
Notes on the analytic S-matrix (under construction)

Alexander Zhiboedov

CERN, Theoretical Physics Department, 1211 Geneva 23, Switzerland

Abstract

We review the basic notions of S-matrix theory. We discuss the status of the nonperturbative
S-matrix bootstrap program. We focus on topics and methods where we believe a further progress
can be readily made.
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1 Introduction

“One is never sure to have completely exploited the axioms of QFT.”
A. Martin

“We shall be content with plausibility arguments.”
R. Eden, P. Landshoff, D. Olve, J. Polkinghorne, “The analytic S-matrix.”

In these notes, we will discuss the basic properties of nonperturbative relativistic scattering
amplitudes. Understanding these is the subject of S-matrix theory.

S-matrix theory grew to prominence at the end of the fifties (see, e.g. [1] for a historical review).
It has been realized that combining special relativity and quantum mechanics possesses certain
rigidity (bootstrapiness), which gave hope to the idea of solving relativistic quantum field theories
based on self-consistency plus a little more. “A little more”could be an educated guess, experimental
data or the result of trial-and-error.

This first attempt to bootstrap the S-matrix was not successful because it was not possible to
answer two basic questions:

• What is a complete set of fundamental principles upon which S-matrix theory should be
based?

• What are the reliable computational schemes that allow systematically going from basic prin-
ciples to interesting physical results?

After the end of the sixties, the nonperturbative S-matrix theory was largely dormant thanks to
the discovery of string theory and QCD (the former being the outcome of S-matrix theory itself).
The development of these theories left behind abandoned, beautiful S-matrix constructions with
many explorations unfinished and many directions untouched. Another reason for moving on was
that the subject has proven to be very difficult.

Since then we have experienced many developments in a few related areas. Let us list the
important ones:

1. A revolution in our ability to compute perturbative amplitudes due to a plethora of new
on-shell methods and smart mathematical tricks.1 These methods, very much in spirit of the
original S-matrix program, are perturbative in nature and so far have not shed new light on
the nonperturbative amplitudes.

2. Discovery of the AdS/CFT correspondence. From the S-matrix bootstrap point of view,
AdS/CFT answers the first question above in AdS: the fundamental principles upon which
the scattering in AdS is built are CFT axioms.

3. Development of the conformal bootstrap. The conformal bootstrap answers the second ques-
tions above and offers a set of computational tools to get interesting results starting from the
CFT axioms.

1As S. Weinberg quipped “quantum field theory is S-matrix theory, made practical.”
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In other words, AdS/CFT + Conformal Bootstrap fully realize the original dream of S-matrix
theory in AdS. AdS/CFT was a leap of imagination, and in our opinion this is also what is needed
to make progress in the S-matrix bootstrap.

With these insights, we face the same question as half of a century before: what are the general
principles for scattering relativistic particles in flat space? How constraining are they? There is
a hope that we can make further progress. We can use experience from the conformal bootstrap,
AdS/CFT, and new perturbative methods. We can exploit much more powerful computational
resources (old ideas shine on new computers). Last but not least, we can have a much more open
spirit of investigation (we do not have to solve the actual QCD! There are other interesting theories
out there).

In fact, the main message of these lectures is: we have a reasonable, good guess for what the
rules of the game are, and there are some methods available to utilize them. In other words, there
is a lot of work to be done!

The subject has been already experiencing a new life recently. New efforts were made to
bootstrap scattering amplitudes of strongly coupled massive QFTs, see e.g. [29, 32], as well as
gravitational theories (see e.g. [33] and references therein). With these comments in mind, we try
to review below old results and more recent developments based on which we can make further
progress. Hopefully, this little note can be helpful for students and researchers who either would
like to get a glimpse of this beautiful subject or, even better, start working on it.

1.1 Literature

The literature on the subject is vast. Very often thinking that we have found something new, we
later discovered another book or article that proved otherwise. We expect that this natural process
of rediscovering things will end in the next few years.

Let us list below a few books and review articles that we found particularly useful.

• R. Eden, P. Landshoff, D. Olve, J. Polkinghorne, “The analytic S-matrix.”
This book is classics but not an easy read. Chapters 1 and 4 serve as an excellent introduction
to the basics. The book’s core is chapter 2, which one could read in the stream-of-consciousness
mode because, in some sense, it ends nowhere (hopefully, after these lectures, things will
become clearer). With some effort, it does contain a lot of exciting material and covers a review
of an unfinished attempt to prove the Mandelstam representation. It also serves as a good
review of what has been achieved on the subject by the Cambridge group. For example, to the
best of our knowledge, the analogous results achieved by the Soviet group (Landau, Gribov,
Kolkunov, Okun, Patashinski, Petrina, Rudik, Sudakov,...) are not adequately summarized
anywhere. The original articles are not even to be found via Inspire.

• G. Chew, “The analytic S-matrix.”
A good source to read about philosophy (if not ideology) behind the old S-matrix bootstrap.
It contains a detailed review of nuclear democracy2 and the strip approximation, “whose
mention will bring tears to the eyes of those of us who are old enough to remember it” (S.
Weinberg).

2This is a postulate that analyticity in spin includes J = 0 partial waves. When applied to the OPE data, is
“operator democracy” realized in the 3d Ising (general CFTs)?
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• R. Eden, “High Energy Collisions of Elementary Particles.”
In addition to the standard material, chapter 2 reviews some basic experimental data obtained
in the (old) collider experiments which is sometimes used as a guide for making various
theoretical assumptions.

• P. Collins, “An introduction to Regge theory and High-Energy Physics.”

• P. Collins, E. Squires, “Regge Poles in Particle Physics.”
These two books contain an extensive review of various results related to the physics of
complex angular momentum.

Let us now mention a few review articles and lecture courses:

• G. Sommer, “Present State of Rigorous Analytic Properties of Scattering Amplitudes.”
The most systematic and user-friendly review of the derivation of classic results of analyticity
in QFT known to us.

• A. Martin, F. Cheung “Analyticity Properties and Bound of the Scattering Amplitudes.”
Another source with a particular emphasis on the unitarity extension of the analyticity do-
main.

• R. Eden, “Theorems on High Energy Collisions of Elementary Particles.”
An incredibly dense four page collection of various bounds with relevant references and as-
sumptions used.

A few other useful books:

• D. Iagolnitzer, “Scattering in Quantum Field Theory.”

• V. Gribov, “Theory of complex angular momentum.”

• V. Gribov, Y. Dokshitzer, J. Nyiri, “Strong interactions of hadrons at high energies.”

• S. Donnachie, G. Dosch, P. Landshoff, O. Nacthmann, “Pomeron Physics and QCD.”

Last but not the least recently there has been a series of lectures on the nonperturbative aspects
of the S-matrix bootstrap by Balt van Rees, Pedro Vieira, Simon Caron-huot, and Andrea Guerrieri
(all available online), which we hope these lectures can complement. A lot of the material in the
notes is based on a joint work with Amit Sever and Miguel Correia [35], who I also would like to
thank for many discussions on the subject.

