

EP-DT Detector Technologies

High-performance storage and dataflow solutions for the data acquisition system of particle physics experiments

Adam Abed Abud (CERN EP-DT Detector Interface)

> December 7, 2022 DT Training Seminar

Outline

- Experimental challenges in neutrino detection
- The DUNE experiment
- Liquid argon TPC
- Physics constraints on the DUNE DAQ
- The DUNE Data Acquisition system
- Low-level triggering system
- High-performance storage buffer for Supernova events
- Particle identification in LAr detectors
- Conclusion

Neutrino experimental challenges

Neutrinos are <u>elusive</u> particles that interact weakly with matter

- Large active volume is needed to detect neutrinos
 - Interactions can happen anywhere in the detector (unlike collider experiments)
 - Good **timing resolution** is needed
- Need for a high detector uptime, always ready to take data:
 - We know when beam neutrinos arrive but we do not know when a galactic event happens (unlike collider experiments where the event is organized by the bunch crossing)
- Energies and momenta range from MeV to GeV
 - \circ Difficult to accurately detect v in the "same" detector
 - Good energy resolution is needed to distinguish between track and shower events

The DUNE experiment **Physics goals**

4

- **DUNE**: Long baseline neutrino detector located 1300 km from the source and 1.5 km underground Ο
 - 1-6 GeV muon neutrinos/antineutrinos from a high-power proton beam from Fermilab
- Main physics goals:
 - Solve the hierarchy mass mystery by measuring rate of oscillation of neutrinos and antineutrinos (neutrino beam from FNAL)
 - Study neutrinos from Supernova events
 - Study solar and atmospheric neutrinos
 - Physics beyond the SM (proton decay)
- Two detectors:
 - **Near Detector:** characterize the beam (100s of millions of neutrino interactions)
 - **Far Detector:** 4 cryogenic LArTPC modules with a total fiducial mass of 40 kton
 - Trigger and DAQ: 4 independent instances (one for each module), synchronized to a common clock Adam Abed Abud - 07/12/2022 - DT Training Seminar

The DUNE experiment Physics goals

- DUNE: Long baseline neutrino detector located 1300 km from the source and 1.5 km underground
 - 1-6 GeV muon neutrinos/antineutrinos from a high-power proton beam from Fermilab
- Main physics goals:
 - Solve the hierarchy mass mystery by measuring rate of oscillation of neutrinos and antineutrinos (neutrino beam from FNAL)
 - Study neutrinos from Supernova events
 - Study solar and atmospheric neutrinos
 - Physics beyond the SM (proton decay)
- Two detectors:
 - **Near Detector:** characterize the beam (100s of millions of neutrino interactions)
 - Far Detector: 4 cryogenic LArTPC modules with a total fiducial mass of 40 kton
 - Trigger and DAQ: 4 independent instances (one for each module), synchronized to a common clock
 Adam Abed Abud 07/12/2022 DT Training Seminar

The DUNE experiment Physics goals

- Two detectors:
 - Near Detector: characterize the beam (100s of millions of neutrino interactions)
 - **Far Detector:** 4 cryogenic LArTPC modules (with different detector technologies) with a total fiducial mass of 40 kton and size of 15 m (w) $\times 14 \text{ m}$ (h) $\times 62 \text{ m}$ (l)
 - Trigger and DAQ: 4 independent instances (one for each module), synchronized to a common clock

Liquid argon time-projection-chamber (LArTPC)

- Multiple LArTPC technologies: we will focus on the horizontal drift detector technology
- Horizontal drift TPC: multiple drift volumes separated by a central cathode
 - $\circ~$ HV at 180 kV providing an E field of 500 V/cm
 - 3 planes of wires to collect the signal (2 induction and 1 collection)
 - Challenge: difficult to trigger on induction planes because signal is bipolar
 - Cold electronics to minimize the noise

•Use of photon detectors to trigger the start of the event

Abud - 07/12/2022 - DT Training Seminar

• Modular nature of the apparatus allows splitting a cryostat in ~150 identical components

• Modular nature of the apparatus allows splitting a cryostat in ~150 identical components

DUNE uses a continuous readout for the LArTPC

- 2 MHz sampling rate
- 384 k channels, 14 bit ADC @ 2MHz -> 9.2 Tb/s
- Adding up all the TDAQ from the four cryostats leads to ~6 TB/s
 - Similar rate expected for HL-LHC experiments !

