

Experimental Measurement and Analysis of Insert Debonding in Carbon Fiber Structures for Particle Detectors M. Janda¹, G. Vallone², E. Anderssen², D. Boettcher², T. Johnson², C. Bird², T. Claybaugh², M. McGee Toledo²

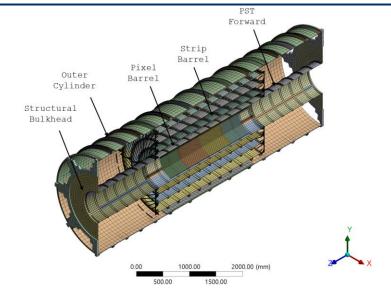
¹CTU in Prague, Czech Republic ²Lawrence Berkeley National Laboratory, Berkeley, California

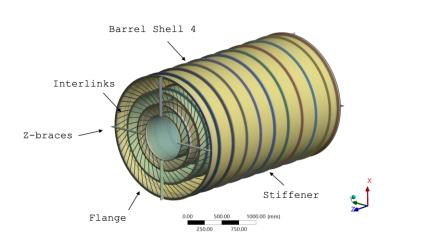
> Forum on Tracker Detector Mechanics 2023 31 May 2023

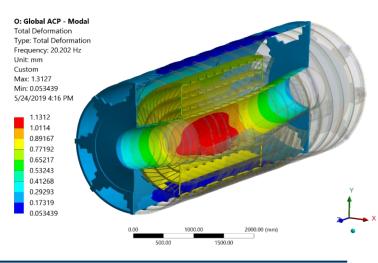
- Introduction
- The ATLAS Inner Tracker Design
- Experimental Design Verification
- Debonding models
- Conclusion

- Introduction
- The ATLAS Inner Tracker Design
- Experimental Design Verification
- Debonding models
- Conclusion

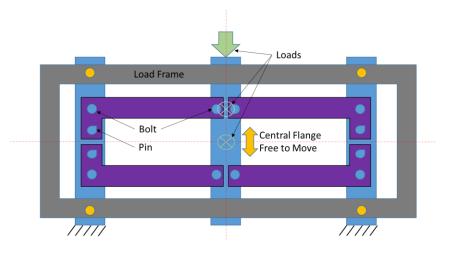
Introduction


- **Composite structures** for tracker detectors target high stiffness to ensure precise positioning and good stability of the sensing elements
- Structural connections rely on glued and bolted connections
 - Glued connections can provide high stiffness and strength, but can limit the flexibility during assembly
 - **Bolted** connections provide high strength, but can allow relative motions between the connected components
 - Often, the stiffness and strength of critical connections is verified experimentally
- Predicting the **strength** of glued joints can be challenging:
 - Conservative estimates allow to dimension the structure
 - Advanced models required to predict the failure point with higher precision
- Here, we present numerical and analytical **models** of bonded inserts, comparing their results with the available **measurements**

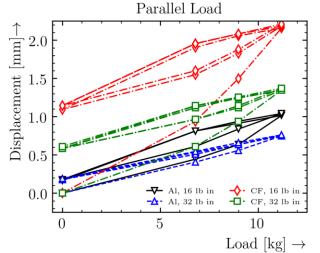

- Introduction
- The ATLAS Inner Tracker Design
- Experimental Design Verification
- Debonding models
- Conclusion



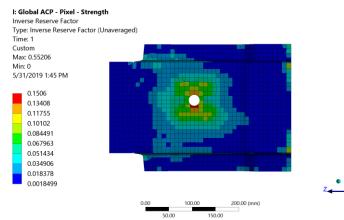
ITk - Global Mechanics


- Global ITk structure uses thin carbon fiber reinforced laminates, eccentrically stiffened
- Design relies extensively on finite element modeling
- Stability performance inversely proportional to the gravity sag of the system. Requirement: ~ < 2 mm
 - Total vertical sag: 850 µm under 3 tons

