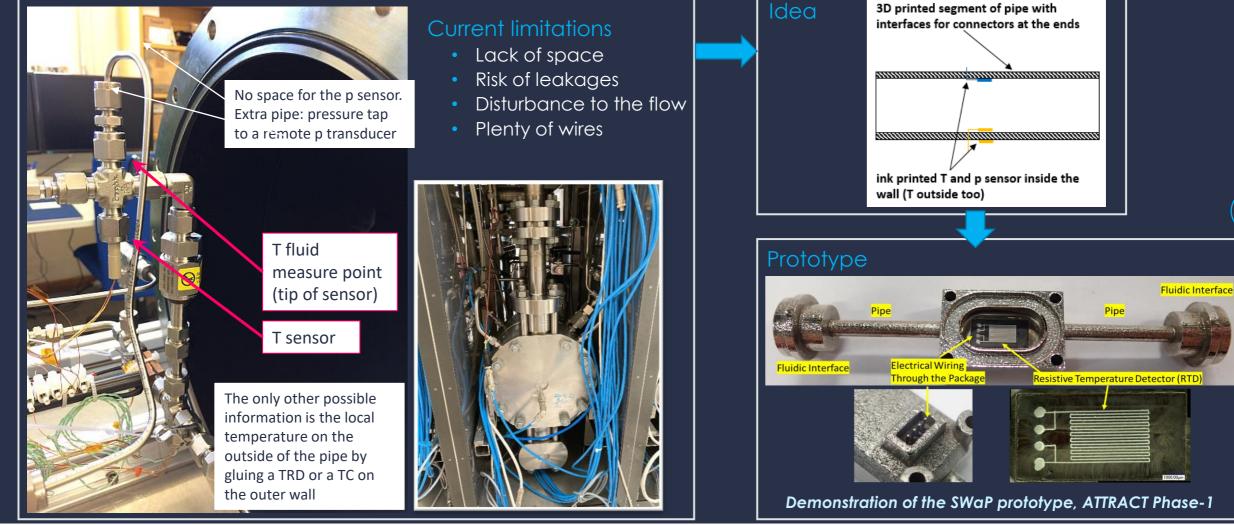


:: csem

NTNU Norwegian University of Science and Technology

Forum on Tracking Detector Mechanics 2023

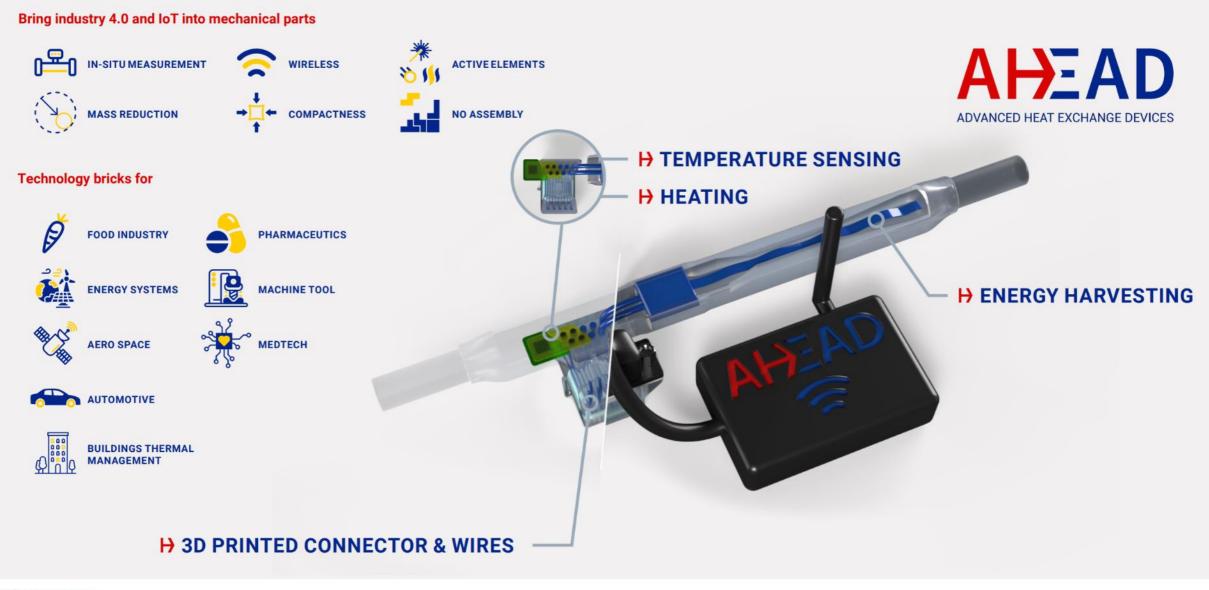
31 May 2023 to 2 June 2023 Eberhard Karls Universität Tübingen


"3D printed pipes including sensors and heaters for thermal management systems in space and on earth"

PROPRIETARY RIGHTS STATEMENT: This document contains information, which is proprietary to the AHEAD Consortium. Neither this document nor the information contained herein shall be used, duplicated, or communicated by any means to any third party, in whole or in parts, except with prior written consent of the AHEAD consortium.