1.2 Plan

Our (tentative!) plan is the following:

1. Introduction: general overview, the signal model.

2. Relativistic kinematics, unitarity, partial wave expansion.

3. Analyticity and crossing : axiomatic analyticity, Landau equations, maximal analyticity.

4. Dispersion relations, bound on chaos, superconvergence, null constraints.
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5. Nonperturbative analytic bootstrap: the Froissart-Gribov formula, Aks theorem, Dragt boot-
strap.

6. Nonperturbative numerical bootstrap: scattering amplitudes as unitarity map fixed points,
primal problem, dual problem.

2 Signal Model: Causality, Analyticity, Unitarity

The basic question that is asked in S-matrix theory is the following: what is a transition amplitude
between a given state of free particles in the far past and in the far future? All such transition
amplitudes are encoded in a unitary operator, the S-matrix, that contains all information about
the particle interactions.

In particular, the spacetime in this picture is emergent. One natural question is then: how is
causality encoded in the properties of scattering amplitudes? This is a nontrivial question to which
a complete answer is not known. Nevertheless this question naturally leads to one of the pillars of
S-matrix theory, namely analyticity.

Another important property of the S-matrix is unitarity which is an expression of quantum-
mechanical nature of the theory.

To get some intuition behind the various notions of S-matrix theory, it is instructive to consider
a toy model which nevertheless retain some of the basic properties of relativistic amplitudes. The
toy model we are about to discuss is usually called the signal model, see appendix D of [34].3

We consider an initial signal which is a function of time4 fin(t) and an out-signal fout(t). We
postulate that the two are related as follows

fout(t) =

∫ ∞

−∞
dt′S(t− t′)fin(t

′) , (1)

where S(t − t′) is the S-matrix whose properties we would like to understand. In the context of
relativistic scattering we can think about scattering of a given particle off a background of other
particles (their number can change in the process of interaction).

Switching to the Fourier space we get

S(t) =

∫ ∞

−∞

dω

2π
e−iωtS(ω) (2)

and the scattering relation takes the form5

fout(ω) = S(ω)fin(ω) . (3)

Causality is the statement that if fin(t
′) = 0 for t′ < 0, then fout(t) = 0 for t < 0 or, more

generally, that the outgoing signal fout(t) depends on fin(t
′) for t′ ≤ t only. Through (1) this implies

that S(t) = 0 for t < 0. Let us see what it implies for its Fourier transform S(ω)

S(ω) =

∫ ∞

0
dteiωtS(t). (4)

3See also Simon Caron-Huot’s notes from the Bootstrap school 2020.
4In the relativistic case it will be the null (or retarded) time.
5In the relativistic case we will write it as δ(ω−ω′)T (ω) to make energy conservation (or time translation) manifest.
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It is immediately clear from (4) that we can continue S(ω) to the upper half-plane. Indeed Im[ω] > 0
only improves the convergence of the integral.

It is therefore natural to model physical S-matrices by considering function S(ω) which is
analytic in the upper half-plane. We can then define the physical S-matrix to be a limit of the
analytic function from the upper half-plane

S(ω) = lim
ϵ→0

S(ω + iϵ) . (5)

This is known as iϵ prescription. Below we will see how a related statement holds for the actual
relativistic scattering amplitudes.

It is crucial, that analyticity in the upper half-plane while being necessary is not sufficient for
causality.

Exercise: Show that S(ω) = eiω
3
while being analytic in the upper half-plane violates causality.

Time delay in gravity originates from S(ω) = eiαω. Check that causality implies that α ≥ 0.

To understand the sufficient condition we consider (2) and try to use analyticity in the upper
half-plane to establish that S(t) = 0 for t < 0. The standard argument for this involves deformation
of the contour into the upper half-plane to argue that the integral vanishes due to the factor etIm[ω]

factor. This however assumes that |S(ω)| grows slower than exponential in the upper half-plane.
The conclusion is that S(ω) describes causal transfer if and only if it is analytic in the upper
half-plane, Im ω > 0, and grows slower than exponential when Im ω → ∞.

In many physically interesting cases a stronger condition is known to hold (these include unitary
relativistic QFTs and gravitational theories). The physical S-matrices are in fact polynomially
bounded in the upper half-plane

|S(ω)| < |ω|N , |ω| ≫ 1 . (6)

The precise value of N will depend on the details of the theory (massive, massless, gravitational or
not, dimensionality of spacetime d). In all cases however the extra input that leads to a stronger
bound (6) comes from unitarity.

2.1 Unitarity

Unitarity expresses the fact that scattering describes time evolution in a quantum theory. Therefore
we can introduce transition probabilities and these should sum up to 1. In the context of the signal
model, where by assumption the initial and final states describe the same particle, the probability
of the transition through the box should be ≤ 1. In other words, we do not want the black box to
enhance the signal.

By unitarity in the signal model we mean the following: the L2 norm of the out-signal should
be smaller than that of the in-signal

||fout||2 =
∫
dt|fout(t)|2 ≤

∫
dt|fin(t)|2 = ||fin||2. (7)

In other words we would like to impose that the scattering process does not enhance ||...||2.
We will now prove that unitarity implies that

|S(ω)| ≤ 1, Im[ω] ≥ 0. (8)
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At large |ω| this is the same as (6) with N = 0. In the relativistic setup we will encounter cases
with N > 0.

With some foresight, we pick a particular fin(t) of the form

fin(t) = e−γte−iω0tθ(t)
√

2γ , fin(ω) =

√
2γ i

ω − ω0 + iγ
. (9)

with γ > 0 and ω0 real. Note that ||fin||2 =
∫
dt|fin(t)|2 = 1.

For Im(ω) > 0 we can now write

|fout(ω)|2 ≤
∣∣∣∣∫ ∞

0
dteiωtfout(t)

∣∣∣∣ ≤ ∫ ∞

0
dt|eiωt|2

∫ ∞

0
dt|fout(t)|2 =

1

2Im(ω)
||fout||2

|fout(ω)|2 ≤
1

2Im(ω)

|S(ω)|2 = |fout(ω)|2

|fin(ω)|2
≤ 1

2Im(ω)

1

|fin(ω)|2
. (10)

Here we used the Cauchy-Schwartz inequality. Note that |eiωt|2 = e−2Im(ω)t. We also used that
||fout||2 ≤ ||fin||2 = 1. We can now set ω = ω0 + iγ and find that fin(ω0 + iγ) = 1/

√
2γ for the

specific function (9). Inserting this into the equation above we then find that |S(ω0 + iγ)| ≤ 1,
which is what we wanted to prove, since ω0 and γ are arbitrary.

In conclusion, we find that S(ω) should be analytic and bounded |S(ω)| ≤ 1 in the upper half
plane. These are necessary and sufficient conditions for causality and unitarity in the signal model
that we considered.

Exercise: Consider S(ω) = 1 + icωp + O(c2), where c ≪ 1. What are the bounds on c and p
coming from |S(ω)| ≤ 1 for Imω ≥ 0. The condition that p ≤ 1 is also known as the bound on
chaos. It is saturated in the classical theory of gravity and manifests itself as the Shapiro time
delay in physical experiments.

