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Background – Phase-2 CO2 Cooling Transfer Lines
Phase-2 CMS detectors require an order-of-magnitude increase in 2PACL (2-Phase
Accumulator-Controlled Loop) CO2 cooling capacity while operating roughly 20°C colder
than legacy systems [1]. The 2-phase pressure drop and supply-return heat transfer
through the co-axial transfer lines that will route CO2 to the new detectors has a direct
impact on cooling performance. A tool was therefore developed to simulate the
performance of these transfer lines, as shown below, based on the CoBra library [2] of
empirical correlations. But future systems’ low saturation temperatures (<-35°C), large-
diameter co-axial design, and long routings – including about 20 m of vertical 2-phase up-
flow – entail significant modelling uncertainties when relying on empirical correlations
with limited validation in these ranges.

This poster summarizes preliminary performance measurements of a prototype Phase-2
CMS Main Transfer Line (MTL) connected to DEMO, a prototype Phase-2 2PACL system
[1]. It then evaluates the performance of various adiabatic 2-phase DP models that are
critical for correct sizing of future CMS transfer lines.
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Phase-1 : 15 kW Phase-2: 550 kW

CMS CO2 Cooling Upgrade for Run 4
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Discussion
2-phase DP prediction models used for Phase-2 transfer lines design
perform well in upflow, but significantly overpredict horizontal flow
and are of little use for modelling downflow. The resulting DP error
yields conservative detector saturation temperature estimates.

The Müller-Steinhagen & Heck model with good recent
performance in horizontal flow [3] underpredicted DP on the
present set-up, possibly due to the pipes’ co-axial configuration.
Owens’ correlation [5] for frictional DP looks like a promising option
for modelling the co-axial line, but requires further evaluation.

Steady-state data (marked in grey below) was retroactively identified within long-term DEMO
performance data. High-sampling-rate data was extracted from each of about 200 steady-state intervals
and averaged to yield unique system states for analysis. Typical steady-state interval lasted 15 minutes
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Frictional DP: Friedel Correlation [5] with correction factor 1.5 [4]
Static DP: Yashar Void Fraction Correlation [8]
Model now used for transfer line simulations, neglecting downflow DP

Frictional DP: Müller-Steinhagen & Heck Correlation [6]
Static DP: Yashar Void Fraction Correlation [8]

Frictional DP: Owens Correlation [7]
Static DP: Yashar Void Fraction Correlation [8]

The overview of steady-state vertical DP measurements 2-phase density driving the hydrostatic DP, as
indicated by previous research. [3] The 2-phase upflow DP is linear with predicted void fraction, due to
the relatively low frictional component in the present mass flux range.
2-Phase downflow is more difficult to predict, in line with previous attempts [3]. Associated pressure
recovery has therefore been neglected so far in transfer line performance simulations.
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Outlook
While the test set-up has yielded unique opportunistic data on 2-
phase co-axial DP, dedicated tests will be needed to validate these
findings in real phase-2 detector conditions. Horizontal 2-phase DP
models have significant room for improvement, though they appear
conservative so far. Several potential factors in prediction errors,
notably flow patterns and co-axial configuration, remain to be
examined. A separate analysis evaluating heat exchange models will
also need to be conducted.
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CE3 Simulation 28-Apr-2023 12:27:50 | 2000 space steps per TL and 5 iterations | Accu Tsat = -45 [C] | Pump Discharge T = -50 [C] | Plant Flow = 0.47812 [kg/s] | TLs Volume = 248.3546 [L]

Example Transfer Line Network Performance Simulation – CE3 2PACL System
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