Motivation

Fluid's monitoring \rightarrow Condition of the fluid locally



ATTRACT: Developing Breakthrough detection and imaging technologies for science and society

	ATTARCT Phase 1 (2019 – 20	020)	ATTRACT Phase 2 ((2022 – 2024)	
Project:	SWaP		Α	HEAD	
Partners:	CSEM/ CERN		CSEM/ CERN/ TAS/ LI	si/ inanoe/ ntnu	
Technology:	Additive Manufacturing Selective Laser Melting Aerosol Jet Printing 		 Additive Manufacturing Selective Laser Melting (STOP & RESUME) Aerosol Jet Printing 		NE) 3
Embedded devices:	Temperature sensor (AJP)		 Temperature sensor (AJP and COTS) Extension to fluid measurements (pressure, flow rate) Heater (AJP) Energy Harvester 		sure,
Communication:	Wired		Wired & Wireless		
	Fluidic connector 3D printed embedded T sensor			AHEAD	
AHE	AD :: CSEM	ThalesAlenia • Taine / Junearies company Space		NTNU Norwegian University of Science and Technology	Powering Industries, startups and cities.

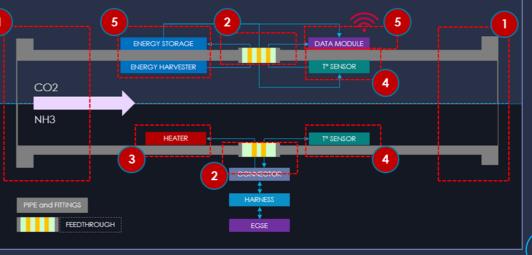
AHEAD H Electric functions in 3D printed metal parts

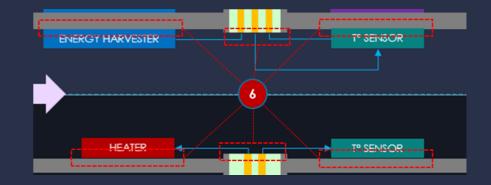
LEARN MORE

This project has received funding from ATTRACT, a European Union's Horizo 2020 research and innovation project under grant agreement No 101004462