2.2 Relation to the Relativistic Scattering: coherent states

The argument above is very suggestive. It is desirable to translate it to a rigorous bound on the
2 → 2 scattering amplitude of relativistic particles. An immediate problem is that for particles we
have ω > 0 only. Let us reprint the path taken in [34].

We consider light cone coordinates u and v. We consider a perturbation that is translation
invariant in v but is localized in the u coordinate. We call this “the shockwave background” (it
can be a relativistic particle with small pv). We expand the fields in the v coordinate at some uin
and then we expand them again at some uout after the shock. To make contact with the above
discussion we take t = v and pv = −ω. We can expand the field as

ϕ(t) =

∫ ∞

0

dω√
ω
(aωe

−iωt + a†ωe
iωt) . (11)

We should think of this field as an asymptotic free field. We next define

S(ω) = −
∫ ∞

−∞
dteiωt[ϕout(t), i∂tϕin(0)] = −

∫ ∞

0
dteiωt[ϕout(t), i∂tϕin(0)] , (12)
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where ϕin(t) is the field operator before the interaction, say u ≤ uin, and ϕout(t) is the field operator
after the interaction (u ≥ uout). With this definition we have

S(−ω) = S∗(ω). (13)

If we consider a signal that is made out of physical particles, one might correctly worry that
the fact that ω > 0 will preclude us from localizing the signal in time. In order to avoid this issue
we can consider a coherent state of the form

|Ψ⟩ = ei
∫
dtfin(t)ϕin(t)|0⟩ , (14)

with a real function fin. This is a state that could be produced by adding a hermitian term to the
Hamiltonian at some early time uin. On this state we have the expectation values

⟨Ψ|∂tϕin(t)|Ψ⟩ = fin(t) , ⟨Ψ|∂tϕout(t)|Ψ⟩ = fout(t) , (15)

where the functions are related as in the signal model. Here we assumed a linear relation between
the in- and out-signals. Furthermore, we can also consider the expectation values of the normal
ordered product Tvv = Ttt =: ∂tϕ(t)∂tϕ(t) :. When this is evaluated on the state above, and
integrated over t we find that the answer is given by

−P in,out
v =

∫
dvTvv =

∫
dt(fin,out(t))

2 = ||fin,out||2 . (16)

Thus, the condition that the total light-cone momentum Pv should not increase implies the norm
condition ||fout||2 ≤ ||fin||2.

More precisely, we can consider the signal fin exciting a mode involving a graviton with a given
polarization. The signal fout is the same mode of the graviton. In addition, the initial graviton
could go into other massive particles. Then the condition that the total Pv in the out-graviton
mode should be no bigger than the initial Pv, which was all contained in the graviton mode, leads
to the norm condition (or unitarity condition) for the signal model. In conclusion, the graviton-
graviton matrix element Sgg(ω) obeys all the assumptions of the signal model. Therefore, it should
be analytic and |Sgg(ω)| ≤ 1 in the upper half plane.

Let us now try to relate the picture above to the 2 → 2 scattering amplitude. The idea is that
close to positive physical s we have

S(ω) = S(s ∼ ω, b)

(
1 +O(

1

sb2
)

)
, sb2 ≫ 1, (17)

where the correction comes from the fact that the the shockwave background when created by other

particles carries a non-zero Pv momentum. We get δpv
pv

∼ q2

pupv
∼ 1

sb2
≪ 1 for the argument to make

sense.

One thing is clear from this argument: it would wonderful to make it directly in terms of the
2 → 2 scattering amplitude and avoid talking about coherent states, etc. This is what we discuss
next.

2.3 Relation to the Relativistic Scattering: 2 → 2 scattering amplitude

The function S(ω) above captures two important features of the relativistic scattering amplitude
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• analyticity

• unitarity

It misses however an important property of crossing.

At this point let us simply note that if we want to associate ω from the previous section
with energy of a particle, we have to restrict it to ω > 0. For ω > 0 there is indeed a rather
direct correspondence between S(ω) and S(s, b) - the 2 → 2 scattering amplitude at fixed impact
parameter b, where s ∼ ωω′.

As we will see in more detail below, S(s, b) has similar properties: it is analytic for Im s > 0
and it satisfies unitarity on the right cut6

|S(s, b)| ≤ 1 +O

(
1

s1/2b

)
, s ≥ 4m2. (18)

However, something new happens for s < 0 (which is analogous to ω < 0): it describes a
different scattering process (scattering in the crossed channel). Moreover, on the left cut we do not
have a bound

|S(s, b)| ≤ ?, s < 0. (19)

This is what prevents from turning the signal model argument into a complete relativistic argument.

Problem: Complete the argument above. Imagine we have a weakly coupled gravitational
theory. Then the signal model suggests the following picture for S(s, b), see Fig. 3. What happens
on the left cut?

In fact only recently it has been understood how to derive the constraints of [34] systematically.
Essentially, one uses crossing to solve the problem above with the left cut. To do it one goes back
from the impact parameter space to the momentum space and implements crossing there. After
it is done, one performs the impact parameter transform. Presumably, these developments should
imply something about the left cut of S(s, b), however this is still to be understood.

2.4 Comments

Relativistic particles are not something that can be easily localized. Trying to do so creates new
particles! So what do we mean by causality then in a relativistic theory? There are two approaches
to it.

Microcausality

In QFT we do have a sharp notion of causality when applied to local operators

[O(x1),O(x2)] = 0, (x1 − x2)
2 − spacelike. (20)

Going from this to the analytic properties of the scattering amplitude requires some further gym-
nastics, mainly the LSZ reduction and analytic completion. These steps are reviewed in great detail
in the article by Sommer [5], and we refer the reader there for details. A further improvement of
the QFT analyticity domain can be made by combining the arguments above with unitarity [3]
(exactly in the spirit of the improvement due tounitarity above).

6The correction is related to the fact J ∼
√
sb ≫ 1.
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s

sb2 = 1

?

ϵ = 1
sb2

≪ 1

S(s, b) ≃ 1 + iGNs
bd−4 ,

GNs
bd−4 ≪ 1

|S(s, b)| ≤ 1 +O(ϵ1/2)S(−s, b) ?
= S∗(s, b) +O(ϵ1/2)

Figure 1: The structure of the s-plane for the phase shift S(s, b). We consider weakly coupled gravitational
theories such that on the ϵ-circle the phase shift is well approximated by the tree-level result S(s, b) ≃
1 + iGNs

bd−4 . We then can map the outside of the ϵ-disc and the upper half-plane to the unit disc and apply to
it the maximum principle and the Schwarz-Pick lemma. The bound applies to terms that are parametrically
larger than ϵ.

Macrocausality

A notion of causality that does not refer to local operators and is formulated in terms of particles
directly is known as macrocausality. For a detailed review of this notion, see [18]. The basic idea is
that information on macroscopic distances can only be transferred by on-shell particles and transfers
in the disallowed regions are exponentially suppressed. Using macrocausality one can then derive
certain analytic properties of the scattering amplitudes.

Problem: Formulate and work out the consequences of macrocausality in quantum gravity.

3 Relativistic Kinematics

In this section we review kinematics of relativistic scattering. In these lectures we will mostly
discuss 2 → 2 scattering of scalar particles. In the next section we will discuss analytic properties
of relativistic scattering amplitudes.

