
AMoRE (Neutrinoless Double Beta Decay Search Experiment)

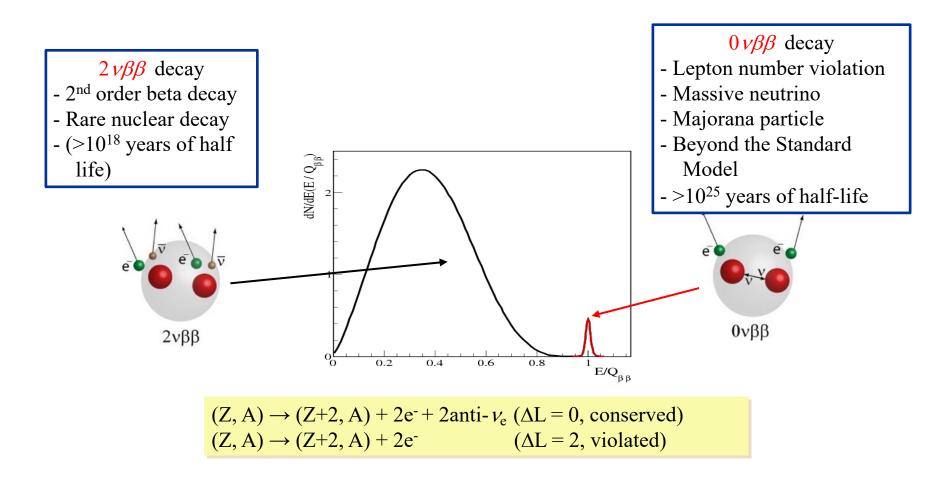
Moo Hyun Lee Center for Underground Physics (CUP) Institute for Basic Science (IBS) Daejeon, Korea

2022. 12.16

2022 KPS DPF meeting, SKKU (Seoul)

AMoRE Collaboration

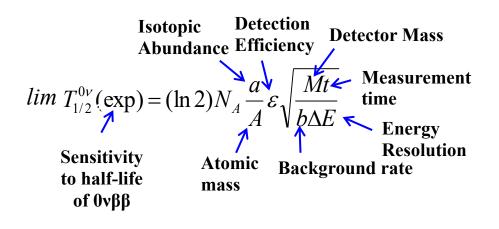
AMoRE Moo Hyun Lee (CUP, IBS)

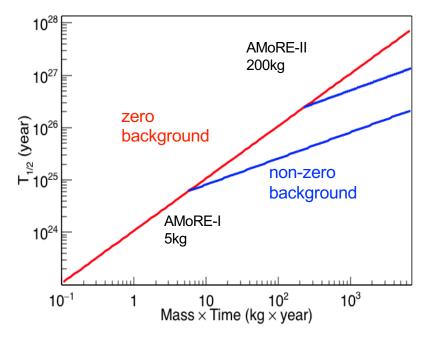

2022 KPS DPF, December 16, 2022, SKKU (Seoul)

ihs

UNDERGROUND PHYSICS

The goal of **AMoRE** is to search for neutrinoless double beta decay $(0 \nu\beta\beta)$ of ¹⁰⁰Mo using Mo-based scintillating crystals and low-temperature sensors.




AMoRE Moo Hyun Lee (CUP, IBS)

AMore Experimental Approach UNDERGROUN

4

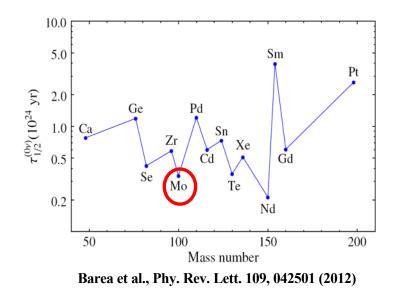
• Sizable background case:

ibs

When b is $\sim O(1)$,

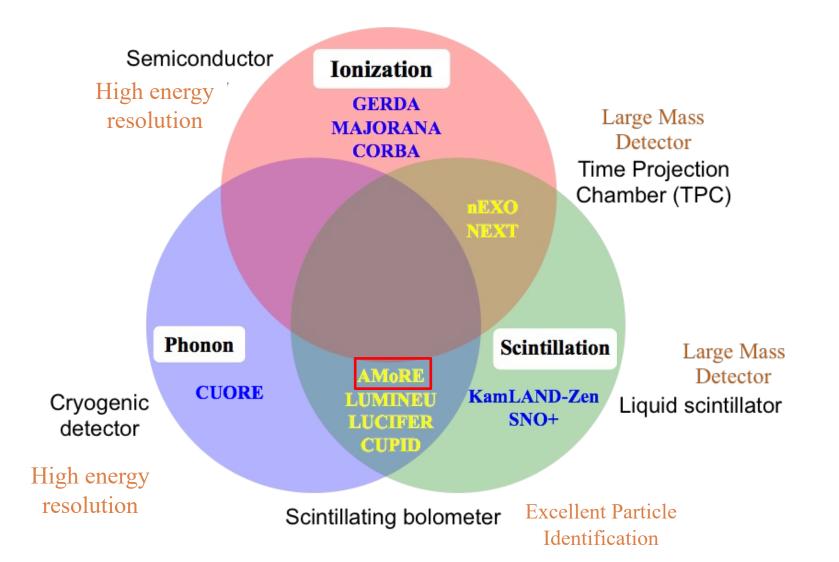
• "Zero" background case:

$$T_{1/2}^{0\nu}(\exp) = (\ln 2)N_A \frac{a}{A} \varepsilon M t$$


AMoRE is aiming for zero background.

AMoRE Moo Hyun Lee (CUP, IBS)

Why we use ¹⁰⁰Mo for $0\nu\beta\beta$ search ?



- High Q-value (ββ) of 3034.40 (12) keV.
- $(^{208}\text{Tl}\rightarrow^{208}\text{Pb}, \text{the highest & intensive 2.614 MeV } \gamma \text{ from nature})$
- High natural abundance of 9.7%.
- Relatively short $(0\nu\beta\beta)$ half life expected from theoretical calculation.