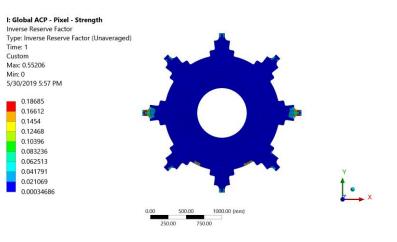


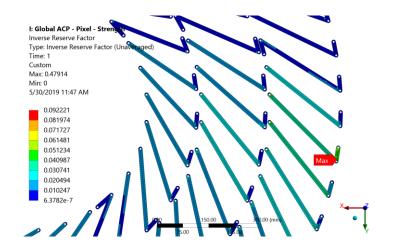


Experimental Tests - Stiffness



- Prototypes designed to verify the 'real' stiffness of non-bonded components and the strength of the most critical components/interfaces
 - Static and dynamic testing (damping)
 - Local compliance due to bolted connections
 can significantly affect the overall performances
 - Function of the applied **prestress** and **friction**
 - Can stabilize after a few cycles for low prestress conditions

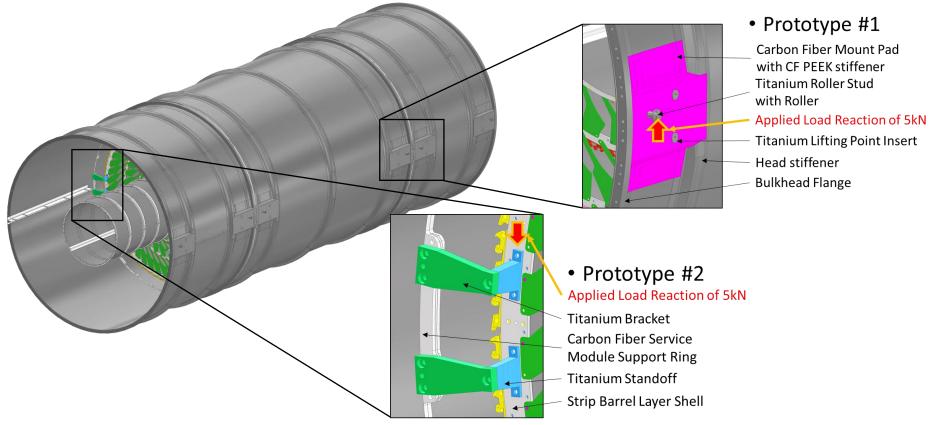

Strength Considerations



- Maximum strain as laminate failure criteria
 - · Fiber failure mostly relevant
 - Special submodels to test for specific extreme load-cases
- Inverse reserve factor used to have a 'single' failure plot (L_a is the applied load, L_f the failure load):

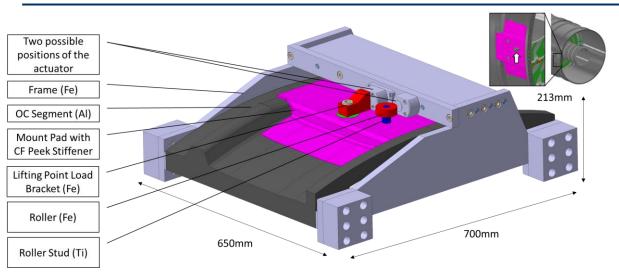
$$IRF = \frac{1}{SF} = \frac{L_a}{L_f}$$

Critical joints verified experimentally

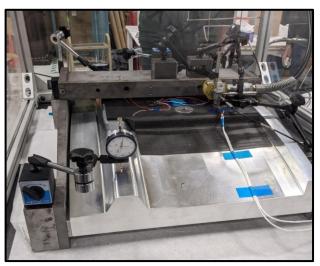


- Introduction
- The ATLAS Inner Tracker Design
- Experimental Design Verification
- Debonding models
- Conclusion

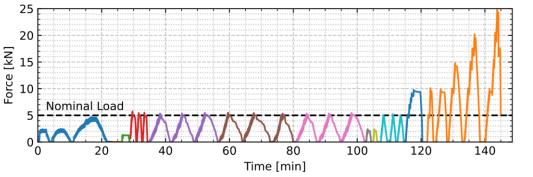
Experimental Tests - Strength

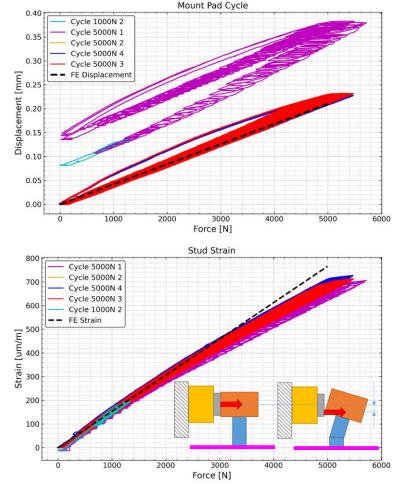

Prototypes used to verify critical components along the main load path:

- P1: Mount pads support the detector on the vessel rails
- P2: Brackets support the strip barrel and the pixel on the outer cylinder flanges

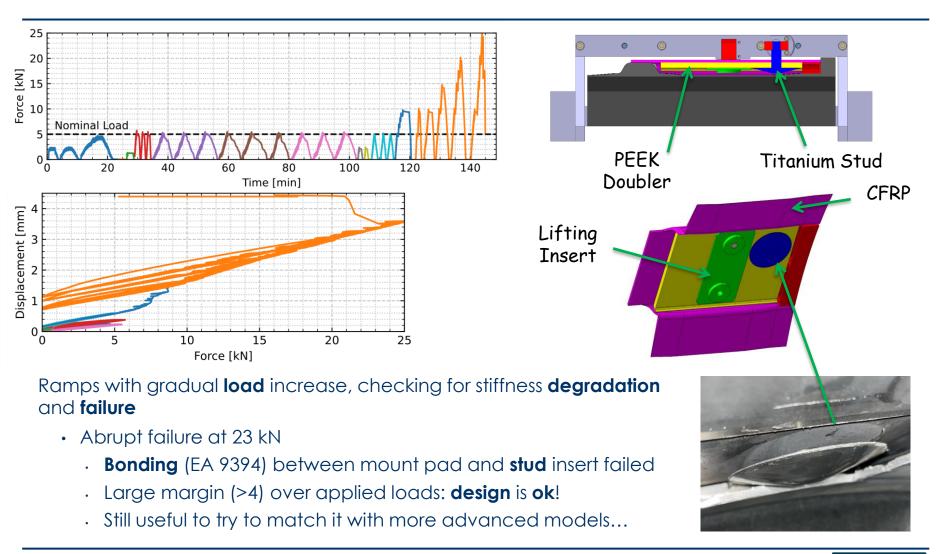

Mount Pad Test Setup

Physical 'sub-model' including an aluminium (~stiffness to 'black aluminum') reproduction of the outer cylinder


- Two actuator positions to test for lifting and operation
- Sensors installed:
 - Dial gauges to check frame motion
 - LVDTs to measure the displacement at the stud and of the outer cylinder segment
 - Strain gauges (half-bridge and rosettes) on the roller stud and the mount pad



Test History – Part 1


Cycling around the nominal load to verify the real **stiffness** of the system

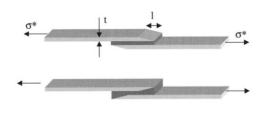
- Hysteresis loops caused by the pressure regulation system
- Good match of meas. displacement with FE prediction performance as expected
- SG system will be used for SHM purposes during detector assembly
- Measured strain follows the FE slope up to ~1.7 kN, then deviates: the stud rotation moves the load application point

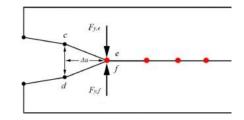
Test History – Part 2

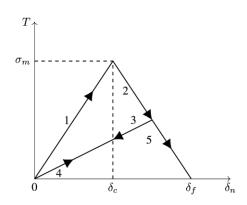
- Introduction
- The ATLAS Inner Tracker Design
- Experimental Design Verification
- Debonding models
- Conclusion

Debonding Models

Crack propagation approaches can be used to simulate debonding in FEM:

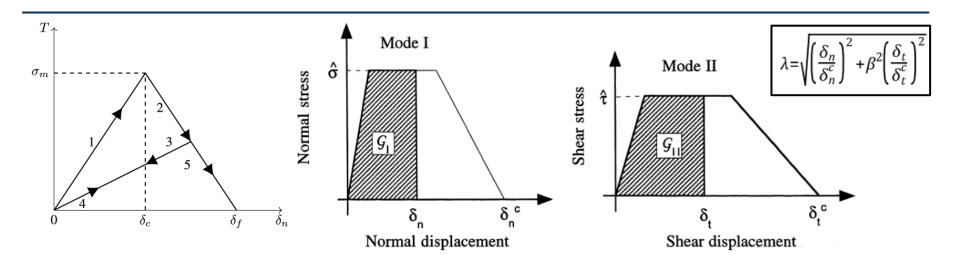

- 'Manually' kill contact elements (birth/death)
- Virtual Crack Closure Technique (VCCT)
- Plastic glue models can be combined with birth/death
- Cohesive zone model (CZM)
- SMART crack growth (K_I/J-integral + adaptive re-meshing)
- XFEM enriched elements

