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Introduction

• Composite structures for tracker detectors target high stiffness to ensure precise 
positioning and good stability of the sensing elements

• Structural connections rely on glued and bolted connections

• Glued connections can provide high stiffness and strength, but can limit the 

flexibility during assembly

• Bolted connections provide high strength, but can allow relative motions 

between the connected components

• Often, the stiffness and strength of critical connections is verified experimentally

• Predicting the strength of glued joints can be challenging:

• Conservative estimates allow to dimension the structure

• Advanced models required to predict the failure point with higher precision

• Here, we present numerical and analytical models of bonded inserts, comparing 

their results with the available measurements
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ITk - Global Mechanics
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• Global ITk structure uses thin carbon fiber 

reinforced laminates, eccentrically stiffened

• Design relies extensively on finite element 

modeling

• Stability performance inversely proportional to 

the gravity sag of the system. Requirement: ~ < 

2 mm

• Total vertical sag: 850 µm under 3 tons
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Experimental Tests - Stiffness
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• Prototypes designed to verify the ‘real’ stiffness of 

non-bonded components and the strength of the 

most critical components/interfaces

• Static and dynamic testing (damping)

• Local compliance due to bolted connections 

can significantly affect the overall performances

• Function of the applied prestress and friction

• Can stabilize after a few cycles for low 

prestress conditions
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Strength Considerations
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• Maximum strain as laminate failure criteria

• Fiber failure mostly relevant

• Special submodels to test for specific extreme 
load-cases

• Inverse reserve factor used to have a ‘single’ failure 
plot (𝐿𝑎 is the applied load, 𝐿𝑓 the failure load):

𝐼𝑅𝐹 =
1

𝑆𝐹
=

𝐿𝑎

𝐿𝑓

• Critical joints verified experimentally
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Experimental Tests - Strength
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Prototypes used to verify critical components along the main load path:

• P1: Mount pads support the detector on the vessel rails

• P2: Brackets support the strip barrel and the pixel on the outer cylinder flanges
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Mount Pad Test Setup
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Physical ‘sub-model’ including an aluminium (~stiffness to 
‘black aluminum’) reproduction of the outer cylinder

• Two actuator positions to test for lifting and operation

• Sensors installed: 

• Dial gauges to check frame motion

• LVDTs to measure the displacement at the stud and of 
the outer cylinder segment

• Strain gauges (half-bridge and rosettes) on the roller 
stud and the mount pad
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Test History – Part 1
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Cycling around the nominal load to verify the real 

stiffness of the system

• Hysteresis loops caused by the pressure 

regulation system

• Good match of meas. displacement with FE 

prediction – performance as expected

• SG system will be used for SHM purposes during 

detector assembly

• Measured strain follows the FE slope up to ~1.7 

kN, then deviates: the stud rotation moves the 

load application point
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Test History – Part 2
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Ramps with gradual load increase, checking for stiffness degradation
and failure

• Abrupt failure at 23 kN

• Bonding (EA 9394) between mount pad and stud insert failed

• Large margin (>4) over applied loads: design is ok!

• Still useful to try to match it with more advanced models…

Titanium StudPEEK
Doubler

CFRP

Lifting
Insert
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Debonding Models
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Crack propagation approaches can be used to simulate 

debonding in FEM:

• ‘Manually’ kill contact elements (birth/death)

• Virtual Crack Closure Technique (VCCT)

• Plastic glue models – can be combined with birth/death

• Cohesive zone model (CZM)

• SMART crack growth (KI/J-integral + adaptive re-meshing)

• XFEM – enriched elements

CZM seems particularly suited for the problem at hand:

• We already know the failure location/propagation

• Glue stiffness can be introduced easily

Material properties required:

• Glue elastic properties (E, nu) and thickness

• Elastic and shear strength

• Fracture energy release rate for different modes  (GIc, GIIc)



05/31/23

Cohesive Zone Models

• Cohesive zone model:

• Initial slope dictated by the glue modulus and thickness

• 𝛿𝑐 is the displacement at the damage ‘start’

• Degraded stiffness for damaged interfaces

• 𝛿𝑓 is the displacement at the debonding completion

• Damage defined as: 𝜆 =
𝛿−𝛿𝑐

𝛿𝑓
for 𝛿 > 𝛿𝑐, 0 otherwise

• Total area below the curve equal to the energy release rate G
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CZM - Examples
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Superconducting Magnets Models

See for example G. Vallone, P. Ferracin, SUST (2017)