3.1 Particles

We consider a relativistic theory in d-dimensional Minkowski spacetime with spacetime coordinates
xµ = (t, x⃗) and metric

ds2 = −dt2 + dx⃗2 =

d−1∑
µ,ν=0

ηµνdx
µdxν . (21)

We assume that the theory is Poincare invariant and that at very early and late times the physical
state is described by a system of free particles.
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Particles are labeled by unitary, irreducible representations of the symmetry group, the mass m,
and the spin J or, more precisely, the representation under the little group (for massive particles
SO(d − 1); for massless particles SO(d − 2)). For simplicity we restrict ourselves to theories of
a single type of scalar particle (it transforms in the trivial representation of SO(d − 1)). Scalar
particles obey Bose statistics.

We will consider scattering of particles with definite momentum pµ. The momentum of a particle
satisfies the on-shell condition

−p2 = (p0)2 − p⃗2 = m2, p0 > 0. (22)

We assume that the theory has a Poincare invariant vacuum |Ω⟩. To describe the Hilbert space of the
theory it is useful to introduce annihilation-creation operators. These obey canonical commutation
relations

[a(p⃗), a†(q⃗] = (2π)d−12p0δd−1(p⃗− q⃗) . (23)

The annihilation operator a(p⃗) acts on the vacuum as follows

a(p⃗)|Ω⟩ = 0. (24)

The creation operator a†(p⃗) generates the one-particle state

|p⟩ ≡ a†(p⃗)|Ω⟩ . (25)

The one-particle Hilbert spaceH1 is given by the space of square integrable functions f(p) restricted
to the mass-shell (22). The Lorentz-invariant scalar product in H1 is defined as:

⟨f1|f2⟩ =
∫
dµ1(p)f

∗
1 (p)f2(p) ,

dµ1(p) ≡
1

(2π)d−1
θ(p0)δ(p2 +m2)ddp, (26)

where |f⟩ = 1
(2π)d−1

∫
ddp θ(p0)δ(p2 +m2)f(p)a†(p⃗)|Ω⟩. In a theory of a single scalar particle, the

n-particle Hilbert space is given by a symmetrized product of one-particle Hilbert spaces Hn =
(H1)

⊗symn.

The full Hilbert space of the theory H is described by the Fock space of multi-particle states,
which is a direct sum of n-particle states H = ⊕∞

n=1Hn (with the condition that ||ϕ|| < ∞, where
||ϕ|| =

∑
n ||ϕn||). We therefore have the following completeness relation

1̂ = |Ω⟩⟨Ω|+
∞∑
n=1

∫
dµn(p)|p1, ..., pn⟩⟨p1, ..., pn| ,

dµn(p) ≡
1

n!

n∏
i=1

ddpi
(2π)d

θ(p0i )δ(p
2
i +m2). (27)

3.2 The S-matrix

The S-matrix describes the evolution of a given state |ψin⟩ in the infinite past into a state in the
infinite future |ψout⟩ (as a result of scattering). In other words, the S-matrix operator maps states
to other states

Ŝ : |ψin⟩ → |ψout⟩ ≡ Ŝ|ψin⟩. (28)
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Due to its physical meaning it preserves norm of a state

⟨ψout|ψout⟩ = ⟨ψin|ψin⟩. (29)

As a result, Ŝ is a unitary operator

ŜŜ† = Ŝ†Ŝ = 1̂. (30)

We will be interested in probabilities of a given state |ψ1⟩ in the past to evolve into a given state
|ψ2⟩ in the future. The transition amplitude that describes this process ⟨ψ2|Ŝψ1⟩ is a complex
number. Its modulus square |⟨ψ2|Ŝψ1⟩|2 describes the transition probability.

For them initial and n final particles we define the momentum space kernel Sm→n(q1, ..., qn; p1, ..., pm)
so that for the corresponding states we have

⟨ψn|Ŝψm⟩ =
∫
Sm→n(q; p)ψ̄n(q1, ..., qn)ψm(p1, ..., pm)dµmdµn. (31)

One can argue that Sm→n(q; p) are tempered distribution in the space of all on-shell momenta, see
appendix I in [18].

Next we introduce the notion of the connected S-matrix using the idea of the spacetime cluster
property which states that well-separated collections of particles do not interact with each other.
This should hold in a gapped theory and it is an interesting question to what extent it holds in
theories with massless particles. Mathematically, it means that

Sm→n = Sc
m→n +

∑
π

∏
k

Sc
mk→nk

. (32)

where the sum runs over nontrivial partitions of initial and final particles into subsets πk. The
clustering property (32) realizes the intuition that scattering between the states spatially displaced
from each other factorizes as the relative displacement tends towards infinity.

Stability of particles imply that Sc
1→k≥2 = 0, as well as

Sc
1→1 = 2(p⃗2 +m2)1/2(2π)d−1δd−1(p⃗− q⃗) . (33)

Finally, we can define scattering functions Tm,n by removing the overall momentum-conservation
δ-function from the connected S-matrix

Sc
m→n = (2π)dδd

 m∑
i=1

qi −
n∑

j=1

pj

Tm→n. (34)

Unitarity of the S-matrix implies infinitely many nontrivial relations on Tm,n also known as bubble
diagrams.

In this note we are interested in the two-to-two scattering of identical particles of mass m. In
this case we write

S2→2(p3, p4|p1, p2) = Sc
1,1(p3, p1)S

c
1,1(p4, p2) + Sc

1,1(p4, p1)S
c
1,1(p4, p2) + Sc

2,2(p3, p4|p1, p2),

Sc
2,2(p3, p4|p1, p2) = i(2π)dδd (p1 + p2 − p3 − p4)T (s, t) , (35)
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where we used Lorentz invariance to introduce Mandelstam invariants7

s = −(p1 + p2)
2 = 4(m2 + k2),

t = −(p1 − p3)
2 = 2k2(cos θ − 1),

u = −(p1 − p4)
2 = 4m2 − s− t = 2k2(− cos θ − 1) , (36)

where we evaluated them in the center-of-mass frame as well and introduced the scattering angle

cos θ = 1 +
2t

s− 4m2
. (37)

Mandelstam invariants satisfy

s+ t+ u = 4m2 . (38)

From above we also have

[T (s, t)] = m4−d , (39)

for the amplitude dimensionality.

Based on the kinematics above we can talk about three channels:

s− channel : 1, 2 → 3, 4 s ≥ 4m2, 4m2 − s ≤ t ≤ 0,

t− channel : 1, 3 → 2, 4 t ≥ 4m2, 4m2 − t ≤ s ≤ 0,

u− channel : 1, 4 → 2, 3 u ≥ 4m2, s, t ≤ 0, (40)

where s, t are real. Discuss the Mandelstam plane.

As we will discuss in much detail below it follows from general principles that the physical
amplitude T (s, t) is a boundary value of an analytic function, namely

T (s, t) = lim
ϵ→0

T (s+ iϵ, t). (41)

Therefore the object of study is an analytic function of two complex variables s and t. Moreover,
a single analytic function describes all three different physical regions (40).