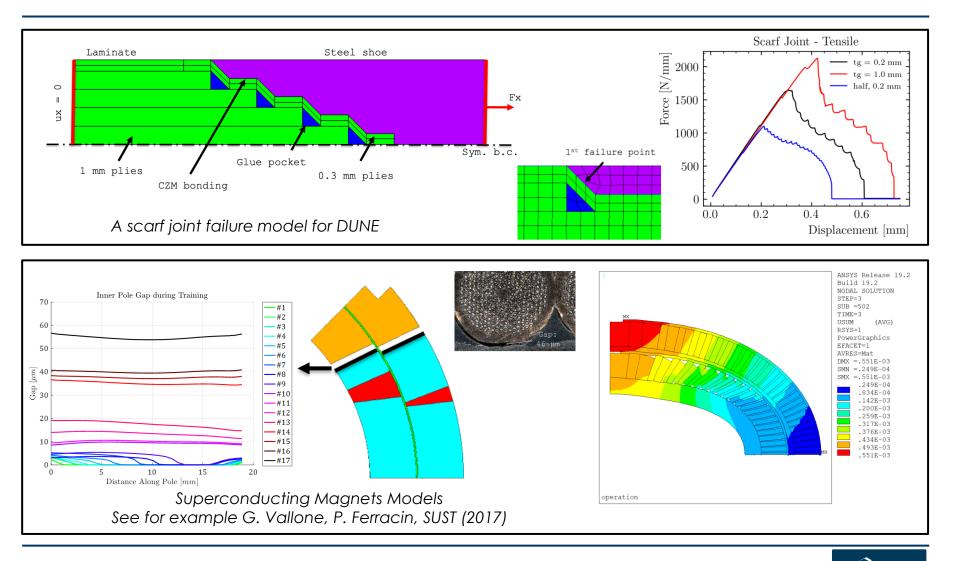

CZM seems particularly suited for the problem at hand:


- We already know the failure location/propagation
- Glue stiffness can be introduced easily

Material properties required:

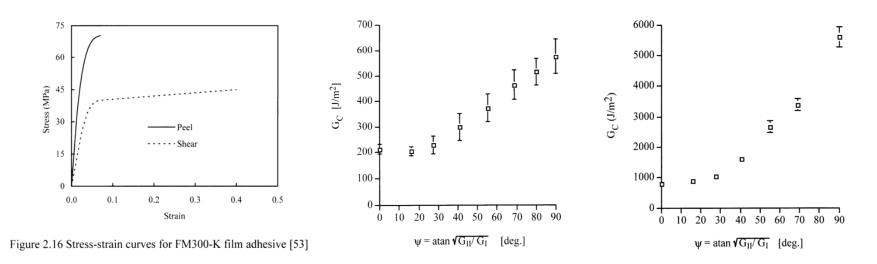
- Glue elastic properties (E, nu) and thickness
- Elastic and shear strength
- Fracture energy release rate for different modes (G_{Ic}, G_{IIc})




Cohesive Zone Models

- Cohesive zone model:
 - Initial slope dictated by the glue modulus and thickness
 - δ_c is the displacement at the **damage** 'start'
 - · Degraded stiffness for damaged interfaces
 - δ_f is the displacement at the **debonding completion**
 - Damage defined as: $\lambda = \frac{\delta \delta_c}{\delta_f}$ for $\delta > \delta_c$, 0 otherwise
 - Total area below the curve equal to the energy release rate G