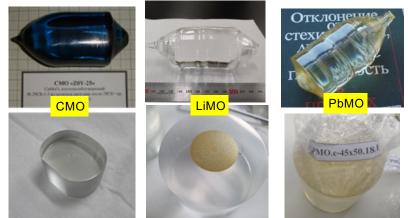
Candidate	Q (MeV)	Abund. (%)
⁴⁸ Ca	4.271	0.19
⁷⁶ Ge	2.040	7.8
⁸² Se	2.995	8.7
¹⁰⁰ Mo	3.034	9.7
¹¹⁶ Cd	2.802	7.5
¹²⁴ Sn	2.228	5.8
¹³⁰ Te	2.533	34.1
¹³⁶ Xe	2.479	8.9
¹⁵⁰ Nd	3.367	5.6

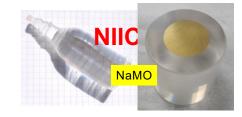
Detection Techniques of 0vββ

AMoRE Moo Hyun Lee (CUP, IBS)

2022 KPS DPF, December 16, 2022, SKKU (Seoul)

ibs


UNDERGROUND PHYSICS


CENTER FOR

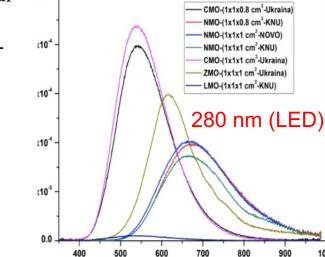
AMoRE parameters

- □ Crystals: ⁴⁰Ca¹⁰⁰MoO₄(CMO) or XMO (X: Li, Na, or Pb)
 - $\square \quad {}^{100}\text{Mo enriched:} > 95\%$
 - 48 Ca depleted: < 0.001% (N.A. of 48 Ca:0.187%)
- □ Low temperature detector: 10 30 mK
- Energy resolution: ~5 keV @ 3MeV, Excellent PSD

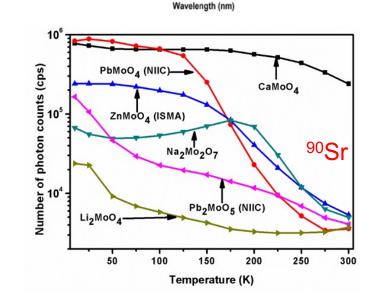
The AMoRE Plan

	Pilot	Phase I	Phase II
Mass (Crystal)	1.9 kg CMO	6 kg (CMO + LMO)	188 kg LMO + 4 kg CMO
Bkg [keV ·kg· year]-1	< 10-1	< 10-2	< 10-4
$T_{1/2}^{0\nu}$ Sensitivity [years]	$\sim 3.2 \times 10^{23}$	$\sim 1.05 \times 10^{24}$	~5.0 × 10 ²⁶
Location	Y2L (700	m depth)	Yemilab (1000m depth)
Schedule	2015 - 8	2020 - 2023	2023 -

Crystals R&D for AMoRE-I & II


1000

H.J.Kim @SCINT2017


Even though CMO (CaMoO₄) is a very good detector material which has the largest light output among Mo based crystal scintillators, there are other Mo crystals suitable for AMoRE-II experiment besides CMO. CMO has disadvantage that we have to purchase ⁴⁸Ca depleted isotopes, expensive.

- □ We worked on R&D of various molybdate crystals including Li₂MoO₄, Na₂Mo₂O₇, PbMoO₄ and other compounds.
- □ Decided to use Li₂MoO₄ due to low-background level and easiness in growth at relatively low temperature even though its hygroscopic nature requires a careful handling during the preparation and operation in a dry environment.

Crystals	λ_{em}	Decay time [µs]	E_(LED) [%]	E_(⁹⁰ Sr) [%]
CaMoO ₄	540	237	100	100
ZnMoO ₄ (ISMA)	620	_	22	32
PbMoO ₄ (NIIC)	545	20	13	105
Pb2MoO5 (NIIC)	600	5	3	22
Li ₂ MoO ₄	540	23	1	5
Cs ₂ Mo ₂ O ₇	701	363 ^[31]	12	1
Na ₂ Mo ₂ O ₇	663	756 ^[36]	55	9

:10

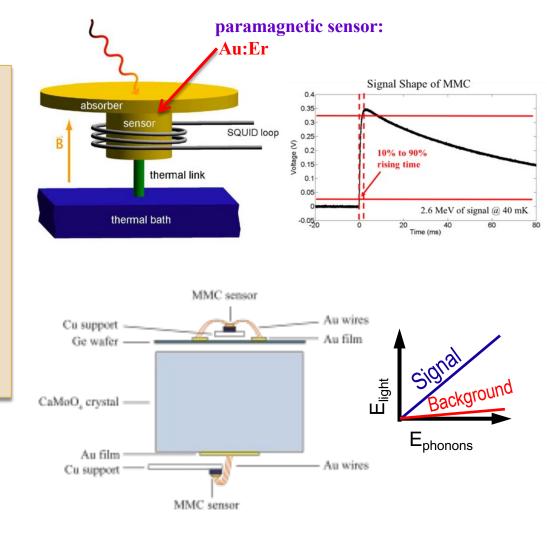
 λ_{em} , peak emission wavelength; E_(LED), energy deposited by a 280 nm UV LED source; E_(90 Sr), energy deposited by a 90 Sr beta source.

H.J. Kim et al., Crystal Research & Technology, Nov. 2019

8

MMC (Metallic Magnetic Calorimeter) for LTD UNDERGROUND PHYSIC

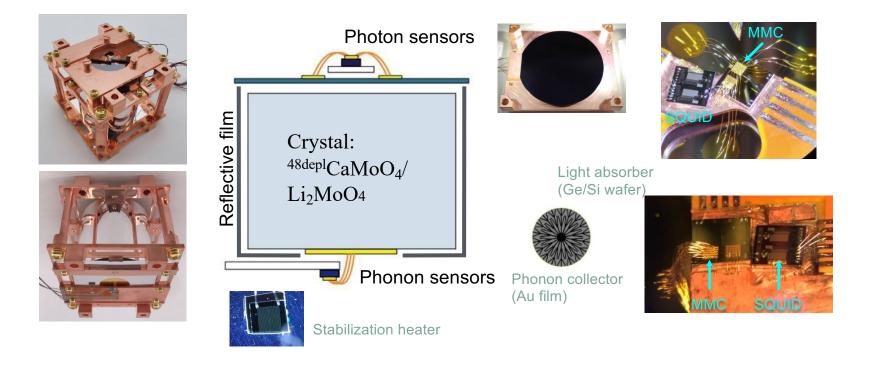
9


S.J. Lee et al., Astroparticle Physics 34 (2011) 732-737

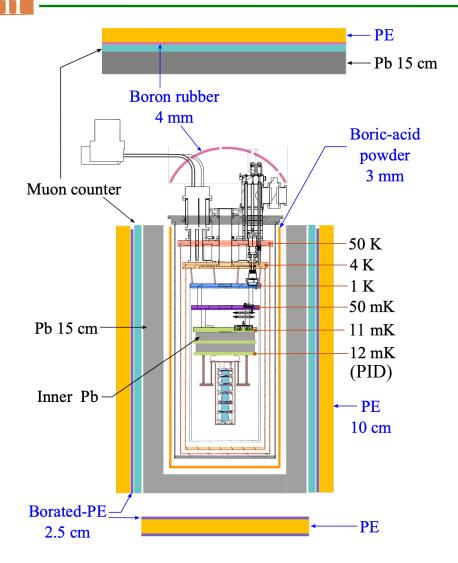
Principle of operation

- 1. Energy absorption in an XMO crystal.
- 2. Phonon & Photon generation.
- 3. Temperature increase (gold film).
- 4. Magnetization in MMC decreases.
- 5. SQUID pickup the change.

