Monte Carlo Event Generation for the LHC

Bryan Webber University of Cambridge

Monte Carlo Event Generators

• Traditionally (imprecise) general-purpose tools

Much recent work to make them more precise

MC Event Generators

• HERWIG

http://projects.hepforge.org/herwig/

- Angular-ordered parton shower, cluster hadronization
- ➡ v6 Fortran; Herwig++

http://www.thep.lu.se/~torbjorn/Pythia.html

- Dipole-type parton shower, string hadronization
- ➡ v6 Fortran; v8 C++

SHERPA

http://projects.hepforge.org/sherpa/

- Dipole-type parton shower, cluster hadronization
 - "General-purpose event generators for LHC physics", A Buckley et al., arXiv:1101.2599, to appear in Physics Reports

→ C++

Parton Shower Monte Carlo

http://mcplots.cern.ch/

do/dp_ [pb/GeV]

10²

10

Z (Drell-Yan)

Herwig++ (Powheg)=

Perugia 2010

CDF

Herwig++

Pythia 8

- Leading-order normalization
- Worse for high p_T and/or extra jets

1800 GeV ppbar

p_(Z) in e*e' events (66 GeV/c < m_ < 116 GeV/c)

da/dp_T(Z) [pb / (GeV/c)] 1 0 0

10

10

10%

10

1.4

1.2

0.8

Event Generation for LHC

Matching & Merging

- Two rather different objectives:
- Matching parton showers to NLO matrix elements, without double counting
 - MC@NLO Frixione, BW
 - POWHEG

Nason

- Merging parton showers with LO n-jet matrix elements, minimizing jet resolution dependence
 - Catani, Krauss, Kühn, BW CKKW
 - Dipole *
 - MLM merging

Lönnblad

Mangano

(Also: matching NLO showers and matrix elements - see S Jadach et al., 1103.5015)

Outline

- Parton Shower Monte Carlo (PSMC)
- Matching PSMC to Next-to-Leading Order (NLOPS)
 - MC@NLO
 - POWHEG
- Merging PSMC with Multijet Matrix Elements (MEPS)
 - CKKW-L
 - MLM
- Combining MEPS with NLOPS (MENLOPS)
- NLOPS case study: top production asymmetry

Parton Shower Monte Carlo

MC Sudakov form factor:

$$\Delta_{\mathrm{MC}}(p_T) = \exp\left[-\int \mathrm{d}\Phi_R \,\frac{R_{\mathrm{MC}}(\Phi_B, \Phi_R)}{B(\Phi_B)} \,\theta\left(k_T\left(\Phi_B, \Phi_R\right) - p_T\right)\right]$$

• Unitarity:

$$\int \mathrm{d}\sigma_{\mathrm{MC}} = \int B\left(\Phi_B\right) \,\mathrm{d}\Phi_B$$

• Expanded to NLO:

$$d\sigma_{\rm MC} = \left[B\left(\Phi_B\right) - \int R_{\rm MC}\left(\Phi_B, \Phi_R\right) d\Phi_R \right] d\Phi_B + R_{\rm MC}\left(\Phi_B, \Phi_R\right) d\Phi_B d\Phi_R$$

MC@NLO matching

$$d\sigma_{\rm NLO} = \begin{bmatrix} B(\Phi_B) + V(\Phi_B) - \int \sum_i C_i (\Phi_B, \Phi_R) d\Phi_R \end{bmatrix} d\Phi_B + R(\Phi_B, \Phi_R) d\Phi_B d\Phi_R$$

$$\equiv \begin{bmatrix} B + V - \int C d\Phi_R \end{bmatrix} d\Phi_B + R d\Phi_B d\Phi_R$$

$$d\sigma_{\rm MC} = B(\Phi_B) d\Phi_B \left[\Delta_{\rm MC} (0) + \frac{R_{\rm MC} (\Phi_B, \Phi_R)}{B(\Phi_B)} \Delta_{\rm MC} (k_T (\Phi_B, \Phi_R)) d\Phi_R \right]$$

$$\equiv B d\Phi_B \left[\Delta_{\rm MC} (0) + (R_{\rm MC}/B) \Delta_{\rm MC} (k_T) d\Phi_R \right]$$

$$d\sigma_{\rm MC@NLO} = \begin{bmatrix} B + V + \int (R_{\rm MC} - C) d\Phi_R \end{bmatrix} d\Phi_B \left[\Delta_{\rm MC} (0) + (R_{\rm MC}/B) \Delta_{\rm MC} (k_T) d\Phi_R \right]$$

$$+ (R - R_{\rm MC}) \Delta_{\rm MC} (k_T) d\Phi_B d\Phi_R$$

MC starting from no emission

MC starting from one emission

Expanding gives NLO result

Event Generation for LHC

CERN Theory Seminar 30/03/11

S Frixione & BW, JHEP 06(2002)029

MC@NLO matching

• MEC=Matrix Element Correction (not NLO)

