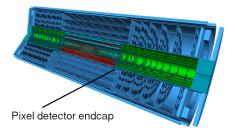
Forum on Tracking Detector Mechanics - Universität Tübingen

CO₂ cooling system prototype for the ATLAS ITk Pixel Endcap detector

Alex Bitadze, Andrea Capsoni, <u>Sonia Carrà</u>, Simone Coelli, Lidia Dell'Asta, Paul Kemp-Russell, Luciano Manara, Mauro Monti, Alessia Murrone, Fabrizio Sabatini, Daniele Viganò, Ennio Viscione


University of Manchester - INFN Milano - University of Milano - University of Sheffield

June 1st, 2023

Measurements 000000000

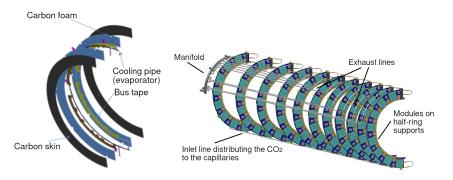
Introduction

- In preparation for high-luminosity LHC → ATLAS detector will be upgraded with a new silicon inner tracker ITk
- ITk will rely on **evaporative CO**₂ based cooling system

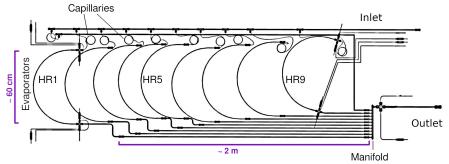
- In order to test the key aspects of the cooling, a **prototype for the** ITk Pixel Endcap Layer 4 half-shell cooling system was built in Milan
- Prototype tested at the CERN CO₂ BabyDEMO cooling plant \rightarrow facility is able to provide a flow up to 150 g/s with a temperature as low as -45 °C

Measurements

Conclusion:


- Introduction to ITk Pixel Endcap cooling system
- Layer 4 prototype
 - mechanical construction
 - capillary sizing
 - sensors
 - thermal load
- Measurements performed at BabyDEMO plant
 - nominal detector operations conditions
 - transient and extreme conditions
- Conclusions

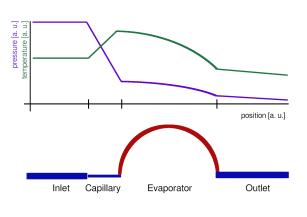
ITk Pixel Endcap cooling system


ITk Pixel Endcap: cooling system overview

Pixel modules mounted on half-ring local supports. Injecting liquid CO_2 in the system, the CO_2 reaches the **two-phase state** over the detector local supports evaporator tubes:

Layer 2 CAD by Fred Gannaway (QMUL)

Cooling system and flat Layer 4 prototype overview


• Common inlet line

- Capillaries distributing CO₂ to all the half-ring evaporators
 → capillary crucial both to trigger CO₂ evaporation and to equalize pressure
 drops in the system
- Exhaust line collecting two-phase CO2 and bringing it to the manifold
- Prototype is flat to simplify thermal insulation

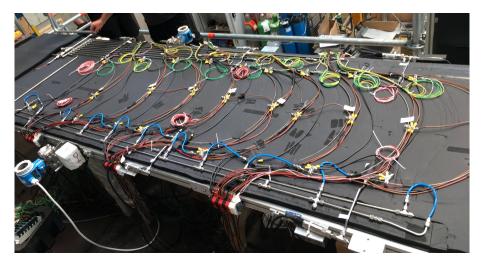
Measurements

Evaporative CO₂

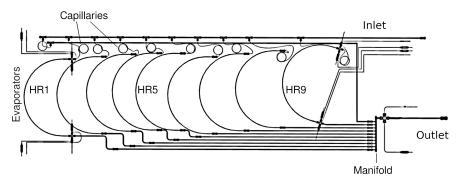
Capillary ensures that the evaporation **starts at the beginning of the evaporator**: liquid very close to saturation, it starts bubbling as soon as it enters the evaporator

Specifications for the ITk cooling system:

- vapor quality of 30% in the evaporator
- temperature drop within 5°C
- pressure drop in capillary: 8 bar
- pressure drop in evaporator + exhaust line within 2 bar


Mechanical construction of the prototype

Mechanics and sensors


Measurement

Conclusion

Backup

Overview of the Layer 4 prototype

- All tubes are grade 2 titanium
- Inlet and outlet lines connected to **BabyDEMO plant**
- Capillaries measured and sized at CERN

- 3D printed flat manifold
- Heating system to simulated detector thermal load
- Temperature and pressure sensors

Introduction 000000	Mechanics and sensors	Measurements 000000000	Conclusions 0000	

Capillaries

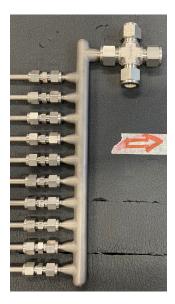
- Two types of capillaries tested, both with OD 1/16": ID 0.6 mm and ID 0.8 mm.
- Preliminary FLUDY and COBRA simulations to predict length, but dedicated measurements to find correct lengths at BabyDEMO plant to achieve the 8 bar pressure drop

Capillary length: 22.5 cm

Capillary length: 90 cm

Mechanics and sensors

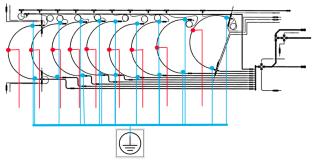
Measurements


Conclusion:

Backup

Manifold

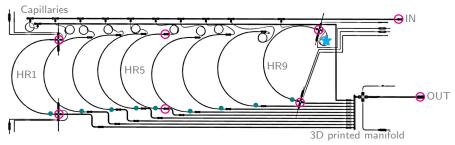
- Flat manifold 3D printed in titanium at LAMA Labs in Udine
- To prevent debris:
 - thermal treatment
 - cleaning in ultrasonic bath
 - hirtisation foreseen for real detector manifold



Mechanics and sensors

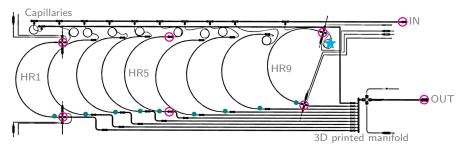
Measurements

Conclusion


Heating system

- In order to simulate the detector thermal load, HRs connected to power-supplies and treated as resistors
- Nominal power applied to each HR: 300 W (5 V \times 60 A), maximum power to be tested estimated to be ${\sim}400\,W$
- Red lines: current injection points
- Blue lines: connection to ground

In-flow sensors


• In-flow pressure and temperature sensors (^O)

- Global IN and OUT
- HRs 1, 5 and 9 IN and OUT
- PT100 temperature sensors
- EPSAS pressure transmitters with ±32 mbar accuracy
- **DeltaBar** (\bigstar) for pressure measurement of the capillary of HR9, with ±12 mbar accuracy

Measurements 000000000 Conclusions

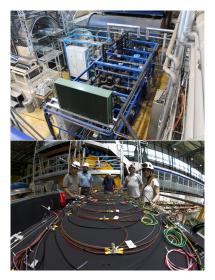
Backup

External sensors

- External wall temperature and interlock temperature sensors (•) glued to each evaporator pipe
- All sensors (except interlock ones) read through LabView

Measurements at BabyDEMO

Measurements

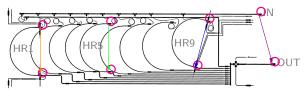

Conclusions

Backup

Summary of measurements [1]

Measurements performed at the BabyDEMO plant:

- First measurements with HR9 evaporator loop only, to size the capillaries to give a pressure drop of ~8 bar with 3g/s CO₂ flow
- Full system measurements at ITk nominal operation conditions:
 - \blacktriangleright CO_2 flows 30 g/s and –40 $^\circ\text{C}$
 - thermal loads of 300 W for each evaporator
 - with two different sets of capillaries, ID 0.6 mm and 0.8 mm