• Modular nature of the apparatus allows splitting a cryostat in ~150 identical components

DUNE uses a continuous readout for the LArTPC

- 2 MHz sampling rate
- 384 k channels, 14 bit ADC @ 2MHz -> 9.2 Tb/s
- Adding up all the TDAQ from the four cryostats leads to ~6 TB/s = 1000 movies in 4k per second NETFLIX
 - Similar rate expected for HL-LHC experiments !

• Modular nature of the apparatus allows splitting a cryostat in ~150 identical components

Readout system interfaces the detector front-end with the DAQ processing units

- Commercial-off-the-shelf server with multiple uses:
 - Detector interface: handle the data input from the front-end electronics of the detector
 - Low-level data selection system (*Trigger Primitive Generation*): identify time periods in which the waveforms are noise-free
 - Local storage buffer: temporary store the data while waiting for a trigger decision
- Data throughput for each readout unit: approximately 10 GB/s from 10 optical links
 - Total of ~1.5 TB/s for each detector module

• Modular nature of the apparatus allows splitting a cryostat in ~150 identical components

Trigger combines a subset of readout (TPs) data into time windows of interesting signals:

- Time "window" can vary from < 1 ms to ~100s;
- Data size ranging from few MB to ~150 TB

Dataflow moves the data fragments (identified by the trigger) from the Readout nodes to a large storage buffer

• Total storage size is 1 PB (approximately one week of data taking)

• Modular nature of the apparatus allows splitting a cryostat in ~150 identical components

Trigger combines a subset of readout (TPs) data into time windows of interesting signals:

- Time "window" can vary from < 1 ms to ~100s;
- Data size ranging from few MB to ~150 TB

Dataflow moves the data fragments (identified by the trigger) from the Readout nodes to a large storage buffer

• Total storage size is 1 PB (approximately one week of data taking) = 150k movies in 4k **NETFLIX**

• Modular nature of the apparatus allows splitting a cryostat in ~150 identical components

Transfer recorded data to Fermilab computing infrastructure

• Total transfer of 30 PB/year (across all detector modules)

• Modular nature of the apparatus allows splitting a cryostat in ~150 components

More systems are included in the DAQ:

- Run Control: steer the data acquisition in coherent way, propage commands to all the applications
- Configuration: description and configuration of all the applications running in the DAQ
- **Operational Monitoring** and **Data Quality Monitoring**: check the quality of the data and the operational metrics
- **Timing system**: provide synchronization to a common clock

Physics constraints on the DUNE DAQ

The physics goals of the DUNE experiment heavily drive the DAQ design

- Wide physics program results in the study of many different types of events
 - Support data taking over a wide energy spectrum
 - DAQ must support a very wide range of readout windows
 - Trigger system will need both a self triggering mechanism for the many low-energy deposits as well as a triggering system for the high energy (>100 MeV) interactions
 - Storage system and buffering becomes crucial to support all data taking operations
- Detector located 1.5 km underground
 - No quick access and no large host lab in the vicinity !
 - DAQ must be fully configurable, controllable and operable from remote locations
 - Quality monitoring and operational monitoring become essential
 - Automated error detection and recovery capabilities

ANNEE

Source: CDS

- Real-time processing and streaming of interesting data regions for trigger decisions
- Local storage buffer for Supernova events
- Particle identification in liquid argon detectors

- Real-time processing and streaming of interesting data regions for trigger decisions
- Local storage buffer for Supernova events
- Particle identification in liquid argon detectors

- Real-time processing and streaming of interesting data regions for trigger decisions
- Local storage buffer for Supernova events
- Particle identification in liquid argon detectors

- Real-time processing and streaming of interesting data regions for trigger decisions
- Local storage buffer for Supernova events
- Particle identification in liquid argon detectors

Real-time trigger system

-

.

000

000

Real-time trigger system - Motivation

- A Real-time triggering system is a crucial for the success of the DUNE physics program
- Hit finding is the process of identifying a signal (Trigger Primitive) above a threshold
 - Objective is to trigger on signal and discard noise data

• Advantages

- Improved clustering/triggering efficiencies for events with low hit multiplicities
- Improve signal-to-noise ratio for low energy regions
- Trigger based on Regions-of-Interest (3-view of the hit information becomes possible)
 - Select only regions of the LArTPC where an activity has been detected