3.3 Unitarity for 2 → 2 scattering

We now discuss the implication of unitarity on the connected 2 → 2 amplitude, T (s, t). It is
common to write the S-matrix as follows

Ŝ ≡ 1̂ + i T̂ . (42)

From this definition, it follows that

Sc
2,2(p1, p2|p3, p4) = i⟨p3, p4|T̂ |p2, p1⟩ = i(2π)dδd (p1 + p2 − p3 − p4)T (s, t) . (43)

7In d = 3 we can also have ϵµνρp
µ
1p

ν
2p

ρ
3 T̃ (s, t). We assume that this structure is absent.
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In terms of the T-matrix, the unitarity of the S-matrix ŜŜ† = 1̂ reads

1

i
⟨p3, p4|T̂ − T̂ †|p2, p1⟩ = ⟨p3, p4|T̂ · T̂ †|p2, p1⟩ (44)

=
∞∑
n=2

∫
dµn⟨p3, p4|T̂ |{qi}ni=1⟩ ⟨{qi}ni=1|T̂ †|p2, p1⟩ .

where in the last step we have inserted a complete basis of states. Due to momentum conservation,
an 2n-particle intermediate state can only contribute if s > (nm)2. Otherwise, there is no enough
energy to create an on-shell state with n particles. In particular, for 4m2 < s < 9m2, only two
particle states are kinematically allowed. For 9m2 < s < 16m2 two- and three-particle states are
allowed in the final state, etc.

Recall that the we adopt the iϵ-prescription and take

⟨p3, p4|T̂ |p2, p1⟩ = lim
ϵ→0

T (s+ iϵ, t). (45)

For the conjugate amplitude we get

⟨p3, p4|T̂ †|p2, p1⟩ =
(
⟨p2, p1|T̂ |p3, p4⟩

)∗
=
(
⟨p3, p4|T̂ |p1, p2⟩

)∗
, (46)

where in the last line we used the fact that ingoing and outgoing momenta are related by a symmetry
transformation (rotation). Applying this relation to (44) below s < 4m2, we conclude that T (s, t)
is real below the cut. We can therefore extend the scattering amplitude in the lower half-plane
using

T (s∗, t) =
(
T (s, t)

)∗
, (47)

where he we assumed t to be real. This condition is known as hermitian analyticity and we use it
below to translate unitarity into the statements about the discontinuity of the amplitude.

Let us consider first the elastic unitarity region, 4m2 < s < 9m2 or 4m2 < s < 16m2 if we in
addition impose Z2 symmetry that prohibits even → odd transitions. In this regime we can replace
the sum in (44) by the first term and the equation closes on the 2 → 2 transitions only. This is the
elastic unitarity regime. Explicitly, we have

2Ts(s, t) =
1

2

∫
dd−1q⃗3

(2π)d−1(2Eq⃗3)

∫
dd−1q⃗4

(2π)d−1(2Eq⃗4)
(2π)dδd(p1 + p2 − q3 − q4)T

(+)(s, t′)T (−)(s, t′′) ,

(48)

where we have introduced the notations

T (±) ≡ lim
ϵ→0

T (s± iϵ, t) , Ts(s, t) ≡
1

2i

(
T (+)(s, t)− T (−)(s, t)

)
, (49)

and t′ = −(p⃗1 − q⃗3)
2, t′′ = −(q⃗3 − p⃗3)

2. In writing the RHS we used (47). The factor 1
2 is 1

n! for
n = 2 due to the fact that we consider identical particles.

We will now reduce the integral to an integration over the two scattering angles by performing
all the kinematical integrations explicitly. For that aim, we first go to the center of mass frame
where q⃗3 = −q⃗4 ≡ k n̂3, where n̂3 is a unit d− 1 vector and k =

√
s− 4m2/2. In these variables the

elastic unitarity constraint (48) becomes

2Ts(s, t) =
kd−2

(2π)d−2(2Ek)2
Ek

2k

∫
dd−2Ωn̂3 T

(+)(s, t′)T (−)(s, t′′) , (50)
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where Ek
k is the Jacobian coming from the energy conservation delta-function. The integrand only

depends on the two scatttering angles

z′ = cos θ′ =
p⃗1 · n⃗
|p⃗1|

and z′′ = cos θ′′ =
p⃗3 · n⃗
|p⃗3|

. (51)

in terms of which we can write the measure as

∫
dd−2Ωn⃗3

≡ (4π)d−2

1∫
−1

dz′
1∫

−1

dz′′ Pd(z, z
′, z′′) where z = cos θ =

p⃗1 · p⃗3
|p⃗1||p⃗3|

= 1 +
2t

s− 4m2
,

(52)

is the cosine of the external scattering angle. One can show that

P3(z, z
′, z′′) =

1

4π

√
1− z2 δ(1− z2 − z′2 − z′′2 + 2zz′z′′) , (53)

Pd>3(z, z
′, z′′) =

1

(16π)
d−3
2 Γ

(
d−3
2

) (1− z2)
4−d
2

(1− z2 − z′2 − z′′2 + 2zz′z′′)
5−d
2

Θ(1− z2 − z′2 − z′′2 + 2zz′z′′) .

Using that Ek =
√
s/2, we can write (50) covariantly as

Ts(s, t) =
(s− 4m2)

d−3
2

16
√
s

1∫
−1

dz′
1∫

−1

dz′′ Pd(z, z
′, z′′)T (+)(s, t(z′))T (−)(s, t(z′′)) , (54)

where t(x) ≡ −(s− 4m2)(1− x)/2, not to be confused with the external momentum transfer t.

For s > 9m2 and general t the unitarity constraint involves scattering elements with more than
two particles. To get a constraint on the two particle amplitude, we note that T̂ · T̂ † on the right
hand side of (44) is a positive semi-definite matrix. Hence, for any state Ψ we have that

⟨Ψ|T̂ |{qi}ni=1⟩ ⟨{qi}ni=1|T̂ †|Ψ⟩ = |⟨Ψ|T̂ |{qi}ni=1⟩|2 ≥ 0 , (55)

and hence, if we drop all the contributions with more than two particles we get an inequality for
the 2 → 2 scattering matrix

1

i

∫
dµ(p1, p1)dµ(p3, p4)ψ(p1, p2)ψ

∗(p3, p4)× ⟨p3, p4|T̂ − T̂ †|p2, p1⟩ (56)

≥
∫
dµ(p1, p1)dµ(p3, p4)ψ(p1, p2)ψ

∗(p3, p4)×
∫
dµ(q1, q2)⟨p3, p4|T̂ |q1, q2⟩ ⟨q1, q2|T̂ †|p2, p1⟩ ≥ 0 .

For example, if we peak a wave function that consists of two particles with a specific momenta then
we have the the amplitude in the forward limit where p3 = p1 and p4 = p2. For this choice of wave
function, the unitarity constraint (56) becomes

Ts(s, 0) ≥
(s− 4m2)

d−3
2

16
√
s

1∫
−1

dz′
1∫

−1

dz′′ Pd(1, z
′, z′′)T (+)(s, t(z′))T (−)(s, t(z′′)) . (57)
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3.4 Cross sections

The unitarity relation in the forward limit is nothing but the optical theorem. In d dimensions it
takes the form

Im[T (s, 0)] =
√
s(s− 4m2)σtot(s) , (58)

where σtot(s) is the total cross-section, of dimension [σ(s)] = Ld−2.