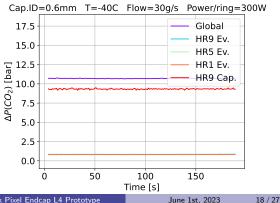


Summary of measurements [2]

- Measurements in **stable conditions** with the full system, at different operating conditions:
 - CO_2 flows [30 g/s and 40 g/s]
 - ▸ CO₂ temperatures [-20 °C, -35 °C, -40 °C]
 - thermal loads [0 W, 100 W, 200 W, 300 W and 400 W for each evaporator]
 - two sets of capillaries [ID 0.6 mm and 0.8 mm]
- Measurements of various situation with **transitions**, changing the power to single (or pairs of) evaporators
- Extreme thermal load conditions, up to 700 W for each evaporator
- Finally, measurements decreasing the flow to detect **dry-out** conditions, using nominal power, at 0 °C, -20 °C and -40 °C.
- \rightarrow Only a selection of the results is shown in the following

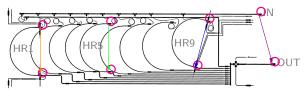
Measurements 000000000

Pressure drop after sizing the capillaries ID 0.6 mm


In-flow CO₂ ΔP as a function of time between:

- Global IN and OUT
- HR9, HR5 and HR1

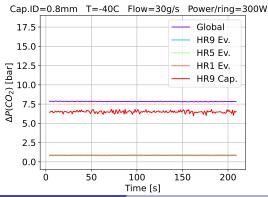
evaporator IN and OUT


- HR9 capillary with DeltaBar

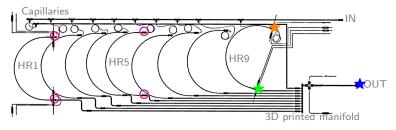
- Nominal conditions, CO₂ $T = -40 \degree C$ and 30 g/s. using 300 W/evaporator
- ΔP around 9.5 bar over capillary, length of 0.225 m
- System stable over time
- Same behaviour for the HR evaporators

Measurements

Pressure drop after sizing the capillaries ID 0.8 mm

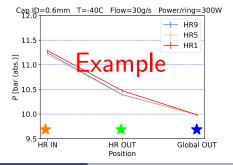

In-flow CO₂ ΔP as a function of time between:

- Global IN and OUT
- HR9, HR5 and HR1


evaporator IN and OUT

- HR9 capillary with DeltaBar

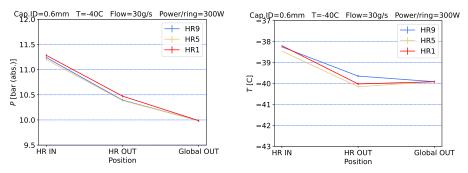
- Nominal conditions, CO_2 T = -40 °C and 30 g/s, using 300 W/evaporator
- ΔP around 6.5 bar over capillary, length of 0.9 m
- System stable over time
- Same behaviour for the HR evaporators



Pressure drop and temperature in HR and exhaust lines

Showing the in-flow CO_2 pressure drop and temperature as a function of the position along the prototype:

- from HR IN to HR OUT
 → evaporator
- from HR OUT to Global OUT
 → exhaust line



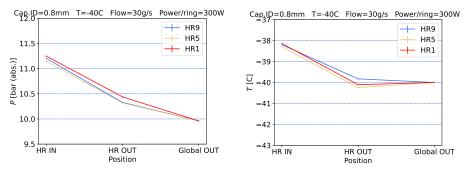
 ΔP and T in evaporators and exh. lines - Cap. ID 0.6 mm

Temperature

 $CO_2~T=-40\,^\circ C$ and $30\,g/s,$ using $300\,W/evaporator$

Pressure

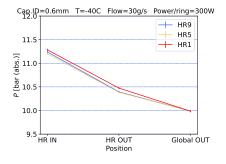
Pressure drop is 1.5 bar, within the 2 bar specification Temperature difference is 2° C, within the 5° C specification