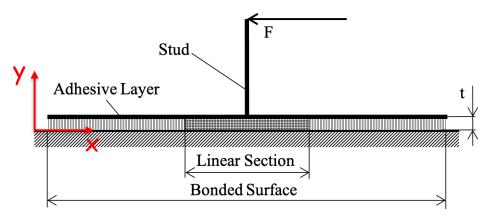
CZM - Examples



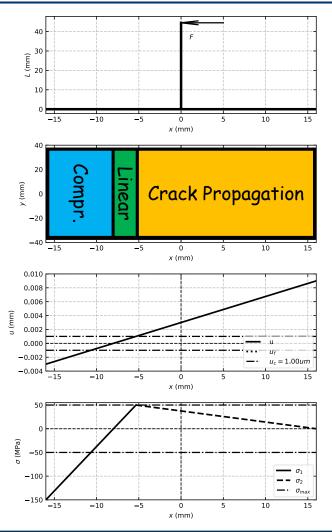
05/31/23

rrr

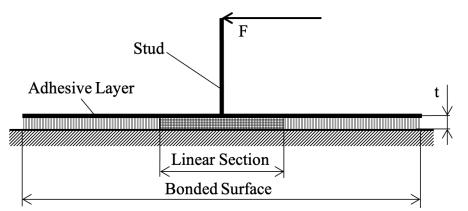
BERKELEY LAB


Typical Adhesive Properties

- Tensile strength of adhesive is usually lower than 100 MPa (50 MPa for shear)
 - Common values around 70 MPa tensile, 35 MPa shear
- **Tresca** criterion seems to apply on most adhesives (shear = $\frac{1}{2}$ tensile)
- G_c(Ψ) curves measured on different adhesive systems (Cybond 4523GB, Permabond ESP 310) suggest that roughly: G_{IIc}~3G_{Ic}

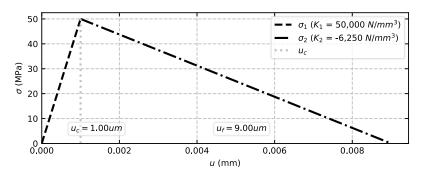


Analytical Model Description (1)


Analytical model of the (simplified) bonded joint:

- All the deformation is within the glue, the adherents are assumed as infinitely rigid
- All the surrounding elements are neglected the mount pad surface is assumed to be fixed
- The insert is rotating with respect to the mount pad surface
- Normal displacement (y-direction) across the interface: $u(x) = u_c + \beta(x - x_c)$
- Glue introduced with a cohesive zone model
 - Limited to the stud area

Analytical Model Description (2)


• **Equilibrium** equations can be solved in close form for a rectangular bonded surface, only numerically for circular

$$\int_{A} \sigma(x) \, dA = 0 \qquad \text{and} \qquad \int_{A} \sigma(x) \, x \, dA = FL$$
$$\int_{A_{1}} K_{1} \, u(x) \, dA_{1} + \int_{A_{2}} K_{2} \left(u(x) - u_{f} \right) dA_{2} = 0$$
$$\int_{A_{1}} K_{1} \, u(x) \, x \, dA_{1} + \int_{A_{2}} K_{2} \left(u(x) - u_{f} \right) x \, dA_{2} = FL$$

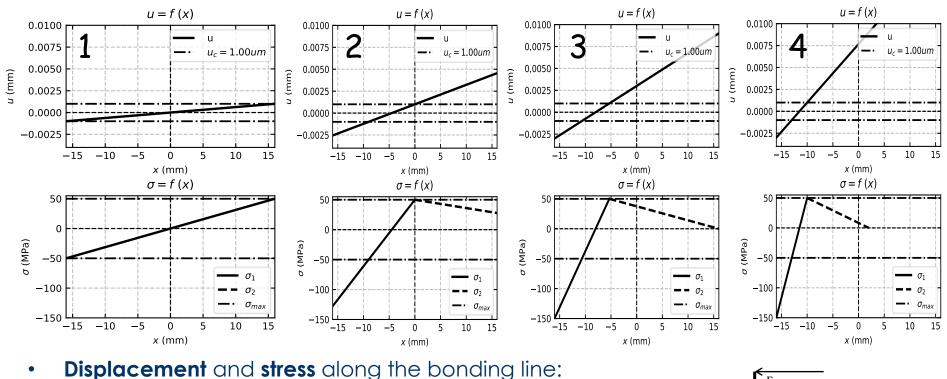
• Applied force :

 $F(x_c) = f(u_c, u_f, K_1, K_2, R, L, t)$

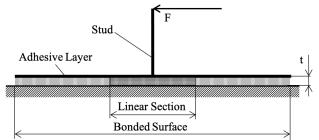
• Separate solution needed when part of the bonding is completely failed