3.5 Partial wave expansion

The unitarity of the S-matrix implies the non-linear integral relations that the 2 → 2 T -matrix
has to satisfy, (54) and (56). To simplify these complicated constraints we choose a wave function
Ψ that diagonalize the T -matrix and therefore also the integral kernel in (54), (56). This can be
done using the Lorentz symmetry of the problem. Namely, we decompose the amplitude T (s, t)
in a complete basis of intermediate states which transform in irreducible representations of the
SO(1, d − 1) symmetry. These representations are characterised by their energy and the little
group SO(d− 1) angular momentum in the center of mass frame, E and J . For two particle states
the SO(1, d− 1) quantum numbers are enough to characterize the states and we have

⟨p1, p2|p, J, m⃗⟩ ∝ δd(p− p1 − p2)Y
(d)
J,m⃗(p̂1) , (59)

where p2 = E2, Y
(d)
J,m⃗ are the d-dimensional spherical harmonics, and the energies dependant pre-

factor will not be relevant for us.8 We can now insert a complete basis to these states to decompose
the S-matrix element ⟨p3, p4|T̂ |p1, p2⟩ in all possible spins. Because the operator T̂ is both, trans-
lation and SO(1, d− 1) invariant, due to the Wigner-Eckart theorem we have that

fJ(p
2) ∝ ⟨p, J, m⃗|T̂ |p, J, m⃗⟩

⟨p, J, m⃗|p, J, m⃗⟩
, (60)

where the convention dependant proportionality factor is independent of the energy and and the
angular momentum m⃗. These functions are the so called partial wave coefficients, in term of which
the amplitude takes the form

T (s, t) =
∑
J

n
(d)
J fJ(s)P

(d)
J (cos θ) , (61)

where the sum runs over all spins and n
(d)
J are convention dependent normalization factors. Here,

P
(d)
J (cos θ) are the partial waves. They represents the angular dependence of the amplitude due to

the exchange of all the states with spin J . A simple way of determining these functions is to go
to the center of mass frame and act with the SO(d − 1) quadratic Casimir on the two outgoing
particle, while holding the momentum of the two incoming particles fixed. This equation takes the
form [

(1− z2)
4−d
2
d

dz
(1− z2)

d−2
2
d

dz
+ J(J + d− 3)

]
P

(d)
J (z) = 0 , (62)

8For d = 4 that factor is

√
Ep⃗

|p⃗1|Ep⃗1
Ep⃗2

, see [17] for details.
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where z = cos θ is cosine of the scattering angle (52). This second order differential equation has
two independent solutions. Spin J unitary representations are decomposed from states with angular
momentum in the plane of scattering ranging between −J and J . Hence, the corresponding solution
of (62) is a degree J polynomyal of cos θ that is given by

P
(d)
J (z) = 2F1

(
−J, J + d− 3,

d− 2

2
,
1− z

2

)
=

Γ(1 + J)Γ(d− 3)

Γ(J + d− 3)
C

( d−3
2

)

J (z), (63)

where C
( d−3

2
)

J (z) are the standard Gegenbauer polynomials.

The partial wave coefficients can be extracted from the amplitude using the orthogonality rela-
tion of these polynomials

1

2

1∫
−1

dz (1− z2)
d−4
2 P

(d)
J (z)P

(d)

J̃
(z) =

δJJ̃

Nd n
(d)
J

. (64)

Here we have chosen the convention

Nd =
(16π)

2−d
2

Γ
(
d−2
2

) , n
(d)
J =

(4π)
d
2 (d+ 2J − 3)Γ(d+ J − 3)

π Γ
(
d−2
2

)
Γ(J + 1)

, (65)

for which the unitarity constraint presented below takes a simple form. In this convention we have

fJ(s) =
Nd

2

1∫
−1

dz (1− z2)
d−4
2 P

(d)
J (z)T (s, t(z)) . (66)

Because the S-matrix is diagonal in the spin basis, so does the unitary constraint. We consider
first the elastic regime 4m2 < s < 16m2 where this constraints takes the form (54). Using (66), we
project both sides to a fixed spin J . On the left hand side to find the imaginary part of the partial
wave coefficient, ImfJ(s). On the right hand side, it is useful to first represent the kernel as a sum
over partial waves of z1, z2 and z. Because this kernel represents the angular integration in (50),
its partial wave decomposition must also be diagonal in spin. It takes that form

Pd(z, z
′, z′′) =

1

2
N 2

d (1− z′2)
d−4
2 (1− z′′2)

d−4
2

∞∑
J=0

n
(d)
J P

(d)
J (z)P

(d)
J (z′)P

(d)
J (z′′) . (67)

Exercise: Check this relation.

Using (66) for the three integrals, we arrive at the elastic unitarity constraint

2ImfJ(s) =
(s− 4m2)

d−3
2

√
s

|fJ(s)|2 , (68)

or equivalently

|SJ(s)| = 1 , with SJ(s) ≡ 1 + i
(s− 4m2)

d−3
2

√
s

fJ(s) . (69)

Here 1 can be traced to back to 1̂ in (42). In this way the trivial unitary S-matrix Ŝ = 1̂1 becomes
SJ = 1 in the partial wave basis.
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The solution to this is

fJ(s) =

√
s

(s− 4m2)
d−3
2

i(1− e2iδJ (s)) , (70)

with δJ(s) being real for 4m2 < s < 16m2 and is called the scattering phase.

Similarly to the above, for s > 16m2 we chose ψ(p1, p2) = ⟨p1, p2|p, J, m⃗⟩ in (56). In that way
we arrive at the same equation, but with an inequality instead of an equality

2ImfJ(s) ≥
(s− 4m2)

d−3
2

√
s

|fJ(s)|2 . (71)

or, equivalently,

|SJ(s)| ≤ 1 : Im[δJ(s)] ≥ 0 . (72)

We close this section with a short discussion on the rage of convergence of the partial wave
sum (61) for fixed physical s as a function of cos θ. As we discuss below, the amplitude T (s, cos θ)
is analytic inside the small Lehmann-Martin ellipse and its absorptive part, Ts(s, cos θ) is analytic
inside the large Lehmann-Martin ellipse. These ellipses have foci at cos θ = ±1 and semi-major axis
zsmall and zlarge. Correspondingly, inside these ellipses the sum (61) and its discontinuity converge.

In the case of scattering of identical lightest particles which is our main interest we have

zsmall = 1 +
8m2

s− 4m2
, zlarge = 2z2small − 1 = 1 +

32m4

(s− 4m2)2
. (73)

In the case of scattering of massless particles, e.g. gravitons, the situations is more complicated
and partial wave expansion converges for real angles point-wise in d > 7 only. For 5 ≤ d ≤ 7 one
can use a smeared version of the partial wave expansion.