21 / 27

ΔP and T in evaporators and exh. lines - Cap. ID 0.8 mm

Temperature

 $CO_2~T=-40\,^\circ C$ and $30\,g/s,$ using $300\,W/evaporator$


Pressure

Pressure drop is 1.5 bar, within the 2 bar specification Temperature difference is 2° C, within the 5° C specification

Pressure drop in the exhaust lines

Pressure drop at nominal conditions

- At the nominal operating conditions, the pressure drop in the longest exhaust line (HR1) is 0.5 bar
- ID 4.55 mm pipes were used for the exhaust line, since the ID 4 mm ones foreseen for the real system were not available yet
- Need to correct pressure drop for the smaller ID: the correction is a factor 2, computed from analytic formula and FLUDY simulation

Pressure drop is 1 bar in the exhaust line after the correction and 1 bar in the evaporator \rightarrow total pressure drop is 2 bar

Conclusions

Conclusions

- ITk Pixel Layer 4 cooling system prototype **successfully tested** at the BabyDEMO plant
 - We thank the CERN cooling group and Joao Noite for their support
- Only selected set of measurements shown today, but results show that **the** system is operational in all the tested condition
 - pressure and temperature drops are within the specification
 - the system is stable, even in extreme conditions, like power variation and temperature/flow condition different from the nominal ones (some reported in the backup slides)
- Group is now moving to the production of the real detector cooling system

Mechanics and senso 00000000 Measurements

Conclusions

Backup

Outlooks

Preparation for **production of the real detector cooling system** for all the layers, challenges:

- 3D bending of the pipes
- orbital **welding** of Ti pipes
- preparation of the **capillaries** and brazing to the inlet line

Currently working on 3D prototype for Layer 2 of the system to test the full production process

Prototype of Layer 2 exhaust line and manifold on integration tool

Introduction 000000

Mechanics and sensors

Measurements

Conclusions

Backup

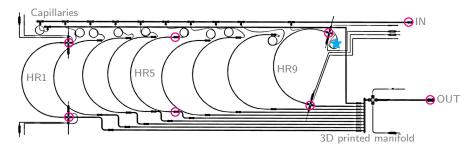
Backup

00000

Mechanics and sensors

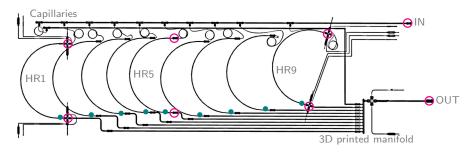
Power-supplies

• Each power-supply connected to two HRs, except HR9 that has its own power supply.


 \rightarrow This ensures the electrical isolation of all the HRs, power consumption only over HRs.

• Using sensing connections: performing measurement of voltage and giving feedback to the power supply itself.

 \rightarrow This ensure that the voltage and current, read on the power supply, are exactly the ones applied to the HRs.


- Power-supplies used:
 - three Delta Electronic SM 30V-200A power-supplies for HR1-HR2, HR3-HR4 and HR5-HR6,
 - ▶ two EA 80V-120A power-supplies connected in series for HR7-HR8,
 - one Delta Electronic SM 15V-100A power-supply for HR9.

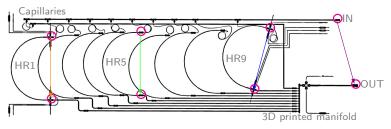
Details on pressure sensors

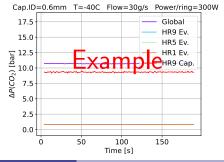
- 8 EPSAS pressure transmitters, output 4 mA-20 mA, calibration 0 bar-80 bar ABS accuracy: 0.04 %, FS = 80 bar → ±32 mbar
- 1 DeltaBar PMD75 ENDRES+HAUSER, output 4 mA-20 mA, calibration -16 bar/16 bar accuracy: max. measurement error 0.075 % → ±12 mbar