Property	Value
Adhesive modulus	E = 5000MPa
Adhesive Normal Contact Stress	$\sigma_{max} = 50 MPa$
Critical Fracture Energy for Normal Separation	$G = 200 \cdot 10^{-3} mJ/mm^2$
Adhesive thickness	t = 0.1mm

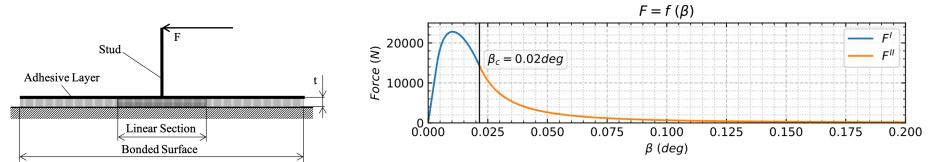
For a rectangular bonding:


$$F(x_c) = DK_2^2(u_c - u_f)(R - x_c)^4 + DK_1^2 u_c(R + x_c)^4 + +DK_1 K_2(R^2 - x_c^2)(7 R^2(2u_c - u_f) - 8 R u_f x_c + (2u_c - u_f)x_c^2)$$

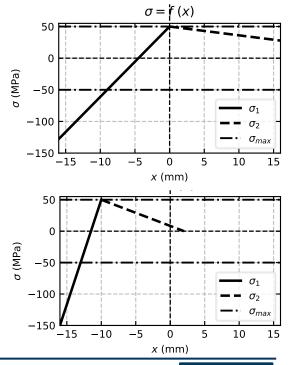
With:


$$D = \frac{a}{6 L (-K_2 (R - x_c)^2 + K_1 (R + x_c)^2)}$$

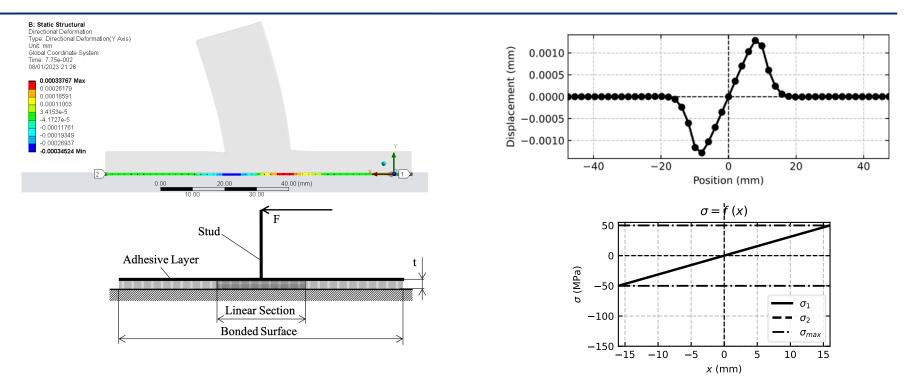
Analytical Model Results (1)



- - Linear regime 1.
 - Plastic deformation in the glue 2.
 - Failure onset at the right edge 3.
 - Partially failed glue 4.

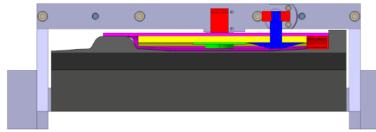


Analytical Model Results (2)

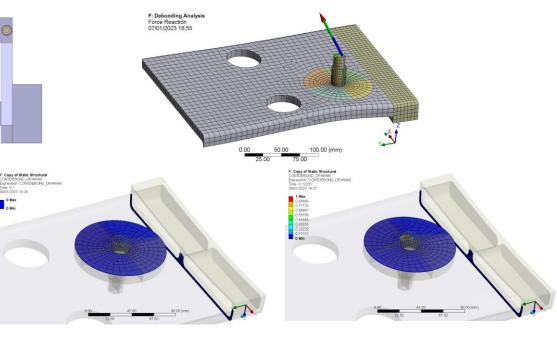


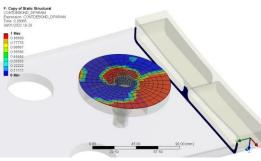
- Separate solutions: before and after onset of complete failure region
 - Blue curve: initial linear regime, then bonding damaged, but no failure
 - Orange curve: part of the contact failed **separation** occurring between the insert and the laminate
- Bonding '**degradation**' starts at 14.3 kN
 - Stiffness (performance) of the system decreases
- While the damage in the bonded region is growing, the force also increases up to the ultimate value of **22.8 kN**