3.6 Impact parameter representation

To develop some intuition it is useful to connect the formulas above to the so-called impact parameter
representation. Physically, instead of considering scattering of particles of given momenta we can
consider scattering of wave-packets at fixed separation in the transverse space (or fixed impact
parameter).

To discuss the impact parameter representation of the amplitude let us consider again the partial
wave expansion

T (s, t) =
∑
J

n
(d)
J fJ(s)P

(d)
J (1 +

2t

s− 4m2
) . (74)

We next consider the following J → ∞, s→ ∞ with the ratio

b ≡ 2J√
s

(75)

held fixed. We will see below that b plays the role of the impact parameter.
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A useful identity to understand this limit is the following

lim
J→∞

P
(d)
J (1 +

tb2

2J2
) = 2

d
2
−2Γ(

d

2
− 1)(

√
−tb)2−

d
2J d−4

2
(
√
−tb) +O(

1

J
), (76)

where Jα(x) is the Bessel function of the first kind.

Switching from the sum
∑

J →
√
s
2

∫
db we get the following representation for the amplitude

T (s, t) = i 4s

∫ ∞

0
dbbd−3

(
(2π)

d
2
−1(

√
−tb)2−

d
2J d−4

2
(
√
−tb)

)(
1− e2iδ(s,b)

)
+ ..., (77)

where ... represents terms that are suppressed in the large s limit.

In writing the formula above we assumed that the phase shift δJ(s) that enters into the definition
of partial waves admit the following limit

lim
s→∞

δ
J= b

√
s

2

(s) ≡ δ(s, b). (78)

The formula (77) can be rewritten using the following identity∫ ∞

−∞
dd−2⃗beiq⃗·⃗bf(|⃗b|) = (2π)

d
2
−1

∫ ∞

0
dbbd−3 (qb)2−

d
2 J d−4

2
(qb)f(b). (79)

In this way we finally get

T (s,−q⃗2) = i 4s

∫ ∞

−∞
dd−2⃗beiq⃗·⃗b

(
1− e2iδ(s,b)

)
+ ... . (80)

Or, equivalently inverting this relation we get the following expression for the phase shift

S(s, b) ≡ 1− e2iδ(s,b) = − i

4s

∫
dd−2q⃗

(2π)d−2
e−iq⃗·⃗bT (s,−q⃗2) + ... . (81)

This makes the physical meaning of the phase shift manifest. Indeed, to go from the amplitude
to the phase shift we perform the Fourier transform in the transferred momentum which fixes the
separation between the scattering objects to be b⃗.

Exercise: Check the derivation of the formulas above.

Unitarity of the partial waves |SJ(s)| ≤ 1 becomes

|S(s, b)| ≤ 1, s > 0, (82)

which should hold up to terms that decay at large s. This is the condition we encountered in figure
3.

Exercise: (The Froissart bound). Let us consider scattering in a gapped theory (for example
scattering of pions in QCD). Imagine we are interested in the behavior of the total cross section
(58) at large energies s

m2
π
≫ 1.

Using (80) we get

σtot(s) =
8π

d
2
−1

Γ(d2 − 1)

∫ ∞

0
db bd−3Re[1− S(s, b)] (83)
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Since the theory is gapped we expect that at fixed s and large impact parameters the phase shift
behaves as δ(s, b) ∼ sNe−2mπb (this is nothing but the Yukawa potential for the two-pion exchange),9

where we assume that N > 0.

We expect thus that the large impact parameters are suppressed and we can restrict the relevant
impact parameters to the region sNe−2mπb ∼ 1, or b ≤ bmax = N

2mπ
log s

s0
. In this way we get

σtot(s) ≤ C

∫ bmax

0
dbbd−3 ∼ Cbd−2

max ∼
(

N

2mπ
log

s

s0

)d−2

. (84)

This is the famous Froissart bound. Below we will consider a much neater and more precise
derivation of the same result without any squiggly lines, but the basic result is the same: in a
gapped theory the size of a relativistic object grows at most like log s. For a recent discussion of
the status of the Froissart bound in QCD at the current accelerator energies see [36] and references
therein. The punchline is that there is no reason to expect that we will observe the Froissart bound
saturation at the LHC energies.

Exercise: (The Gravitational Froissart bound). Let us consider scattering in a gravitational
theory. Imagine we are interested in the behavior of the total cross section (58) at large energies
s

m2
Pl

≫ 1. Derive the expected behavior based on the fact that at large impact parameters gravity

becomes classical and the phase shift is thus given δ(s, b) = GNs
bd−4 . Hint: use unitarity at small

impact parameters and the explicit expression for δ(s, b) at large impact parameters.

3.7 Functions versus distributions

Based on the standard QFT axioms, scattering amplitudes, cross sections and partial waves are
tempered distributions rather than continuous functions. This leads to various subtleties, sometimes
known as pathologies a-la Martin [26]. For example, we can imagine total cross-section having
singularities which are local in energy variable s, that are not detectable by the finite resolution
experiments. As such it is hard to exclude them based on physical grounds. One way to produce
such a singularity is to consider an infinite number of resonances that accumulate on the real axis,
see [26].

To the best of our knowledge there is no known, first principle argument that can exclude
these possibilities. One way to eliminate them is to simply assume that various cross sections are
actually real analytic functions of energy s rather than distributions. We add this to the list of our
assumptions. It would be very interesting to see if it is possible to establish this rigorously.

4 Analyticity

Analyticity is the central element of S-matrix theory. It is a nontrivial consequence of the basic
principles of QFT and it is believed to hold more generally, e.g. in gravitational theories. It also
measures our power to derive results in S-matrix theory: the more analyticity we have, the better
results we can derive.

It is natural to divide the discussion of analyticity into several parts. The first part of the
discussion is the so-called axiomatic analyticity: the domain of analyticity that can be derived from
QFT axioms supplied by the LSZ reduction formula and the technique of analytic completion. The

9Two-pion exchange is the minimal mass of the exchanged state because pions are pseudoscalars.
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most famous outcome of this analysis is the Froissart bound on the total cross-section that we have
already briefly discussed above and derive more carefully below.

The second part describes the analytic structure of the amplitudes that is consistent with
unitarity. By analytic continuation of unitarity relations we naturally arrive to the notion of the
Landau equations and Landau curves. These are best understood in perturbation theory even
though the analytic structure derived is nonperturbative. One famous outcome of this analysis is
a failed attempt to prove the so-called Mandelstam representation with many exciting singularities
discovered on the way (anomalous thresholds, cusps, acnodes, etc).

Another outcome of this analysis is the idea of maximal analyticity : the maximal domain of
analyticity that is consistent with unitarity. This is something that has not been rigorously proven
but surves as a working hypothesis in many papers on the S-matrix bootstrap.

4.1 Axiomatic analyticity: rigorous domain of analyticity derived from QFT axioms

For a very nice and brief compendium of results derived using the axiomatic QFT methods, see [4].
We refer to this review and the original references listed there for details. Another source of detailed
derivations is the review by Sommer [5].