Details on temperature sensors

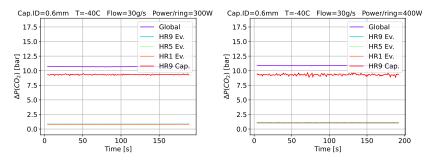
- 8 temperature transmitters, PT100 with 4 wires
- external sensors glued to the HRs:
 - ▶ sensors for **dry-out** and pipe temperature: 9 RTD PT100 Ø 2 mm
 - sensors for power-supplies interlock: 9 thermal switches T11A, 80 °C

Sensor gluing


- Small support, 3D printed, to position the dry-out and interlock sensors around the pipe.
 - Helps the gluing procedure and protects from torsions that could detach the sensors from the pipes.
- First use Loctite 315, to glue the sensor to the pipe.
- Then fill the support with Araldite 2012.

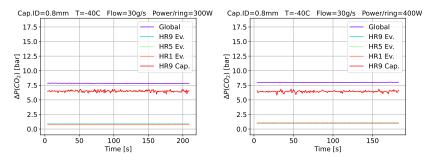

ΔP and T plots

Pressure after sizing the capillaries

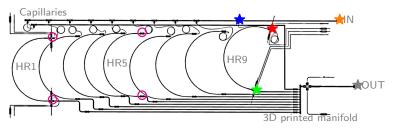


- Shown in the following in-flow CO_2 ΔP as a function of time between:
 - Global IN and OUT,
 - HR9, HR5 and HR1 IN and OUT
 - HR9 capillary with DeltaBar

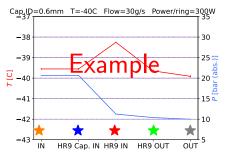
The plot title shows the capillary ID, the CO_2 temperature, the flow and the power.



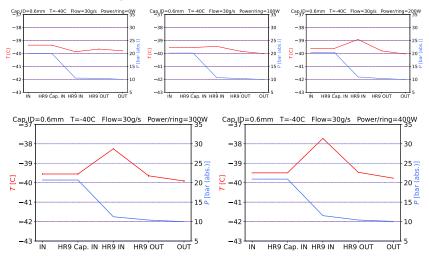
After sizing the capillaries - ID 0.6 mm


- Plots for $T_{ev} = -40$ °C and 30 g/s, using 300 W and 400 W.
- Δ*P* around 9.5 bar over capillary with ID 0.6 mm and length of 0.225 m.
 - Final ID 0.6 mm lenght should be around 20 cm.
- ΔP for HR1, HR5 and HR9 is the same, despite different capillary shapes (due to space).

After sizing the capillaries - ID 0.8 mm

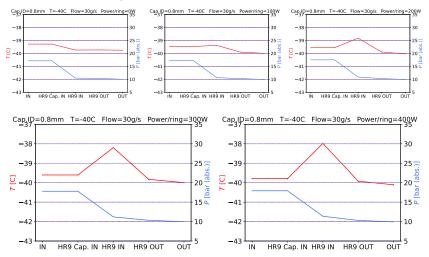

- Plots for $T_{ev}=-40\,^{\circ}C$ and 30 g/s, using 300 W and 400 W.
- ΔP around 6.5 bar over capillary with ID 0.8 mm and length of 0.9 m.
 - Final ID 0.8 mm lenght should be slightly more than 90 cm.
- ΔP for HR1, HR5 and HR9 is the same, despite different capillary shapes (due to space).

Pressure and temperature along the loops



Shown in the following in-flow CO_2 *P* and *T* as a function of the position along the mockup:

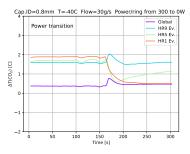
- T, following the scale on the *y*-axis on the left,
- P, following the scale on the *y*-axis on the right.



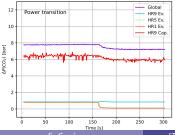
Pressure and temperature - ID 0.6 mm

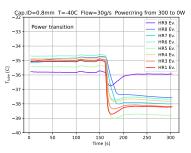
Note: data points are obtained as the average of the measurements over time. The uncertainty is present and it's computed as the standard deviation of the measurements.