Real-time trigger system - Challenges

- Identifying a signal across all detector planes is challenging
 - Noise RMS is not constant across all three detector planes
 - Lower hit finding efficiency because signal to noise ratio is lower across different detector planes
- **Requirements** for a **real-time triggering** algorithm for the DUNE **DAQ**
 - Accuracy: maximize the signal to noise ratio, in real-time, for any type of signal
 - **Universality**: all the waveforms from the detector front-end electronics must be treated equally
 - **Frugality**: the algorithm needs to process signals at the detector sampling rate of 2 MHz

Signal is 40x higher than noise for the collection plane

Absolute Running Sum Algorithm

Absolute Running Sum (AbsRS) integrates the incoming signal using the **absolute value** to compensate for negative pulses, a scale factor **s** and a weighting parameter **R**

$$y_n = R \cdot y_{n-1} + \frac{|x_n|}{s}$$

- Simulation studies show that signal-to-noise improve by a factor of 2 (**universality**)
- The algorithm works on all planes of the LAr TPC detector with satisfactory S/N ratio (**accuracy**)

Source: data selection slides from Klaudia Wawrowska

Trigger Primitive Generation using AbsRS algorithm

Decode format from Front-End	Find pedestal median and variance		Apply AbsRS		RS pedestal subtraction		Evaluate TPs
 Decode ADC data using specific detector format Expand 14-bit ADCs to 16-bits 	 Pedestal subtraction is used to bring the waveform baseline to zero Use of a frugal streaming method [paper]: use one entry at at time and update the median if N entries are higher than a fixed threshold Variance given by interquartile range (IQR): difference between the 75th and the 25th percentiles 	•	Apply the absolute running sum on the incoming ADC entry using information Resource intensive task. Performance impact: ~10% CPU utilization	•	Apply a pedestal subtraction on the RS value	•	A TP is identified if the incoming signal is greater than a threshold Threshold is given by the IQR. Threshold "adapts" to the incoming data due to the frugal streaming

Parallelize using AVX2-based instructions: extension to x86 instructions in order to perform with a single instruction multiple data

Response of the Absolute Running Sum to noise

• Simulation of noise data and investigation of the response of the Absolute Running Sum algorithm

Response of the Absolute Running Sum to noise

• Simulation of noise data and investigation of the response of the Absolute Running Sum algorithm

Absolute Running Sum in Prevessin

• The algorithm is running within the DUNE-DAQ software

High-performance storage system

Storage buffer for Supernovae Physics use-case

- DUNE objective: store Supernova Neutrino Burst (SNB) events
 - Detection of **rare**, **low energy** and **distributed** signatures

- DAQ requirements:
 - Sustain high data rates: 10 GB/s for each DAQ readout unit
 - Transient buffer of ~10 seconds to temporary store the data until a trigger signal is issued
 - On trigger: persist ~100 seconds (i.e. 150 TB per detector module)
 - High data volumes: minimum capacity of 2 TB per readout unit

- Solution:
 - Use commercial-off-the-shelf (COTS) storage devices to meet the performance demands of the DUNE experiment

Persistent memory devices

- •Technology candidate to store the Supernova data: persistent memory devices (PMEMs)
 - Non-volatile memory technology: memory devices capable of permanently storing data
 - \circ Higher storage capacity (up to 9 TB per server) and higher latency (1 μ s) compared to DRAM
- DAQ application [paper]
 - Implementation of the supernova storage buffer with persistent memory devices could be a promising solution
 - Better than DRAM devices or single solid-state drives
 - EP-DT-DI DAQlab has a cluster of 6 servers with PMEMs !
- Benchmarking results:
 - Disk performance: write throughput of ~10 GiB/s
 - Target range needed for the DUNE local storage system

Integration with ProtoDUNE

- Testing procedure :
 - Emulate the data workload from the Readout system and write into PMEMs
 - Use the DUNE Readout system in emulation mode:
 - Data generated from the electronics and not by the Front-End electronics
 - Full integration with a single ProtoDUNE readout unit

- Each detector optical link is processed independently and assigned to a thread
 - Setup **CPU affinity** of the executing thread to the right NUMA node
- Software optimizations needed to achieve the target throughput:
 - **Direct I/O writing**: indicates that data is copied directly to the device, bypassing kernel buffer and the operating system's page cache

Evolution of storage technologies

- Bandwidth of storage technologies is evolving fast. Write throughput for NVMe SSD devices
 - In **2018**: ~1.5 GB/s
 - In **2022**: ~5.0 GB/s
- Use COTS technologies as much as possible in DAQ systems