Key Enabling Technology Bricks

1. Pipe segment incl. interfaces


 \star 2. Electrical feedthrough and connector interface

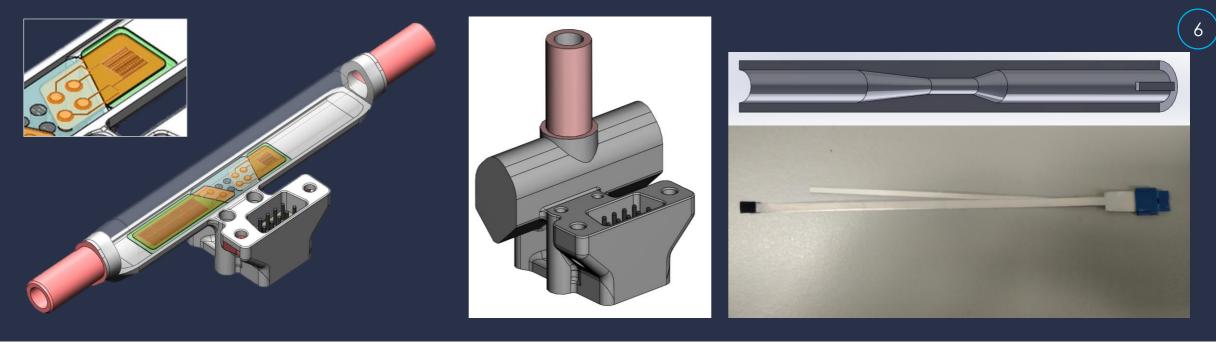

3. Aerosol Jet Printed heating elements

4. Aerosol Jet Printed Resistance Temperature Detector (RTD)

5. Energy Harvester (EH) from fluid circulation

6. Integration of COTS elements \rightarrow Heater (3) RTD (4), and EH (5)

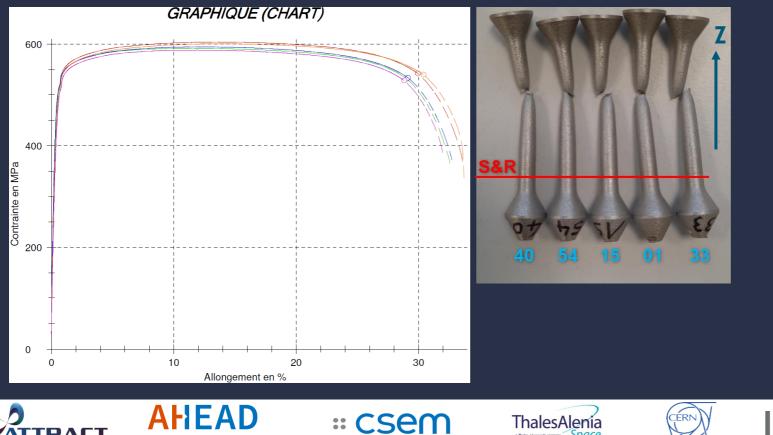
FRAF



Technical Challenges

- Stop & resume 3D printing
- Insulation material/ Feedthrough casting
- Energy Harvester membranes

Stop & resume 3D printing


Material characterization and qualification \rightarrow Mechanical

• No rupture in stop and resume line

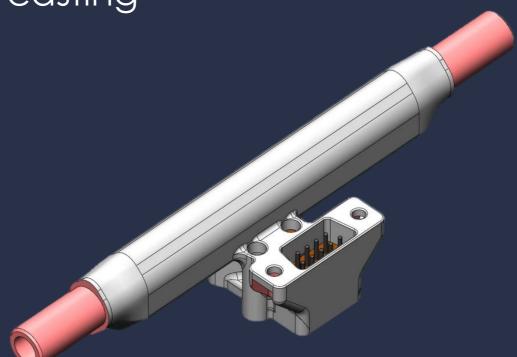
FXCHANGE DEVICE

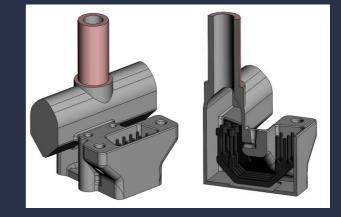
RACI

Rp0.2 and Rm slightly below mapping results – 0,8%

(SERIES STATISTICS)							
6214 E		R _{p0.2}	Rm	At	S ₀		
<u>(n = 77</u>)	GPa	MPa	MPa	%	mm ²		
max	156	504	608	39,3	28,65		
min	99,9	480	595	37,2	28,21		
x	140	493	601	38,1	28,41		

<i>(SERIES STATISTICS)</i> JOB N°6397-6402-WITH S&R								
6402	E	R p0.2	Rm	At	S0			
n = 5	GPa	MPa	MPa	%	mm²			
max	159	494	604	33,7	28,46			
min	114	487	588	32,0	28,27			
x	140	489	596	32,9	28,36			




Technical Specifications

- Low viscosity for casting
- Low shrinkage effect

Testing at CERN

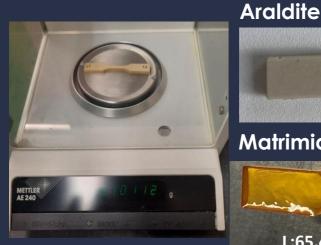
- Chemical compatibility with the fluid (CO2/ NH3 for TAS)
- Feedthrough tightness & pressure

IS

Chemical compatibility with CO2

EAD

ADVANCED HEAT EXCHANGE DEVICES



Araldite after CO2:

- 0.04gr higher mass
- lower deformation

Matrimid after CO2:

- 0.08gr higher mass
- higher deformation

Ardidite	Samples	m (g
	-	
L:64.5, W: 9.7, T: 3.9	As built	3.
Matrimid	CO2	3.
	As built	2.
L:65.4, W: 9.8, T: 3.85	CO2	2.