Pressure and temperature - ID 0.8 mm

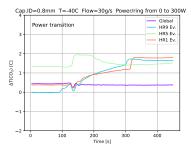


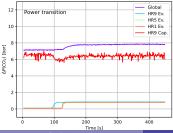
Note: data points are obtained as the average of the measurements over time. The uncertainty is present and it's computed as the standard deviation of the measurements.

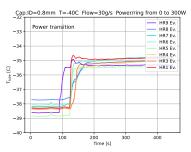

Mechanics 00000	ΔP and T plots 0000000	Power transitions ID 0.6	Dry-out studies


Power transitions - Capillaries ID 0.8 mm

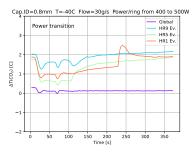
Power transition from 300 W to 0 W - ID 0.8 mm

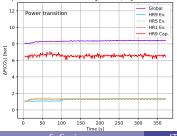


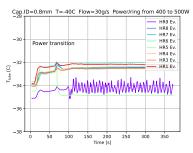



- T_{PP1} –40 $^{\circ}C$ and flow 30 g/s
- Transitioning from 300 W to 0 W for all evaporators
- ΔT variation within 2 °C
- ΔP variation within 1 bar

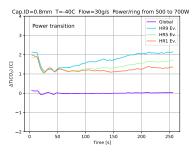
Power transition, from 0 W to 300 W - ID 0.8 mm

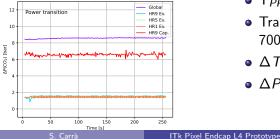


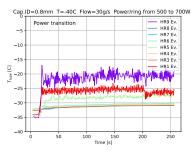



- $T_{\it PP1}$ –40 $^{\circ}C$ and flow 30 g/s
- Transitioning from 0 W to 300 W
- ΔT variation within 2 °C
- ΔP variation within 1 bar

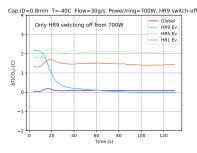
Power transition, from 400 W to 500 W - ID 0.8 mm

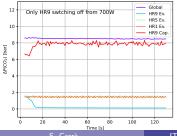

Cap.ID=0.8mm T=-40C Flow=30g/s Power/ring from 400 to 500W

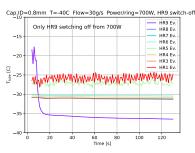



- $T_{\it PP1}$ –40 $^{\circ}C$ and flow 30 g/s
- Transitioning from 400 W to 500 W
- ΔT variation within 2 °C
- ΔP variation within 1 bar

Power transition, from 500 W to 700 W - ID 0.8 mm

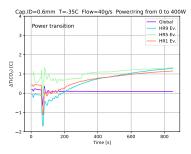

Cap.ID=0.8mm T=-40C Flow=30g/s Power/ring from 500 to 700W

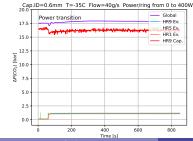


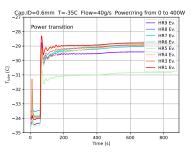

- T_{PP1} –40 $^{\circ}C$ and flow 30 g/s
- Transitioning from 500 W to 700 W
- ΔT variation within $1.5\,^{\circ}\text{C}$
- ΔP variation within 1 bar

Power transition for HR9 only - ID 0.8 mm

Cap.ID=0.8mm T=-40C Flow=30g/s Power/ring=700W, HR9 switch-off

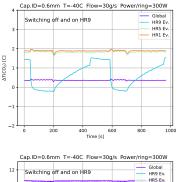


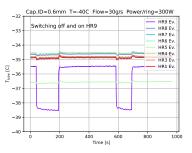

- T_{PP1} –40 $^{\circ}C$ and flow 30 g/s
- Transitioning from 700 W to 0 W for HR9 only, other evaporators at 700 W
- ΔT variation within 2.5 °C
- ΔP variation within 2 bar