A scarf joint failure model for DUNE
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Typical Adhesive Properties
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• Tensile strength of adhesive is usually lower than 100 MPa (50 MPa for shear)

• Common values around 70 MPa tensile, 35 MPa shear

• Tresca criterion seems to apply on most adhesives (shear = ½ tensile)

• Gc(Ψ) curves measured on different adhesive systems (Cybond 4523GB, 

Permabond ESP 310) suggest that roughly: GIIc~3GIc
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Analytical Model Description (1)
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Analytical model of the (simplified) bonded joint:

– All the deformation is within the glue, the adherents 
are assumed as infinitely rigid

– All the surrounding elements are neglected – the 
mount pad surface is assumed to be fixed

– The insert is rotating with respect to the mount pad 
surface

• Normal displacement (y-direction) across the interface:
𝑢 𝑥 = 𝑢𝑐 + 𝛽 𝑥 − 𝑥𝑐

• Glue introduced with a cohesive zone model

– Limited to the stud area

x

y

Crack Propagation

L
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C
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p
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Analytical Model Description (2)
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• Equilibrium equations can be solved in close 
form for a rectangular bonded surface, only 
numerically for circular


𝐴
𝜎 𝑥 𝑑𝐴 = 0 and 

𝐴
𝜎 𝑥 𝑥 𝑑𝐴 = 𝐹𝐿


𝐴1
𝐾1 𝑢 𝑥 𝑑𝐴1 + 

𝐴2
𝐾2 𝑢 𝑥 − 𝑢𝑓 𝑑𝐴2 = 0


𝐴1
𝐾1 𝑢 𝑥 𝑥 𝑑𝐴1 + 

𝐴2
𝐾2 𝑢 𝑥 − 𝑢𝑓 𝑥 𝑑𝐴2 = 𝐹𝐿

• Applied force :
𝐹 𝑥𝑐 = 𝑓(𝑢𝑐, 𝑢𝑓, 𝐾1, 𝐾2, 𝑅, 𝐿, 𝑡)

• Separate solution needed when part of the 
bonding is completely failed

For a rectangular bonding:

𝐹 𝑥𝑐 = 𝐷K2
2 uc − uf 𝑅 − xc

4 + DK1
2 uc 𝑅 + xc

4 +
+𝐷K1 K2 𝑅2 − xc

2 (
)

7 𝑅2 2uc − uf − 8 𝑅 uf xc
+ 2uc − uf xc

2

With:

D = 
𝑎

6 𝐿 −K2 𝑅−xc
2+K1 𝑅+xc

2
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Analytical Model Results (1)
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• Displacement and stress along the bonding line:

1. Linear regime

2. Plastic deformation in the glue

3. Failure onset at the right edge

4. Partially failed glue

1 2 3 4



05/31/23

Analytical Model Results (2)
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• Separate solutions: before and after onset of complete 
failure region

• Blue curve: initial linear regime, then bonding 

damaged, but no failure

• Orange curve: part of the contact failed – separation

occurring between the insert and the laminate

• Bonding ‘degradation’ starts at 14.3 kN

• Stiffness (performance) of the system decreases

• While the damage in the bonded region is growing, the 

force also increases up to the ultimate value of 22.8 kN
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Simplified FE Model of the Bonded Region
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• Simplified FE model built to verify the assumptions of the analytical model

• Titanium insert bonded to a infinitely rigid fixed plane

• What is the ‘real’ contact surface deformation along the bonding?

• Linear assumption within the stud width seems reasonable, but neglects the 

‘negative ramp’ region
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Mount Pad FE Model
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FE failure submodel – some 

simplifications in order to reduce 

the computational load

• Computed failure load: 19.7 kN

• This is lower (15%) than the 

measured value:

• Model compliance reduced 

w.r.t the experiment due to 

simplifications

• Uncertainty in actual bond

properties (from analogy with 

literature)
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Conclusion
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• Global ITk structure relies on thin, eccentrically stiffened, CFRP laminates

• Design relies extensively on finite element modeling

• Designed for stiffness, strength largely exceeds safety requirements

• Prototypes used to verify the actual stiffness of non-bonded components and the 

strength of critical components along the main load path

• The failure point of a bonded joint was measured (~4 times the ultimate load)

• Different approaches implemented to simulate the failure process

• Both FE and analytical models prediction is close to the failure load

Case Failure Load

/ kN

Measured 23.0

Analytical Model 22.8

FE Model 19.7
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Thanks for your attention!
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