• MC@NLO is MC-specific, but integral is NLO

S Frixione & P Torrielli, JHEP 04(2010)110

MC@NLO matching

• NLO is only LO for high pt jet

S Frixione & P Torrielli, JHEP 04(2010)110

Automatic MC@NLO

bb distributions softer than NLO

Automatic MC@NLO

POWHEG matching

$$d\sigma_{\rm PH} = \overline{B}(\Phi_B) \, d\Phi_B \, \left[\Delta_R(0) + \frac{R(\Phi_B, \Phi_R)}{B(\Phi_B)} \, \Delta_R(k_T(\Phi_B, \Phi_R)) \, d\Phi_R \right]$$

$$\overline{B}(\Phi_B) = B(\Phi_B) + V(\Phi_B) + \int \left[R(\Phi_B, \Phi_R) - \sum_i C_i(\Phi_B, \Phi_R) \right] d\Phi_R$$

$$\Delta_R (p_T) = \exp \left[-\int \mathrm{d}\Phi_R \, \frac{R \left(\Phi_B, \Phi_R \right)}{B \left(\Phi_B \right)} \, \theta \left(k_T \left(\Phi_B, \Phi_R \right) - p_T \right) \right]$$

 NLO with (almost) no negative weights arbitrary NNLO
 High pt always enhanced by K = B/B = 1 + O(\alpha_S)

P Nason, JHEP 11 (2004) 040

Z⁰ at Tevatron

NLO is only LO at high pt

Hamilton, Richardson, Tully JHEP10(2008)015

W at Tevatron

• All agree (tuned) at Tevatron

Hamilton, Richardson, Tully JHEP10(2008)015

W & Z^0 at LHC (14 TeV)

• Still in fair agreement at 14 TeV

Z⁰ + jet POWHEG

- Cut now needed on 'underlying Born' pt of Z⁰
- Good agreement with CDF (not so good with D0)
- First jet is now NLO, second is LO (times \overline{B}/B ...)

Alioli, Nason, Oleari, Re, JHEP01 (2011) 095

Dijet POWHEG

- Again, cut needed on 'underlying Born' jet pt
- Good agreement with LHC at 7 TeV

Alioli, Hamilton, Nason, Oleari, Re, 1012.3380

MEPS merging

- Objective: merge LO n-jet ME^{*} with PSMC such that * ALPGEN or MadGraph, n<Nmax
 - Multijet rates for resolution > Q_{cut} are correct to LO (up to N_{max})
 - PSMC generates jet structure below Q_{cut}
 - ✤ Q_{cut} dependence cancels to NLL accuracy

CKKW: Catani et al., JHEP 11(2001)063 -L: Lonnblad, JHEP 05(2002)063 MLM: Mangano et al., NP B632(2002)343

Z⁰+jets at Tevatron

Event Generation for LHC

Resultstfor Zt, E_Tet 30 GeVIS

Also for Z+jets results are in agreement with expectations from ME+PS, but statistical uncertainty is larger and PS alone is also very good agreement with predictions from ME+PS simulation, while PS alone starts to fail for njet ≥ 2" V Ciulli, Moriond, 24/03/11

Resultstfor W, Etjet S30 GeV S

Very good agreement with predictions for Z_{m}^{0} ME+PS simulation, while PS alone starts to fail for $n_{jet} \ge 2$

Z⁰+jets at LHC (ATLAS)

Event Generation for LHC

CERN Theory Seminar 30/03/11

Matching & Merging: MENLOPS

 $d\sigma_{\text{TOT}} = d\sigma_{\text{NLOPS}}(0 \text{ jets}) + K_1 \, d\sigma_{\text{NLOPS}}(1 \text{ jet}) + K_2 \, d\sigma_{\text{MEPS}}(\geq 2 \text{ jets})$

Assume ≥ 2 jets have K-factor

 $K_2 = \sigma_{\text{NLOPS}} (\geq 1 \text{ jets}) / \sigma_{\text{MEPS}} (\geq 1 \text{ jets})$

- To retain NLO accuracy we need $\sigma_{\text{TOT}} = \sigma_{\text{NLOPS}}(0 \text{ jets}) + \sigma_{\text{NLOPS}}(\geq 1 \text{ jets})$
- Therefore

$$K_{1} = \frac{\sigma_{\text{MEPS}}(1 \,\text{jet})}{\sigma_{\text{MEPS}}(\geq 1 \,\text{jets})} / \frac{\sigma_{\text{NLOPS}}(1 \,\text{jet})}{\sigma_{\text{NLOPS}}(\geq 1 \,\text{jets})}$$