Mechanics ΔP an 00000 0000		itions ID 0.8 Power tran •000	sitions ID 0.6 Dry-out
-------------------------------	--	----------------------------------	------------------------

Power transitions - Capillaries ID 0.6 mm

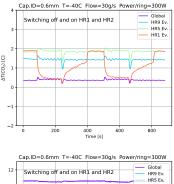
Power transition from 0 W to 400 W - ID 0.6 mm

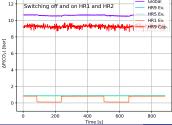


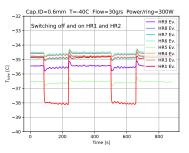

- T_{PP1} -35 $^\circ\text{C}$ and flow 40 g/s
- Transitioning from 0 W to 400 W
- ΔT variation within 2.5 °C
- ΔP variation within 1 bar

Power transitions ID 0.8 000000 Power transitions ID 0.6

Power switch on HR9 only - ID 0.6 mm



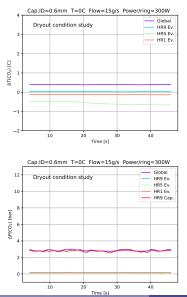

- T_{PP1} -40 $^{\circ}\text{C}$ and flow 30 g/s
- Switching off and on HR9 only, while other evaporators are at 300 W
- ΔT variation within 2 °C
- ΔP variation within 1 bar

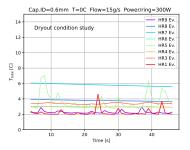

Power transitions ID 0.8

Power transitions ID 0.6

Power switch on HR1 and HR2 - ID 0.6 mm

- $T_{\it PP1}$ –40 $^{\circ}C$ and flow 30 g/s
- Switching off and on HR1 and HR2 only, while other evaporators are at 300 W
- T_{tube} for HR2 not available
- ΔT variation within 2 °C
- ΔP variation within 1 bar


Dry-out studies - Capillaries ID 0.6 mm


Dry-out studies

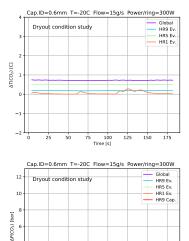
- Measurements decreasing the flow to detect dry-out conditions
- Using nominal power, 300W/HR
- PP1 temperature of 0 $^{\circ}\text{C},$ –20 $^{\circ}\text{C}$ and –40 $^{\circ}\text{C}.$
- Flow transition from 30 g/s to 15 g/s (10 g/s in one case), which was found to be the value that triggers the dry-out in this condition
- Plots for ΔP , ΔT and T_{tube} at the 15 g/s (or 10 g/s) condition are reported, for each temperature

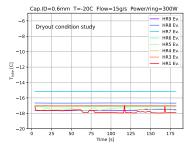
Power transitions ID 0.8 000000 Power transitions ID 0.6

Dry-out condition at 0 $^\circ\text{C}$ - ID 0.6 mm

- T_{PP1} 0 °C and 300 W power applied to each evaporator
- Dry-out reached around 15 g/s

4-


0


Power transitions ID 0.8 000000

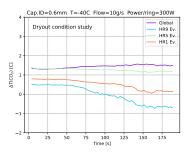
Power transitions ID 0.0

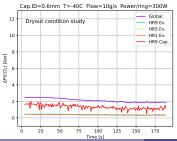
Dry-out condition at -20 °C - ID 0.6 mm

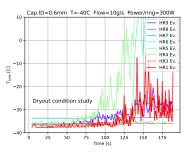
mmmmm

- T_{PP1} -20 °C and 300 W power applied to each evaporator
- Dry-out reached around 15 g/s

75 100 125 150 175


Time [s]


25


Mechanics 00000 Power transitions ID 0.8 000000

Power transitions ID 0.0

Dry-out condition at -40 °C - ID 0.6 mm

- T_{PP1} -40 °C and 300 W power applied to each evaporator
- Dry-out starting around 19 g/s for few HR (HR5 and HR9), decreasing flow until 10 g/s