Advantage of MMC

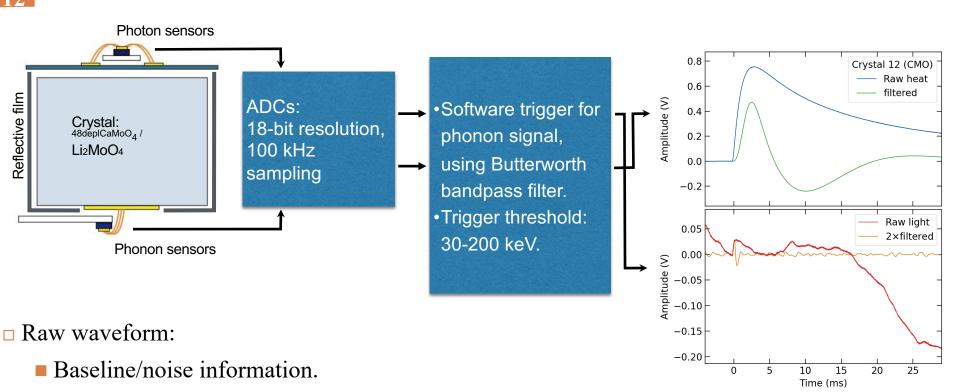

- Fast rising signal : ~0.5 ms (critical to reduce 2vββ random coincidence)
- Fairly easy to attach to absorber.
- Excellent Energy resolution

Detector module


- □ Cylindrical CMO and LMO crystals, sizes vary $\Phi \ge 4$ cm / H ≤ 5 cm.
 - CMO: ⁴⁸Ca depleted, $Q_{\beta\beta}$ (⁴⁸Ca) = 4271 keV.
- □ Metallic magnetic calorimeter (MMC) + SQUID:
 - Fast signal timing: a few millisecond rise-time for phonon signals at mK.
 - Low random coincidence background.
 - Energy resolution ~ 10 keV FWHM at 2.6 MeV.

AMoRE Moo Hyun Lee (CUP, IBS)

AMoRE-pilot/I cryostat / shielding



+ More enhanced shielding for AMoRE-I

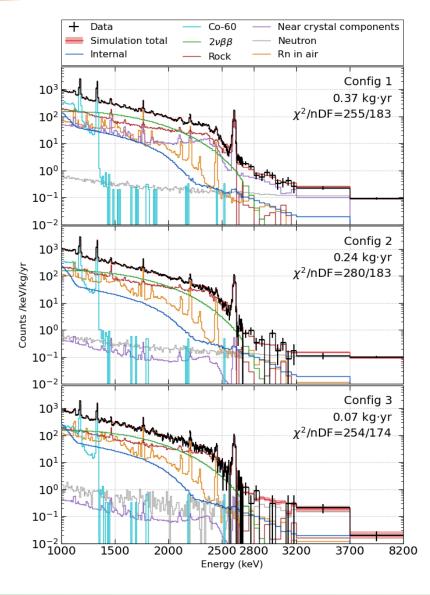
- □ Cryogen-free dilution refrigerator.
- **For AMoRE-pilot and AMoRE-I.**
- Now operating at 10 mK with
 1.2 μW cooling power.
- **D** Pb (γ), boron, and polyethylene (*n*).
- □ Plastic scintillator muon counter.
- Yangyang underground laboratory (Y2L) at 700 m depth.

Signal processing and analysis

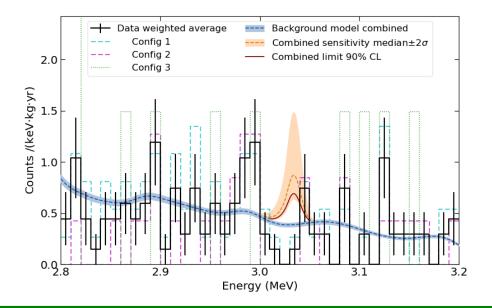
Timings (rise/fall): pulse shape discrimination (PSD).

□ Reconstruction for improving energy resolution and β/α discrimination power (DP):

- Butterworth bandpass filter— mainly for noise suppression:
 - pulse amplitude: pulse height or a least square fit to the template signal.
- Stabilization heater signal every 10 seconds for gain drift corrections.


ihs

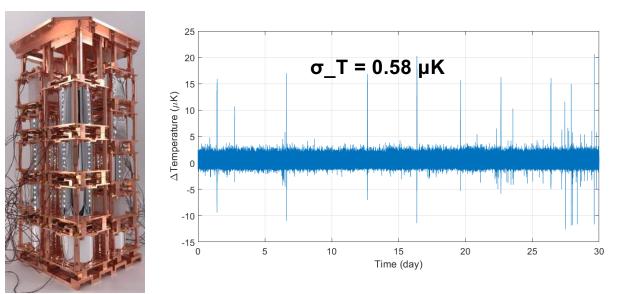
AMoRE-pilot final result


13

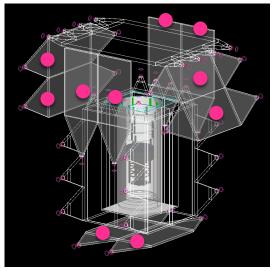
AMoRE

Moo Hyun Lee (CUP, IBS)

- Understanding of the background components and reduction of them.
- Background level of ~0.5 counts/keV/kg/yr at 2.8-3.2 MeV.
 - neutron-induced γ, crystals' internal contamination, rock/air-radon γ.
 - □ Internal background— arXiv:2107.07704
- $\Box \quad T_{1/2}^{0\nu} > 3.2 \times 10^{23} \text{ years at } 90\% \text{ CL.}$

