraint | | Jets | Z+jets, γ +jets, dijets, W \rightarrow jj (in tt) | P _T balance, W mass constraint | | Single π^\pm | min-bias, W→τν | E/P | | Single π^0 | Ζ → ee γ,μμγ | Mass constraint, $E_{\pi 0}/E_{\gamma}$ from MC | **4**OBMET solved long standing shifts and degraded resolution in $H \rightarrow \tau \tau$, so important for low mass Higgs searches \bot Higgs mass reconstruction after the application of all cuts in page 9 (except for mass window) with $H \rightarrow \tau \tau \rightarrow II$ Bruce Mellado, ATLAS Analysis Tutorial, TAU 11/02/06 #### Performance comparison with default method at the time (first half of 2005) >That method is no more default in ATLAS #### Summer 2005 Tails were significantly improved later on #### \blacksquare Missing E_T resolution after the VBF analysis cuts \succ Table with Gaussian mean, width and RMS before and after the implementation of low E_{T} objects (in GeV) $$\vec{P}_{Tmiss} = -\vec{P}_{Tjets} - \vec{P}_{Leptons} - \vec{P}_{Tmin \ i-jets} - \vec{P}_{Tuncluster \ ed}$$ | | Gaussian
Mean | Gaussian
Width (σ) | RMS | |---|------------------|-----------------------|------| | Include Low E _T objects | 0.54 | 8.4 | 10.2 | | Un-clustered Depositions not included | 0.51 | 9.4 | 11.6 | | Low E _T objects not included | 0.53 | 10.7 | 12.9 | #### OBMET in Athena | Sample | Range | Application in package | |--------------------|--|---| | Single electrons | 10 <e<1000 gev<br=""> η <2.5</e<1000> | Electron reconstruction | | Single π^0 's | 1 <e<500 gev<br=""> η <2.5</e<500> | Low E_T π^0 's, poorly reconstructed electrons, γ 's | | Single π^{\pm} | 3 <e<500 <i="">GeV
 η <5</e<500> | Low $E_T \ \pi^\pm \ (\tau' s?)$ | | J1-J8 | 20 <e<sub>T<3000 GeV
 η <5</e<sub> | High P _T hadronic depositions, τ's | | Single muons | 6 <p<sub>T<1000 GeV</p<sub> | Addition of Calo-
based muon ID | #### Current Classification - In 12.0.1 we read out to AAN the following objects - 1. Leptons (electrons and muons) - > Muons reconstructed with Likelihood are separated from muons reconstructed with other packages - 2. Jets (E_T>20 GeV): - > Taus are still treated as jets. Will separate taus and jets in subsequent versions - 3. Mini-Jets: - \triangleright Depositions with 1<E_T<20 GeV in Barrel and Endcap - > Charges and neutral pions are treated separately, but the AAN does not have that information yet. Will do that soon - > Rest (or "unclustered" energy) - > Depositions with $E_{T}<1$ GeV in Barrel and Endcap and $E_{T}<20$ GeV in FCAL - > Three components (Barrel/HEC/FCAL) are separated ## Calibration of High E_T objects in ATHENA: Electrons #Electron calibration performed with 6,3,0 topo-clusters using single electrons (see L.Flores talks) ## Calibration of High E_T objects in ATHENA: Jets \bot Jet calibration using Pseudo-H1 weights obtained with dijets (see S.Padhi's talks). Work very well for τ -jets too ## Calibration of Low E_{τ} Objects: Single π^0 Calibration of single pions using sampling method with TDR functional form (see B.M. talks) ## Calibration of Low E_{T} Objects: Single π^{\pm} +Calibration of single pions using different functional forms for different $|\eta|$ (see B.M. talks) ### SumET (Truth vs. Rec.) #### Truth and reconstructed SumET in GeV \triangleright Need to study in truth fraction of SumET from very low E_{T} particles (with 11.0.42) | Sample | Truth SumET | Rec. SumET | ∆SumET | |---|-------------|------------|--------| | $Z\rightarrow \mu\mu$ ($ \eta_1 <2.5$) | 226 | 210 | 16 | | Z →ee (η ₁ <2.5) | 217 | 201 | 16 | | $W\rightarrow \mu\nu$ ($ \eta_1 $ <2.5) | 207 | 188 | 19 | | W → e ν (η ₁ <2.5) | 206 | 188 | 18 | | VBF H $\rightarrow \tau \tau \rightarrow II (\eta_1 < 2.5)$ | 403 | 386 | 17 | | W' →Iv (MW=1 TeV) | 544 | 527 | 17 | | SUSY (SU3) | 889 | 870 | 19 | ### #Ratio of SumEt of various components to the Total truth SumEt for different samples | Sample | $\Sigma E_{T}(Lep)/\Sigma E_{T}$ | $\Sigma E_{T}(Jet)/\Sigma E_{T}$ | $\Sigma E_T(MJet)/\Sigma E_T$ | $\Sigma E_{T}(Rest)/\Sigma E_{T}$ | |---|----------------------------------|----------------------------------|-------------------------------|-----------------------------------| | Z →μμ (η ₁ <2.5) | 0.43 | 0.08 | 0.19 | 0.23 | | Z →ee (η <2.5) | 0.36 | 0.16 | 0.19 | 0.23 | | $W\rightarrow \mu\nu$ ($ \eta_1 $ <2.5) | 0.23 | 0.10 | 0.29 | 0.30 | | W → e ν (η ₁ <2.5) | 0.19 | 0.14 | 0.29 | 0.30 | | W'→Iv (M _W =1 TeV) | 0.68 | 0.13 | 0.08 | 0.08 | | W'→Iv (M _W =2 TeV) | 0.74 | 0.12 | 0.05 | 0.05 | | SUSY (SU3) | 0.04 | 0.77 | 0.09 | 0.08 | ### Misssing E_T in $Z \rightarrow II$ ### Misssing E_T in $W \rightarrow ev$ #### \bot SUSY events with high P_T leptons (e, μ) (OBMET) # MET Tails and Fake MET studies #### ATHENA MissingET: detailed study of events in EtMiss tails CSC QCD J6 (560<pT<1120GeV), 50Kevts (129pb-1) reconstructed with 11.041 EtMiss_rec-EtMiss_true tipically < 100GeV, look at events with Δ EtMiss>250GeV Have rerun reconstruction on 16/26 events with RDO files available at BNL and examined them with Atlantis. Classify as follows: | Class | Number | |--|--------| | Jet leakage from TileBar/TileExt crack | 4 | | Fake muons from TileBar/TileExt crack | 1 | | Jet Leakage from TileBar/HEC crack | 1 | | Fake muons from TileBar/HEC crack | 4 | | Jet punchthrough | 5 | | Other | 1 | | | | Limited statistics, but no single class dominates. Shower leakage both from punchtrough and cracks important. Veto on muons chamber activity seems effective Fake muons also important: can reduce with more severe muon quality cuts For $\Delta EtMiss>100GeV$ less muon activity, cracks do not seem dominant #### Jet leakage from Tile/ExtTile crack, shower in muon system Three events with jet leakage from TileBar/TileExt crack, shower in muon system (1321, 44816, 45309): #### Fake EtMiss study #### ⇒ dedicated meetings each 1-2 months - ■Event production (S.Asai, A. Gupta) - QCD jets (background for SUSY) and - $Z(\rightarrow II)$ +jets events (background for $H\rightarrow II \vee V$) - Filters - Events with true EtMiss>threshold (study true EtMiss distribution) - Events with a jet pointing to a crack (study fake EtMiss) (R. Pradhu) Definition of crack regions A bad EtMiss mesurement could fake a non-zero reconstructed EtMiss in events with no true **FtMiss** - Dead material hits information - Contribution to EtMiss from DM regions will be calculated in MissingET - ■Study Instrumental effects: problems in electronic channels, crates, HV sectors... give fake EtMiss. Can correct and recover EtMiss? (R. McPherson et al) - Define Event quality variables: out-of-time cells, hot cells, number of muon segments... (D. Tovey et al) # MET with Data ## \bot W and Z decays are a copious source of τ 's and Missing E_{T} Expect S/B worse at LHC w.r.t. Tevatron. Especially important for $W \rightarrow \tau \nu$ ### W,Z→leptons Rates at LHC #### **LEffective** cross-sections and rates with basic cuts | | $W\rightarrow \tau \nu$ $\tau\rightarrow had$ | $Z \rightarrow \tau \tau$ $\tau \tau \rightarrow I had$ | W → I ν
I=e ,μ | Z→II
I=e,µ | |---|---|---|--|---------------------| | σ* B*eff
(pb) | 3300 | 140 | 18000 | 1100 | | Rate for 10 ³³ inst.