Samples	m (gr)	σ (Mpa)		ε (%)		E (Mpa)	
		mean	stdv	mean	stdv	mean	stdv
As built	3.09	61.4	2.7	3.7	1.2	1792.9	521.2
CO2	3.13	51.7	5.3	2.6	0.5	2021.3	324.2
As built	2.25	58.8	12.0	6.2	1.8	1003. 1	358.6
CO2	2.33	65.8	17.1	8.5	1.3	765.4	109.7

AEROSPACE

ERN

- Both resins selected show cracking and/or delamination when casted and cured in the electrical feedthrough
- Pressure tests performed with Araldite samples reveal leakage issue

Feedthrough samples with Araldite

Results

- Pre-test by CSEM
 - Cracks and delamination signs observed
- He and CO2 leak test (CERN)
 - Not leak tight
 - Leakage located at the interface between resin and metal
- Pressure test with DiWater (CERN)
 - Up to 43 bar could be achieved

Cracking/ delamination/ bubbles:

- Resin shrinkage during curing
- CTE mismatch between resin and metal
- Surface topology (e.g too smooth) and or shapes (e.g. edges corners)
- Too large voids to be filled with resin
- Lack of adhesion between resin and metal

Corrective actions:

- Cast with part at higher temperature (limit bubbles)
- Perform outgassing layer by layer (remove bubbles),
- Curing over a longer time period and at lower temperature (limit shrinkage & CTE issues)

EPOXY by Masterbond (TO BE TESTED):

low shrinkage/ CTE close to 316L/ easy to process/ Meets NASA low outgassing specification