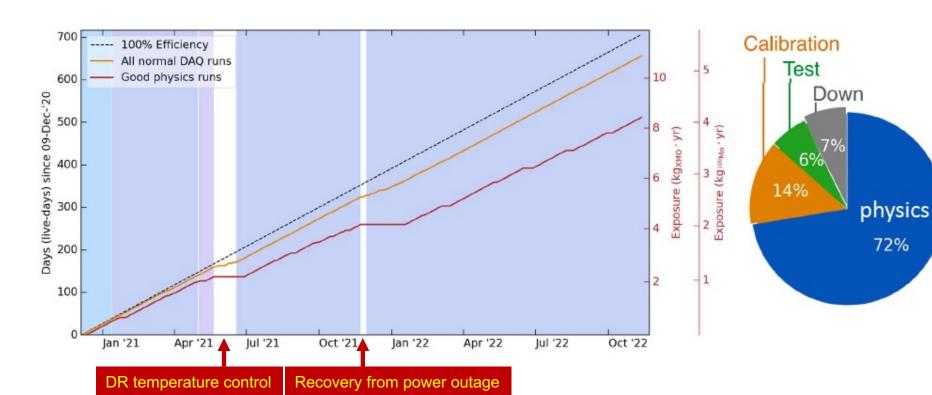


AMoRE-pilot → **AMoRE-I**



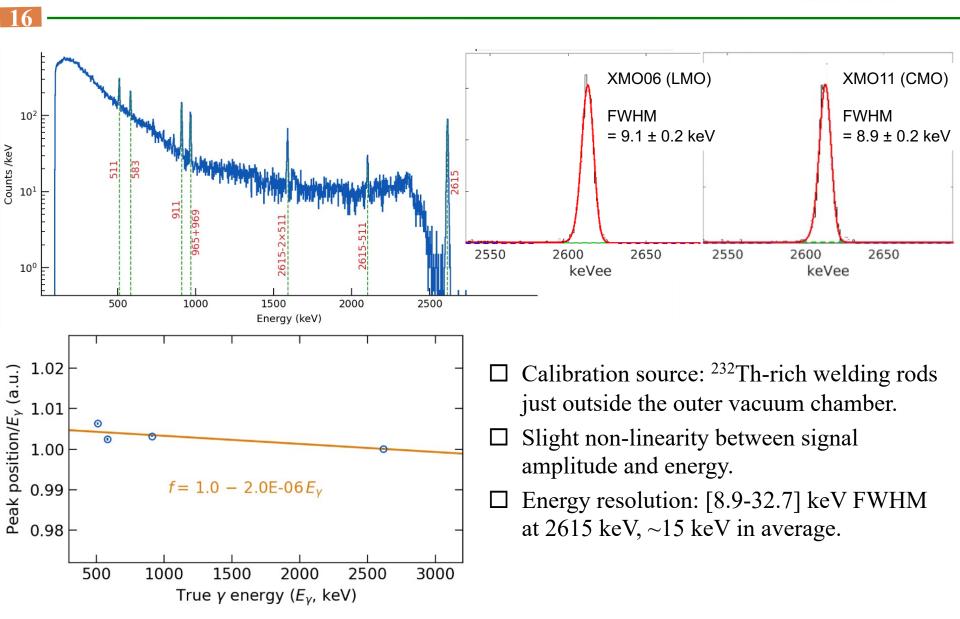
14

- $6 \text{ CMO} (1.89 \text{ kg}) \rightarrow 13 \text{ CMO} (4.58 \text{ kg}) + 5 \text{ LMO} (1.61 \text{ kg})$
 - **•** Total crystal mass = 6.19 kg, ¹⁰⁰Mo mass = 3.0 kg
- □ Stabilization heater for all crystals.
- $\square MMC \text{ sensor: } Au:Er \rightarrow Ag:Er.$
- □ Using same cryostat + two stage temperature control: $\langle \Delta T \rangle < 1 \mu K$.
- □ Shielding enhancements:
 - Outer Pb: $15 \rightarrow 20$ cm; neutron shields: boric acid silicon + more PE / B-PE.
 - More muon counter coverage.
 - Supply of Rn-free air.



•Added muon counters

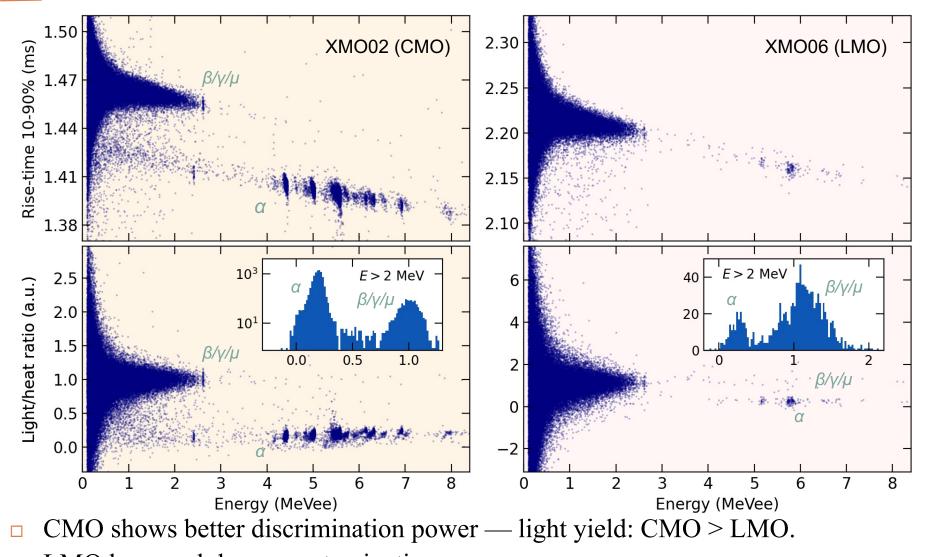
AMoRE-I data taking



□ DAQ duty factor ~ 90%, good physics data ~ 72%.
□ Data taking continues in 2023.

15

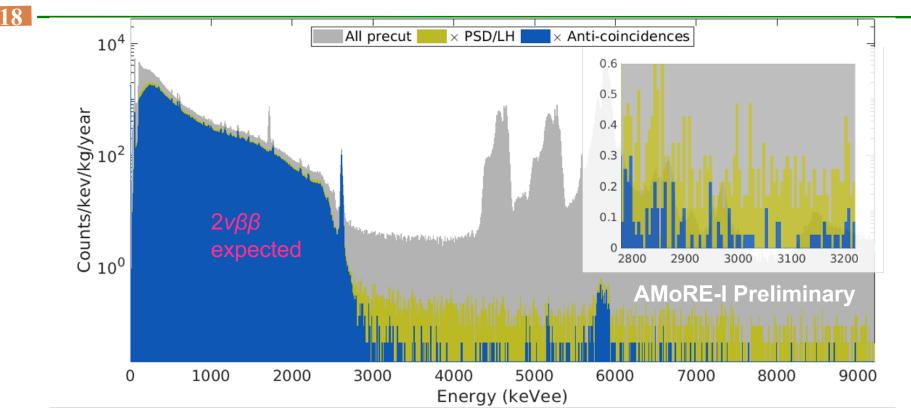
AMoRE-I: Energy calibration



AMoRE Moo Hyun Lee (CUP, IBS)