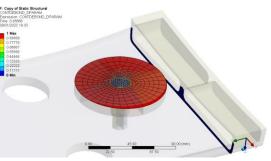
BERKELEY LAB


Simplified FE Model of the Bonded Region

- Simplified FE model built to verify the assumptions of the analytical model
 - Titanium insert bonded to a infinitely rigid fixed plane
- What is the 'real' contact surface deformation along the bonding?
 - Linear assumption within the stud width seems reasonable, but neglects the 'negative ramp' region

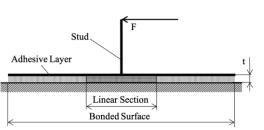


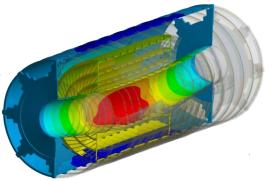

Mount Pad FE Model



FE failure submodel – some simplifications in order to reduce the computational load

- Computed failure load: 19.7 kN
- This is lower (15%) than the measured value:
- Model compliance reduced w.r.t the experiment due to simplifications
- Uncertainty in actual bond properties (from analogy with literature)


- Introduction
- The ATLAS Inner Tracker Design
- Experimental Design Verification
- Debonding models
- Conclusion



Conclusion

- Global ITk structure relies on thin, eccentrically stiffened, CFRP laminates
 - Design relies extensively on finite element modeling
 - Designed for stiffness, strength largely exceeds safety requirements
- Prototypes used to verify the actual stiffness of non-bonded components and the strength of critical components along the main load path
 - The failure point of a **bonded** joint was measured (~4 times the ultimate load)
 - · Different approaches implemented to simulate the failure process
 - Both FE and analytical models prediction is close to the failure load

Case	Failure Load	
/	kN	
Measured	23.0	
Analytical Model	22.8	
FE Model	19.7	

References

- 1. L. Gonnella, The ATLAS ITk detector system for the Phase-II LHC upgrade, Nuclear Inst. And Methods in Physics Research A, 2023, <u>https://doi.org/10.1016/j.nima.2022.167597</u>
- 2. ATLAS Collaboration. Technical Design Report for the ATLAS Inner Tracker Pixel Detector. Geneva, 2017. DOI: 1 0.17181/CERN.FOZZ.ZP3Q. URL: <u>http://cds.cern.ch/record/2285585</u>.
- 3. ATLAS Collaboration. Technical Design Report for the ATLAS Inner Tracker Strip Detector. Geneva, 2017. URL: <u>http://cds.cern.ch/record/2257755</u>.
- 4. Vallone, Giorgio et al., "Outer Cylinder, Design Report for PRR". CERN EDMS No. 2048058, Technical Report AT2-IG-ER-0001, <u>https://edms.cern.ch/document/2391486/5</u>
- 5. Tong, Liyong and Soutis, Costas. Recent Advances in Structural Joints and Repairs for Composite Materials. Springer Dordrecht, 2003. , <u>https://doi.org/10.1007/978-94-017-0329-1</u>
- 6. Henkel Corporation, Hysol® EA 9394 Epoxy Paste Adhesive Properties
- 7. Guess, T. R., Reedy, E. D. and M. E. Stavig. *Mechanical properties of Hysol EA-9394 structural adhesive*. No. SAND-95-0229. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 1995.
- 8. Barenblatt, Grigory Isaakovich. "The Mathematical Theory of Equilibrium Cracks in Brittle Fracture". 1962. Advances in Applied Mechanics, Volume 7, pp. 5-129.
- 9. Dugdale, Donald Stephen. "Yielding of Steel Sheets Containing Slits". 1960. Journal of the Mechanics and Physics of Solids, Volume 8, pp. 100-104.
- 10. Park, Kyoungsoo and Paulino, Glaucio H. "Cohesive Zone Models: A Critical Review of Traction-Separation Relationships Across Fracture Surfaces". November 2011. Applied Mechanics Reviews, Volume 64.

Thanks for your attention!

Contact: <u>gvallone@lbl.gov</u> <u>ecanderssen@lbl.gov</u> <u>martin.janda@cern.ch</u>