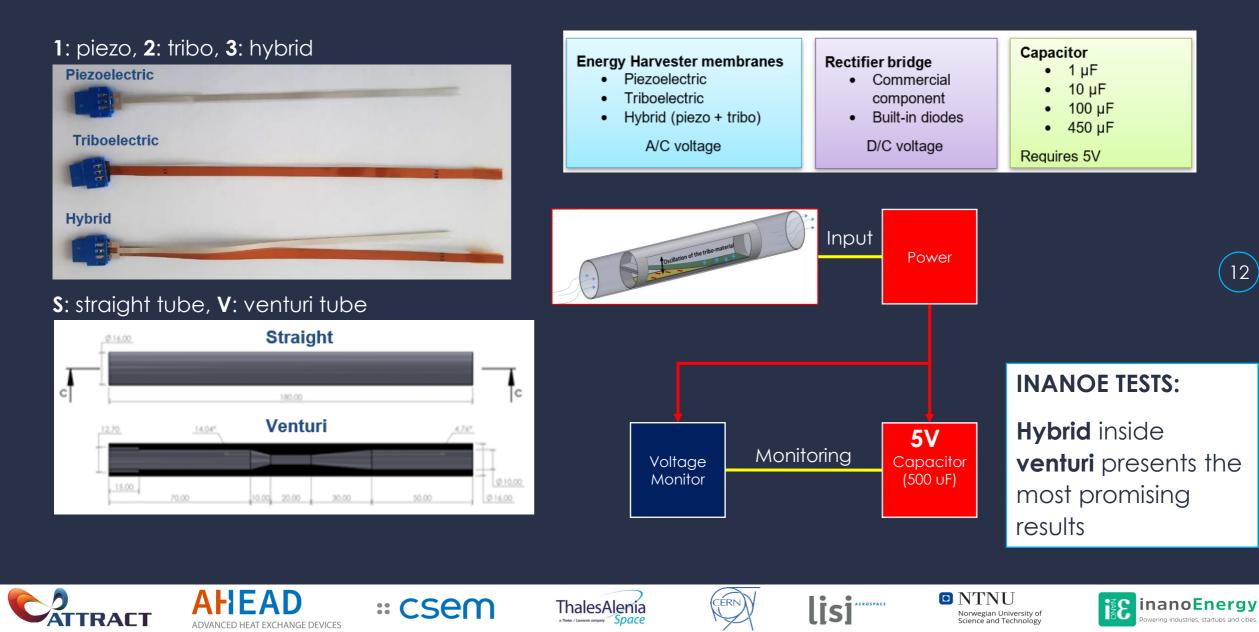
DISCARDED

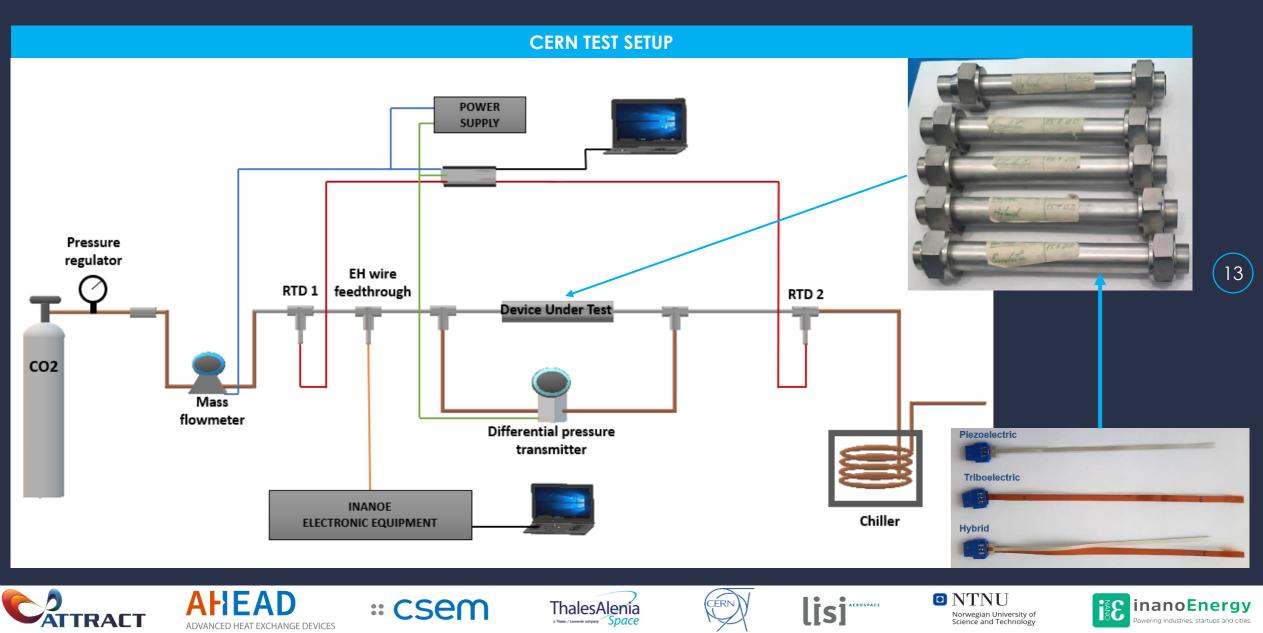
ARALDITE: not good results

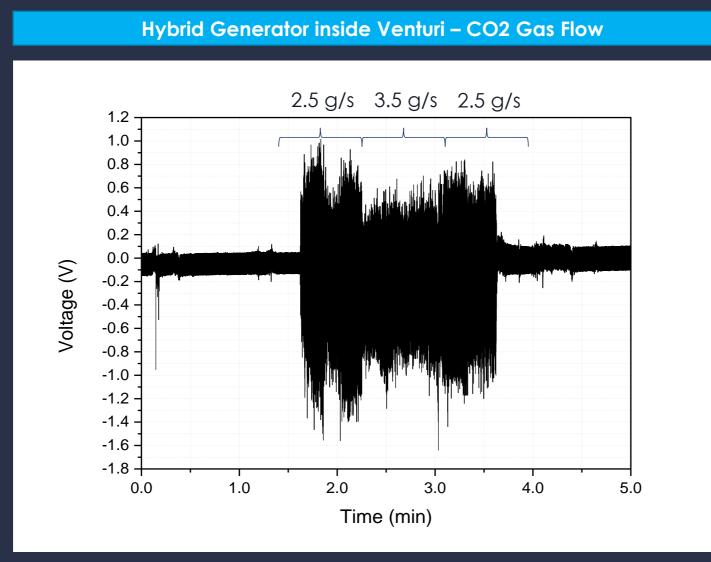
MATRIMID: hard to process/ very brittle/ Unsuited for TAS

Results:

- cracks in some cavities
- poor adhesion to the metal on the edges of the cavities
- spacing and shrinkage for all considered sizes







HEAD

ADVANCED HEAT EXCHANGE DEVICES

(14)

FIRST RESULTS

- Higher flow rates \rightarrow lower voltage
- Membranes failure in one end → CO2? low temperature? movement?
- Tribo may affect the instrument
- Results are not repeatable (not reliable)
- Tests with compressed air (before CO2):
 - Find out which flow rate generates more voltage
 - Perform tests under same conditions → verify repeatability & reliability
- Test different membranes (carbon based)

RACI

orwegian University of

Conclusions & Future work

1st year of the project progress:

- KET bricks are tested individually to:
 - Identify the problems of each process
 - Targeted corrective actions
 - Verify repeatability and reliability at prototype level
 - Ensure the best performance of the final device
- 2nd year of the project plan:
- Corrective actions, redesign, retesting to:
 - Electrical feedthrough \rightarrow tightness
 - Energy Harvester membranes \rightarrow functionality
 - Other bricks

(16

:: CSeM

NTNU Norwegian University of Science and Technology

A F E A D ADVANCED HEAT EXCHANGE DEVICES

END OF PRESENTATION