2022 KPS DPF, December 16, 2022, SKKU (Seoul)

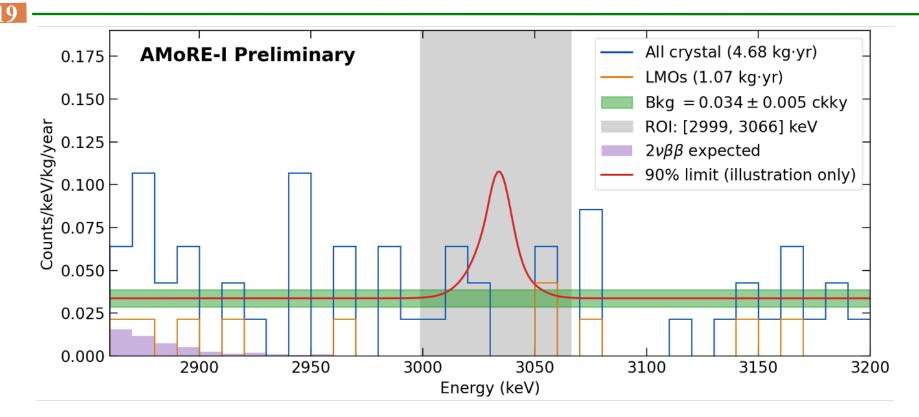
ibs


Particle IDentifications, CMO and LMO

 \square LMO has much less α contamination.

ibs

Background spectrum

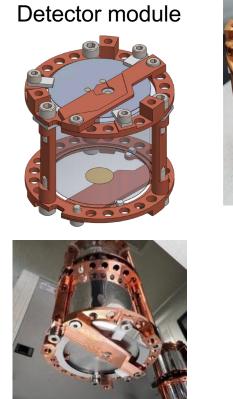


- □ All crystal excluding 1 LMO (with very poor β/α discrimination):
 - 13 CMO + 4 LMO: exposure = 4.68 kgxmo·yr = 2.24 kgiso·yr.
- □ Anti-coincidence cuts reject events:
 - coincident at multiple crystals within 2 ms ($\varepsilon \sim 99\%$),
 - within 10 ms after a muon counter event ($\varepsilon \sim 99.7\%$),
 - within 20 minutes after a ²¹²Bi α -decay event candidate ($\varepsilon \sim 98\%$).

AMoRE Moo Hyun Lee (CUP, IBS)

ihs

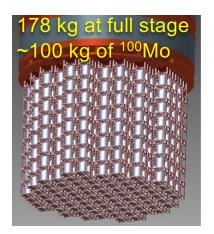
Preliminary 0vββ limit from AMoRE-I

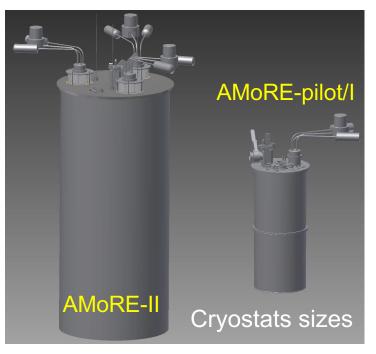


- □ ROI to contain most (> 99%) of the $0\nu\beta\beta$ signal peak, ε containment ~ 81%.
- □ Background = 0.034 ± 0.005 counts/keV/kg/year, from ROI side-band.
- Combining the result of counting analysis at ROI, with a flat background constr aint from the side-band events for each crystal.
- $\Box \quad T_{1/2}^{0\nu} > 1.05 \times 10^{24} \text{ years at } 90\% \text{ CL.}$