Lumi. (Hz) | 3.3 | 0.14 | 18 | 1.1 | | Events with 100 pb ⁻¹ | 3.3*10 ⁵ | 1.4*104 | 1.8*106 | 1.1*10 ⁵ | ### Z → ττ Mass Reconstruction In order to reconstruct the Z mass need to use the collinear approximation Tau decay products are collinear to tau direction Fraction of τ momentum carried by visible τ decay $\overrightarrow{P}_{T\tau 1} + \overrightarrow{P}_{T\tau 2} = \overrightarrow{P}_{Tl1} + \overrightarrow{P}_{Tl2} + \overrightarrow{P}_{Tmiss}$ $p_{T_{lep1},x} \cdot p_{T_{lep2},y} - p_{T_{lep1},y} \cdot p_{T_{lep2},x}$ $x_{\tau_1} =$ $p_{T_{Higgs},x} \cdot p_{T_{lep2},y} - p_{T_{Higgs},y} \cdot p_{T_{lep2},x}$ $p_{T_{lep1},x} \cdot p_{T_{lep2},y} - p_{T_{lep1},y} \cdot p_{T_{lep2},x}$ $x_{\tau_2} =$ $p_{T_{Higgs},y} \cdot p_{T_{lep1},x} - p_{T_{Higgs},x} \cdot p_{T_{lep1},y}$ $\pm x_{\tau 1}$ and $x_{\tau 2}$ can be calculated if the missing E_T is known \bot Good missing E_T reconstruction is essential #### EtMiss with early data: in situ scale determination with $Z \rightarrow \tau \tau$ Results still preliminary due to low statistics Need to have also a bb sample Trigger-aware analysis and Cuts tuning ``` Rome data. Applied cuts: pt(lep) > 15 GeV, |\eta| < 2.5 pt(jet) > 15 GeV, |\eta| < 2.5 isEM & 0x7FF) ==0, lep isolation: Etcone30<5GeV 1.4 \triangle \phi < 2.7 or 3.6 < \Delta \phi < 5.3 m_T(lept-EtMiss)<50GeV \tau-likelihood > 8 (\tau-eff ~ 30%) 66<rec m_{TT}<116 GeV Expected in 100pb-1 ~ 300 evts with ~ 20% backgd Possible to loosen cuts to increase statistics? Or more severe cuts necessary to reduce bb backad? In TDR: EtMiss>20 GeV ``` m_T(lept-EtMiss)<25GeV Results still preliminary due to low statistics Need to have also a bb sample Trigger-aware analysis and Cuts tuning Rec $\tau\tau$ mass vs EtMiss scale ## Missing E_T with $W \rightarrow lv$ - **♣**One can use the sharp end of the transverse mass in different missing E_T bins - \triangleright Shape of transverse mass changes with Missing E_{τ} , due to acceptance - **♣**One can also use the fact that in the average the pt of the charged lepton and the pt of the neutrino are of the W decay are known function, which can be calculated with MC Bruce Mellado, ATLAS Analysis Tutorial, TAU 11/02/06 Bruce Mellado, ATLAS Analysis Tutorial, TAU 11/02/06 List the transverse momentum escaping calorimeter coverage due to particles escaping though the beam-pipe or partially depositing energy in the back of the FCAL? >Use Z→II as a sensitive tool - Re-do older earlier studies with present-day MC - Use ALPGEN to generate Z+njets (Matrix Element and Parton Shower matching) with $|\eta|<100$ (light flavor only) - >Impact of ZQQbar will be addressed in the future - Apply a veto on events with at least one jet with $P_T > 10$ GeV in $|\eta| < 5$: Events with Z+nj n>0 have a jet(s) going down the beam-pipe - ↓Effect of particles going down the beam-pipe is expected to be small - Work needs to be done to understand instrumental effects of jets with partial depositions in FCAL ### Outlook and Conclusions - **ATLAS** has embarked in a vigorous collective effort to develop robust algorithms for Missing E_T reconstruction - >Cell-Based and Object-Based algorithms available in ATHENA releases - >MET performance is being evaluated and studies in a large variety of final states - >Shifts in the module of MET are now significantly reduced. Efforts made to improve resolution - >Study of various sources of tails and fake MET underway - *Regular meetings set up and new tools are being developed - Devising various methods for checking MET reconstruction with (early) data