Data collected by John C. McCallum. Data collected by Adam Abed Abud since 2018

Adam Abed Abud - 07/12/2022 - DT Training Seminar

Particle identification in a LAr detector

Source: CDS

Track vs Shower identification

• Particles produced from the neutrino interaction with argon have to be properly identified (**particle identification**) and their energies need to be measured (**reconstruction**)

• Challenges:

- Correctly identify particle showers initiated from photons or electrons
 - Many DUNE beam events have this signature (e.g. decay of π^0)
 - Correctly identify track events (muons, pinos) from shower events (electrons, photons)
- Energy reconstruction of an event involves correctly identifying all hits produced in an interaction
 - Improve energy resolution of the event
- Solution: use state-of-the-art tools for the classification task between track and shower particles

Deep Learning method

- Problem statement: Binary classification task (track vs shower) from sparse data
- Approach based on Submanifolds Sparse Convolutional Networks
 - (arXiv:<u>1706.01307</u>, Facebook Research)
 - Convolutional neural networks applied on sparse data
 - Suitable to (Proto)DUNE use-case: large detector and few interactions
 - From paper: "Testing results show that they perform on par with state-of-the-art methods (sparse convolutional neural networks) but require substantially less computation"
 - Similar approach adopted in MicroBooNE (arxiv:2012.08513)
- Use **ProtoDUNE** as testing platform for the algorithm development and testing
 - Use of both MC data and from the 2018 data taking session

Training and validation

- Input features: identified in the hits 9 discriminating features between track and shower particles
 - Angle between neighbouring hits;
 - Dot product between neighbouring hits
 - Charge deposition of single hits
 - Number of neighbouring hits within a certain distance. R = [3 cm, 10 cm, 30 cm]
 - Total charge over a certain distance. R = [3 cm, 10 cm, 30 cm]
- Trained the model on 40k events (> 10M hits)

	Purity [%]	Efficiency [%]		
Track	96.3	97.3		
Shower	90.8	87.7		

Inference on ProtoDUNE data

- The network output is a value between 0 (track) and 1 (shower)
- Hit level analysis: for each hit in the dataset, investigate the SparseNet output for predicting both track (red) and shower (blue) particles

- Inference results on the ProtoDUNE data show purities and efficiencies above 90%
 - Most of the track and shower hits have been correctly identified
 - Outperforming currently adopted algorithm in ProtoDUNE analysis !

	Purity [%]	Efficiency [%]
Track	97.7	97.8
Shower	95.6	95.3

Inference in real life

ProtoDUNE data (run5809)

Inference in real life

ProtoDUNE data (run5809)

Conclusion

- Neutrinos are elusive particles that still hide many mysteries
- Wide physics program of the DUNE experiment drives the design of its Data Acquisition system
- Different strategies have been investigated to support the physics program of the experiment
 - Real-time triggering mechanisms for low energy deposits across the detector
 - System tested and deployed on a section of the ProtoDUNE detector
 - Local high performance storage technologies for recording Supernova events
 - Tested and integrated modern storage technologies into the DAQ system with successful results
 - Use of particle identification methods to improve energy reconstruction of neutrino events
 - Successfully investigated innovative Deep Learning method specifically designed for large and sparse detector like the DUNE experiment

home.cern

Neutrinos: what is unknown?

- What is the neutrino mass ordering?
 - We do not know the mass of the three observed neutrinos but only mass differences
 - We do not know which neutrino is the lightest or the heaviest
- Is there CP violation in the neutrino sector? Could it be responsible for the matter/antimatter asymmetry in the universe?
 - We do not know if neutrinos and antineutrinos behave alike
- Do additional neutrinos exists?
 - (Inconclusive) evidence suggest the existence of a "right-handed" sterile neutrino
- Can we detect neutrinos from Supernova Burst events?

Other interesting storage solutions

- Take advantage of PCIe 4 storage adapters
 - Connect multiple SSD drives together: up to 4 x PCIe 4.0 devices
- A single PCIe 4 NVMe SSDs provides a sequential writing throughput of ~4.5 GB/s
- Connecting 4 drives with RAID-0* provides the target throughput needed for the DUNE local storage
 - Interesting solution for the DUNE DAQ local storage buffer
- Testing with the whole ProtoDUNE apparatus
 - Successfully tested the local storage system with a single readout unit

RAID0 or disk striping = process of dividing data into several data blocks (or stripes) and distributing them across multiple storage devices.