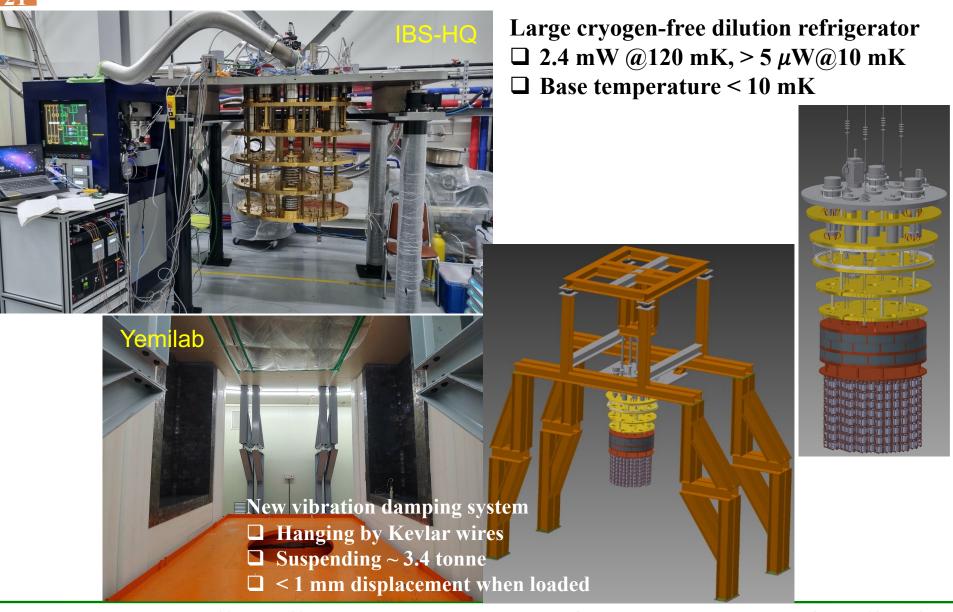
ibs

AMoRE-II under construction



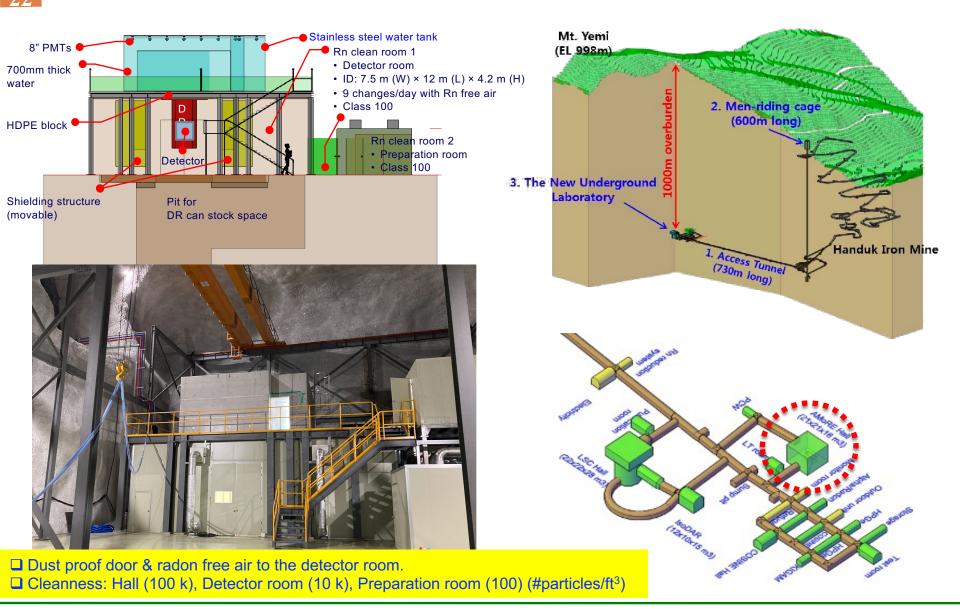

AMoRE-II

90 modules (~27 kg LMO) in the first stage



AMoRE-II cryostat and support system

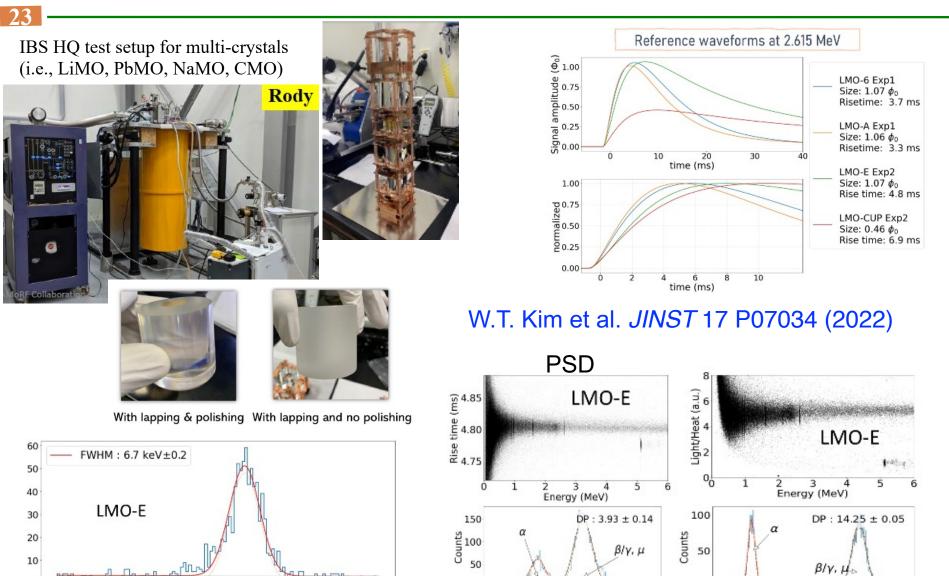
AMoRE Moo Hyun Lee (CUP, IBS)


2022 KPS DPF, December 16, 2022, SKKU (Seoul)

ibs

CENTER FOR UND PHYSICS

AMoRE-II in Yemilab


AMoRE Moo Hyun Lee (CUP, IBS)

AMoRE-II crystal detector R&D

2.63

2.64

0

4.76

4.78

4.80

Rise time (ms.)

4.82

4.84

AMoRE Moo Hyun Lee (CUP, IBS)

2.60

2.61

energy(MeV)

2.62

0

2.58

2.59

2022 KPS DPF, December 16, 2022, SKKU (Seoul)

Ó

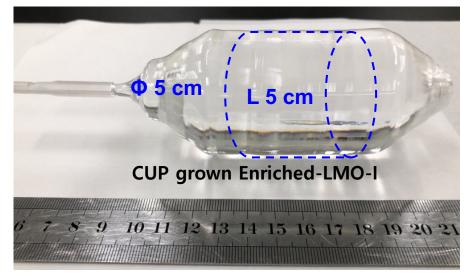
1

2

з

Light/Heat (a.u.)

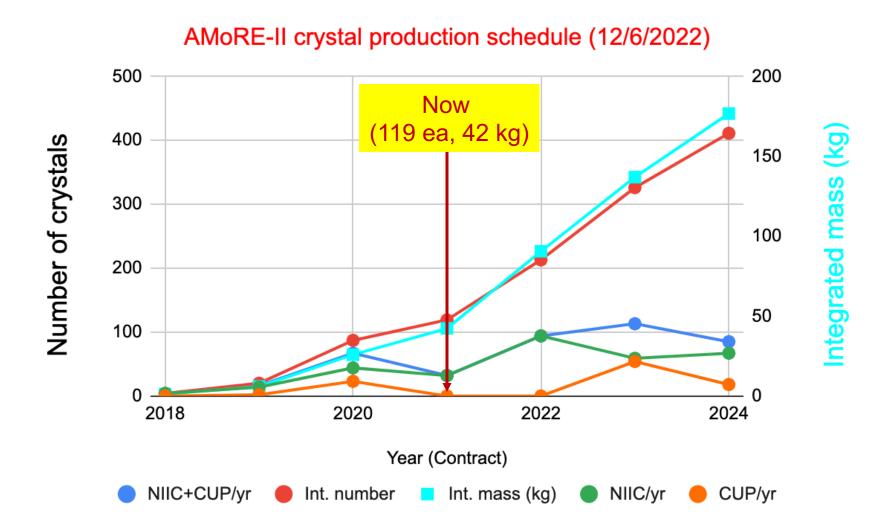
4


5

6

0

LMO crystals with purified powders


ICP-MS results of CUP grown LMO crystals

Czokralski grower at CUP

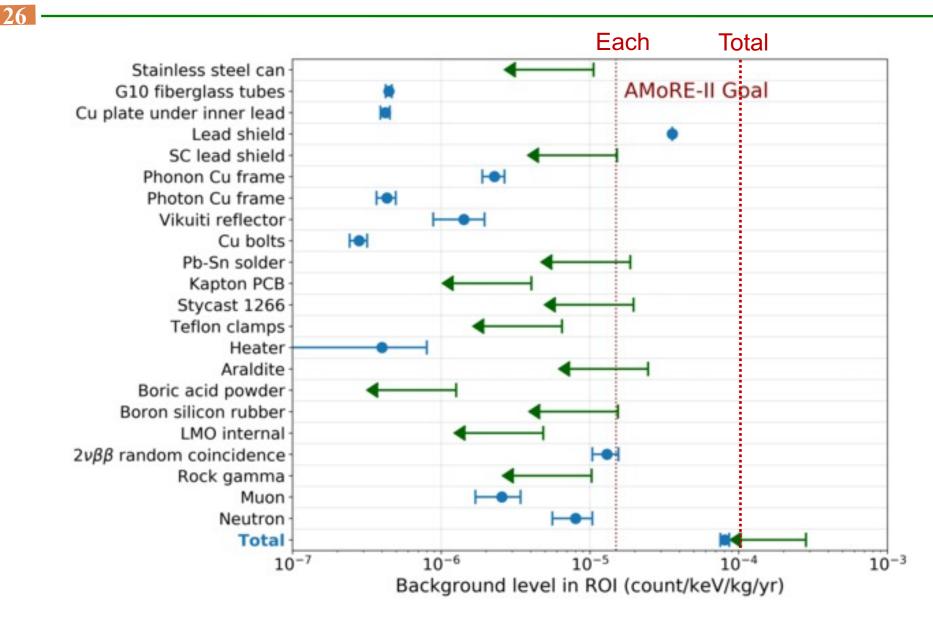
LMO sample name	K	Ba	Sr	Zr	lr	Pb	Th	U
	(ppb)	(ppb)	(ppt)	(ppt)	(ppt)	(ppt)	(ppt)	(ppt)
CZ01-L2110ED-4-T	<50	<3	<50	<150	<70	<150	<6	<6
CZ01-L2110ED-4-B	<50	<3	<50	<150	<70	<150	<6	<6
CZ01-L2111ED-4-T	<50	<3	<50	<150	<70	<150	<6	<6
CZ01-L2111ED-4-B	<50	<3	<50	<150	<70	<150	<6	<6
CZ01-L2112ED-4-T	<50	<3	<50	<150	<70	<150	<6	<6
CZ01-L2112ED-4-B	<50	<3	<50	<150	<70	<150	<6	<6
CZ01-L2113ED-4-T	<50	<3	<50	<150	<70	<150	<6	<6
CZ01-L2113ED-4-B	<50	<3	<50	<150	<70	<150	<6	<6