Hamilton & Nason, JHEP06(2010)039

Hoeche, Krauss, Schonherr, Siegert, 1009.1127

MENLOPS

 $d\sigma_{\text{TOT}} = d\sigma_{\text{NLOPS}}(0 \text{ jets}) + K_1 \, d\sigma_{\text{NLOPS}}(1 \text{ jet}) + K_2 \, d\sigma_{\text{MEPS}}(\geq 2 \text{ jets})$

$$K_{2} = \sigma_{\text{NLOPS}}(\geq 1 \text{ jets}) / \sigma_{\text{MEPS}}(\geq 1 \text{ jets})$$
$$K_{1} = \frac{\sigma_{\text{MEPS}}(1 \text{ jet})}{\sigma_{\text{MEPS}}(\geq 1 \text{ jets})} / \frac{\sigma_{\text{NLOPS}}(1 \text{ jet})}{\sigma_{\text{NLOPS}}(\geq 1 \text{ jets})}$$

- Choose Q_{cut} such that $\sigma_{MEPS}(\geq 2 \text{ jets}) \leq \mathcal{O}(\alpha_S)$
- Compute K₁, K₂ (in principle for each Born kinematics)
- Throw away MEPS 0- & I-jet samples
- Replace them by NLOPS 0- & I-jet samples

Z⁰ at Tevatron

All treatments agree (MEPS rescaled)

Hoeche, Krauss, Schonherr, Siegert, 1009.1127

Z⁰+jets at Tevatron

MENLOPS good for N_{jet}=1,2,3 (no ME for 4)

Z⁰+jets at Tevatron

MENLOPS best for jets 2 & 3

W(+jets) at Tevatron

POWHEG best for pt(W), lacks ME for Njet>I

Hoeche, Krauss, Schonherr, Siegert, 1009.1127

W at LHC (I4 TeV)

- Dashes are NLOPS & MEPS shapes
- Crosses are contributions to MENLOPS

Hamilton & Nason, JHEP06(2010)039

W+jets at LHC (I4 TeV)

NLOPS low for N_{jets}>I

W+jets at LHC (I4 TeV)

• MEPS dominates at small $\Delta \phi_{J1,W}$ -

Top at LHC (14 TeV)

• See later for importance of $Y_{t\bar{t}}$

Top at LHC (14 TeV)

Surprisingly, NLOPS is harder here

Forward-backward asymmetry in top quark production

- CDF reports a large effect, increasing with $t\bar{t}$ invariant mass
- CDF, 1101.0034 SM predicts a smaller NLO effect
- MC@NLO and MCFM in good agreement

CERN Theory Seminar 30/03/11

- No! Effect should increase with $Y_{t\bar{t}}$ (q vs \bar{q})
- SM effect is small (plots show MC truth for 2 fb⁻¹)

Event Generation for LHC

CERN Theory Seminar 30/03/11

- LHC is a pp collider **—** no effect??
- No! Effect should increase with $Y_{t\bar{t}}$ (q vs \bar{q})
- Rapidity correlation should be as shown below

 y_t

$$\Delta y = y_t - y_{\bar{t}}, \quad Y_{t\bar{t}} = \frac{1}{2}(y_t + y_{\bar{t}})$$
$$A^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

• LHC cuts assumed:

Event Generation for LHC

- * I charged lepton and at least 4 jets (inc. 2 b's) with $p_T > 20 \,\text{GeV/c}$, $|\eta| < 2.5$
- Missing $E_T > 20 \,\mathrm{GeV}$
- 4 jet cut reduces gg contribution

CERN Theory Seminar 30/03/11

- No! Effect should increase with $Y_{t\bar{t}}$ (q vs \bar{q})
- SM effect is small (plots show MC truth for 2 fb⁻¹)

- LHC is a pp collider **—** no effect??
- No! Effect should increase with $Y_{t\bar{t}}$ (q vs \bar{q})
- SM effect enhanced by cut on $t\bar{t}$ invariant mass

Event Generation for LHC

Forward-backward asymmetry in top quark production (2)

- CDF reports a large effect, increasing with tt invariant mass
- Suppose this is new physics
- Model it by reweighting $q\overline{q}$ contribution

Forward-backward asymmetry in top quark production (2)

- CDF reports a large effect, increasing with tt invariant mass
- Suppose this is new physics

Event Generation for LHC

- LHC is a pp collider p no effect??
- No! Effect should increase with $Y_{t\bar{t}}$ (q vs \bar{q})
- SM effect enhanced by cut on tt invariant mass

CDF top asymmetry at LHC?

- LHC is a pp collider **—** no effect??
- No! Effect should increase with $Y_{t\bar{t}}$ (q vs \bar{q})
- Model CDF effect by reweighting SM by: $1 + f(M_{t\bar{t}}) \tanh(\Delta y/2)$

 $\simeq 1 + f(M_{t\bar{t}})\beta_t^* \cos\theta_t^*$

Event Generation for LHC

Conclusions

- Event generators continue to improve
- Many processes now reliable to NLO
- Multijets included to LO
- Multijets to NLO in progress
- Look for tīt asymmetry at LHC!