AMoRE crystal production schedule

AMoRE Moo Hyun Lee (CUP, IBS)

25

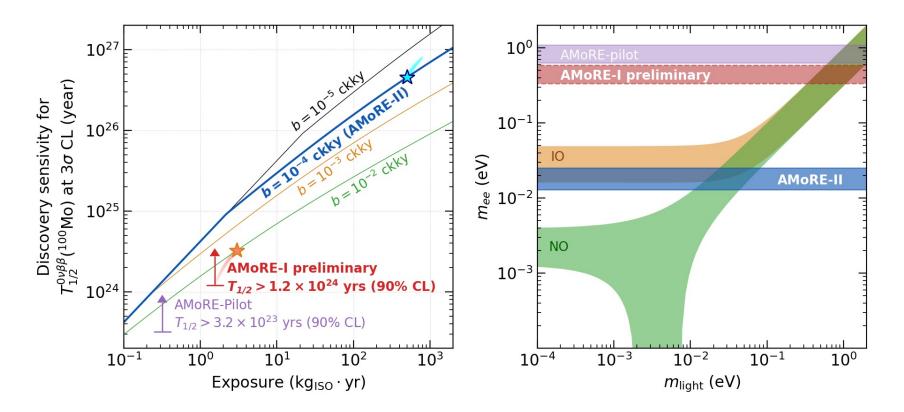
2022 KPS DPF, December 16, 2022, SKKU (Seoul)


ib^s

PHYSICS

CENTER FOR _____

Background budget for AMoRE-II



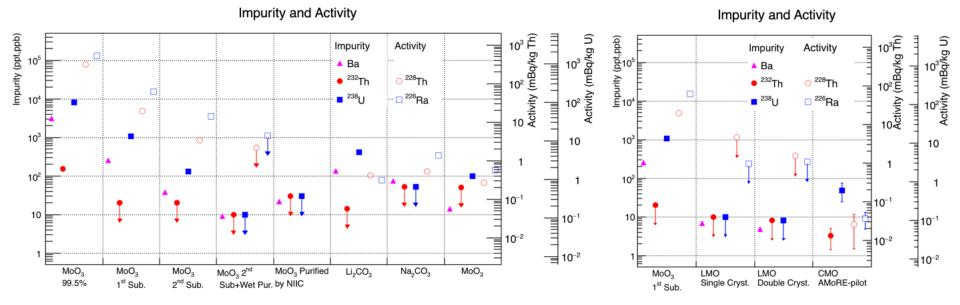
AMoRE Moo Hyun Lee (CUP, IBS)

Limits and sensitivities

AMoRE-II for T^{0v}_{1/2} > ~ 5 ×10²⁶ years by 100 kg of Mo-100 × 5 years running.
 Reduction of background level down below 10⁻⁴ ckky.

Summary

- □ AMoRE is searching for $0v\beta\beta$ decay to establish Majorana nature of neutrinos using Mo-100 based scintillation crystals at the low temperature detector system.
- □ Preliminary result of AMoRE-I at its mid-point:
 - Mass × time exposure: 4.68 (2.24) kg·yr XMO (100 Mo).
 - Background level ~ 0.034 counts/keV/kg/year at [2860-3200] keV.
 - **T** $_{1/2}^{0\nu} > 1.05 \times 10^{24}$ years.
 - AMoRE-I data taking will continue in 2023.
- □ AMoRE-II will starts at the newly built Yemilab to head for $T_{1/2}^{0\nu} > 5 \times 10^{26}$ years.
 - Mass-purification of MoO₃ and Li₂CO₃ powders started and on-going with measured purities.
 - Mass-production of Li₂MoO₄ crystals started both at NIIC and CUP aiming to prepare ~180 kg of crystals by mid 2024.



Backup

AMoRE-II: Purification for XMO crystals

Ba is a good indicator for Ra since they are in the same family. We have a good progress toward AMoRE-II crystals.

AMoRE-II crystal requirement:

Mo based crystal with

30

 \Box Good phonon resolution, high light yield and excellent PSD

Extremely low background in ROI (< 0.0001 evt/kg/y)

Easy to grow, low price for crystal growing.

^{48depl}Ca¹⁰⁰MoO₄ (AMoRE-Pilot/I): Excellent but ^{48depl}Ca & Ca deep purification necessary .

ibs

CENTER FOR

Purification of ¹⁰⁰MoO₃ powder

- Enriched molybdenum oxide purification, massproduction and analysis
- 5 kg/month purification capacity at CUP
- □ ~99% recovery efficiency for the process

2. dissolving, co-precipitation, filtering

1. sublimation under low vacuum

3. synthesis of ammonium polymolybdate powder and its annealing

4. final ¹⁰⁰MoO₃ powder collection and its storage at Y2L A5

AMoRE Moo Hyun Lee (CUP, IBS)

CENTER FOR UNDERGROUND PHYSICS

ICP-MS and HPGe array measurements

experim	ent #	AI, ppb	K, ppb	Cr, ppb	Mn, ppb	Fe, ppb	Ni, ppb	Cu, ppb	W, ppb	Sr, ppb	Ba, ppb	Pb, ppb	Th, ppt	U pp
Raw ¹⁰⁰ M (lot #34	0	1399	938	<300	<30	504	1073	<200	670	4	11	4.0	70	25
					Pur	rified pr	oducts (e	example	s)					
1		585	409	<200	<30	39	<20	<200	33	<0.15	3.9	0.33	<10	<
11		630	253	<400	<30	26	<20	<200	43	<0.20	<3.0	<0.20	<9	<6
21		<30	246	<200	<30	33	<20	<200	38	<0.15	<3.0	<0.5	<10	<7
31		<30	150	<200	<30	26	<20	<200	648	<0.15	<3.0	<0.5	<10	<7
51		<100	146	<200	<30	18	<20	<200	601	<0.15	<3.0	<0.4	<10	<
HPGe		rified 1.6 kg, 1	#3172 14 days)		1 rified # , 9.6 kg, 75		Unpurif (CAGe, 9.8	ied #36' 3 kg, 93 day		purified Ge, 12.7 kg,		(CAGe, 1	f ied #38 2.0 kg, 152 eliminary)	
²²⁸ Ac	< 1	.0 (90%	C.L.)	(0.88 ± 0.13	3	0.703	± 0.097		0.274 ± 0	.044	< 0.0	30 (90% C	.L.)
²²⁸ Th	< 1	.0 (90%	C.L.)	0.	669 ± 0.08	39	0.773 ± 0.093			0.234 ± 0.040		< 0.026 (90% C.L.)		.L.)
²²⁶ Ra 5.1 \pm 0.4 (stat) \pm 2.2 (syst)			1.19 ± 0.42		< 0.51 (90% C.L.)			0.273 ± 0.036		0.069 ± 0.014				
⁴⁰ K < 16.4 (90% C.L.)			36.0 ± 4.1		17.5 ± 2.0			8.8 ± 1.0		1.48 ± 0.27				
⁸⁸ Y Not observed		0.	0.101 ± 0.016		0.090 ± 0.013			0.0564 ± 0.0067		Not observed		i		
⁸⁸ Zr Not observed		Ν	Not observed		Not observed			0.0354 ± 0.0074		Not observed				
Unit: mBq/kg (kg: powder)								Reduc	ed more) e than 4	times			

Unpurified #3172 Unpurified #3434 Unpurified #3675 Unpurified #3824 Purified #3824 ICP-MS ²³²Th 0.14 0.36 0.37 < 0.041 0.36 ²³⁸U 0.94 2.70.96 0.93 < 0.087 40**K** 9.0 38 22 22 3.6 - 18.3

AMoRE Moo Hyun Lee (CUP, IBS)

32

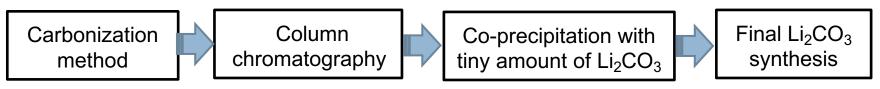
¹⁰⁰MoO₃ recovery from LMO melt

144, 128 1201-Lafo1E

Residual LMO melt in the Pt-crucible

LMO melt dissolution

- ☐ 3 LMO crystal ingots are pulled from every crucible.
- □ The final melt is dissolved in DI-water, and insoluble impurities (Th, U, Pb, etc.) are filtered out with a membrane filter.
- ☐ Mo is separated from Li in form of molybdic acid (H₂MoO₄) via interaction with NH₄Cl.
- □ Separated molybdic acid is dissolved, purified with co-precipitation and recrystallized.


Element	AI	К	Ca	Ва	Sr	Pb	Th	U
Unit	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	ppt	ppt
LMO melt	1450	606	579	16	0.67	<0.4	<8	28
¹⁰⁰ MoO ₃ powder, pure recovered	<100	131	<200	<3	<0.15	<0.4	<10	<7
¹⁰⁰ MoO ₃ powder, initial purified	<100	146	-	<3	<0.15	<0.4	<10	<7

- **Constraints** Recovered 100 MoO₃ powder is waiting for the HPGe array measurements.
- \Box ~99% recovery efficiency for the process

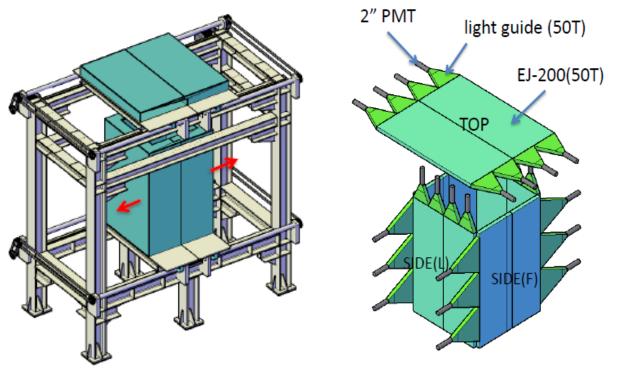
Purification of Li₂CO₃

Purification steps

Purification results

sample	⁴⁰ K, mBq/kg	²²⁸ Ac, mBq/kg	²²⁸ Th, mBq/kg	²²⁶ Ra, mBq/kg	K, ppb	Sr, ppb	Ba, ppb	Pb, ppt	Th, ppt	U, ppt
Huarui, 99.999%	HPGe@CUP					ICP-MS@CUP				
Initial	<16.59	6.33 ± 1.28	5.47 ± 0.67	57.38 ± 3.15	426	6	35	1397	8	156
PURIFIED	<6.02	<1.96	<1.86	<1.1	<60	0.5	61	<80	<6	<6
RF		>3	>2	>50	>7	>12		>17	>1.3	>26

>2	>3	>50	>7	>17	>26	>1.3
²²⁸ Th	²²⁸ Ac	Ra	К	Pb	U	²³² Th


Background requirements for AMoRE

Phase	AMoRE-I	AMoRE-II					
BKG Requirement	<10 ⁻³ ckky in ROI	<10 ⁻⁴ ckky in ROI					
Mass of 100Mo	$\sim 3 \text{ kg} {}^{100}\text{Mo}$	~ 100 kg ¹⁰⁰ Mo					
Number of crystals	18 crystals (5 LMO + 13 CMO)	\sim 420 crystals					
Contribution to background from Th and U chains [ppt]							
Internal crystal	<100	<10					

❑ Assuming a segregation of the impurities in the melt after the crystal growing, the concentration of the contaminants in the raw powders is expected to be less than 100 ppt

Shielding structure of AMoRE-pilot & AMoRE-I UNDERGROUND PHYSICS

muon shielding structure

Additional muon counters to cover gaps from AMoRE-I

15cm low background Pb

PE, borated PE, borated rubber sheet and boric acid rubbers were also added for neutron shielding during AMoRE-pilot runs

AMoRE Moo Hyun Lee (CUP, IBS)

AMoRE-II construction at Yemilab

Pastic Scintillator Muon Counter

AMoRE Moo Hyun Lee (CUP, IBS)