The purpose of this section is to briefly review the relevant techniques of establishing analytic
properties of the scattering amplitudes starting from basic axioms of massive QFT and techniques
to analytically continue functions of two complex variables:

1. Lorentz invariance.

2. Causality.

3. Mass gap and spectrality.

4. Analytic completion.

5. Temperedness.

6. Extra technical assumptions?

Deriving analytic properties of scattering amplitudes proceed in the following steps:

1. Express scattering amplitude in terms of the correlation function using the LSZ-type reduction
formulas.

2. Using causality or commutativity of operators at space-like separated points to establish
analyticity in the upper (lower) half-plane in a correspondent complex variable.

3. Use completeness of asymptotic states to relate different regions of analyticity. In this way
one establishes analyticity in the so-called primitive domain.

4. Use techniques of analytic completion to extend the primitive analyticity domain.

5. Go on-shell and establish analyticity of the on-shell scattering amplitudes.

6. Extend the region of analyticity using unitarity.
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An interesting fact worth emphasizing is that skipping step 4 of analytic completion leads to empty
region of analyticity of scattering amplitudes when going on-shell.

Let us proceed in order of the strength of the results derived from the axioms. The starting
point is the statement the result that the scattering amplitude is polynomially bounded

|T (s, t)| < |s|N , t < 0. (85)

Moreover for fixed t < 0 the amplitude is analytic in the complex s-plane except for cuts related
to unitarity. Analyticity and sub-exponential growth in the upper half-plane follow from causality,
and the polynomial boundedness eventually follow from temperedness. This simple structure of the
s-complex plane requires some conditions on the masses of the scattered particles. For example it
holds for the scattering of lightest particles in the theory. For generally, there is a region |s| < R(t)
that can contain “dragons”, such as anomalous thresholds. Existence of (85) together with the
associated analyticity structure leads to dispersion relations to be discussed below.

For elastic scattering, one can similarly show that for real and fixed s the amplitude is analytic
inside the Lehmann ellipse.10 11

This is an ellipse with foci at ±1 and whose size depends on the details of the theory and s.
Analyticity inside the Lehmann ellipse extends analyticity in t to some positive values tL(s). The
most important property of the Lehmann ellipse to keep in mind is that it shrinks with energy

The Lehmann ellipse : tL(s) ∼
C

s
, s→ ∞. (87)

One of the most famous results in S-matrix theory is the work by AndrÃ© Martin [3] where
he used unitarity to extend analyticity in t beyond the Lehmann ellipse. His starting point are
dispersion relations with N subtractions and the outcome is the statement that T (s, t) is analytic
and polynomially bounded in s for |t| ≤ t0.

The Martin′s extension : |t| ≤ t0, (88)

where t0 does not depend on s. For the scattering of identical particles t0 = 4m2.12

At this point we are ready to derive the most famous result of S-matrix theory, namely the
Froissart-Martin bound.

10Why are we talking about ellipses? This is related to convergence of the partial wave expansion, which can be
seen using Neumann’s argument [7]. Consider a function f(z) analytic inside some region C which includes the [−1, 1]
interval. We can then write

f(z) =

∮
γ

dt

2πi

f(t)

t− z
=

∮
γ

dt

2πi

∞∑
J=0

n
(d)
J P

(d)
J (z)

(
Nd(t

2 − 1)
d−4
2 Q

(d)
J (t)f(t)

)
=

∞∑
J=0

n
(d)
J fJP

(d)
J (z), (86)

where γ ∈ C is some contour that wraps the interval [−1, 1] counterclockwise and contains z inside the integration

contour. Q
(d)
J (t) are known functions that we will encounter in our lectures soon. To exchange the summation and

integration, we also used that given z, 1
t−z

= Nd(t
2 − 1)

d−4
2

∑∞
J=0 n

(d)
J P

(d)
J (z)Q

(d)
J (t) converges uniformly in t as long

as t is outside the ellipse with foci at −1 and 1 that passes through z. We also used the relation between Q
(d)
J (z) and

P
(d)
J (z) which will be explained below.
11There is a story related to this [44]: “It was in the middle of 1950th at the Conference held in Dubna, where

Lehmann reported his above mentioned result in the first time. The attended there Landau has argued during the
talk that the Lehmann result was wrong because in his opinion two-body elastic scattering amplitude must be analytic
function in the whole complex plane. Harry Lehmann wittily replied: Landau is a big man, so he needs analyticity
of the amplitude in the whole complex plane, but I am a small man, and analyticity of the amplitude in the ellipse
is enough for me.”

12Extending it any further would have been impossible since the two-particle cut starts at t = 4m2. In this sense
Martin’s extension is in the spirit of maximal analyticity to be discussed below.
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4.2 Derivation of the Froissart-Martin bound

For a careful discussion of various subtleties that go into the argument check [6].

In the previous section we had a qualitative derivation of the Froissart bound under some mild
assumption. We are now ready to prove the precise bound. Let us start with the quantity that we
would like to bound, namely the averaged cross section

σ̄tot(s) =
1

s− 4m2

∫ s

4m2

ds′(s′ − 4m2)σtot(s
′). (89)

Considering things on average is a more careful way of discussing the bound on cross-section which
does not require an assumption about point-like behavior of σtot(s), see section 3.7. For simplicity
we restrict the consideration to d = 4.

As a first step, we plug the partial wave expansion for σtot(s) inside the integral (89) and we
split the sum into low spins and high spins. We get using (61)

σtot(s) =
1√

s(s− 4m2)
Im[T (s, 0)] =

1√
s(s− 4m2)

∑
J

n
(d=4)
J ImfJ(s),

σ̄tot(s) =
1

s− 4m2

( L∑
J=0

∫ s

4m2

ds′
√
s′ − 4m2

s′
n
(d=4)
J ImfJ(s

′) +
∞∑

J=L+2

∫ s

4m2

ds′
√
s′ − 4m2

s′
n
(d=4)
J ImfJ(s

′)
)
.

(90)

In the first term we use unitarity (70) to get

0 ≤ ImfJ(s) =

√
s

(s− 4m2)
d−3
2

Re[1− e2iδJ (s)]︸ ︷︷ ︸
ImδJ (s)≥0

≤ 2
√
s

(s− 4m2)
d−3
2

. (91)

In this way we get (using n
(d=4)
J = 16π(2J + 1))

16π

s− 4m2

L∑
J=0

(2J + 1)

∫ s

4m2

ds′
√
s′ − 4m2

s′
ImfJ(s

′)

≤ 32π

s− 4m2

L∑
J=0

(2J + 1)

∫ s

4m2

ds′ = 16π(L+ 1)(L+ 2), (92)

where the sum goes over even J only (because the particles are identical) and L is even as well. At
this point we simply used unitarity.

Our next task is to bound the sum over the high spin partial waves
∑∞

J=L+2 in (90). It is at this
point that we use Martin’s extension of analyticity and polynomial boundedness. For simplicity we
set t = t0 = 4m2 but any positive t0 would do. Polynomial boundedness states that there exists N
such that

aN ≡
∫ ∞

4m2

ds′

(s′)N+1
Im[T (s′, 4m2)] <∞. (93)

In four dimensions P
(d=4)
J (z) are the usual Legendre polynomials PJ(z), where z = 1+2 t

s−4m2 . It is

straightforward to check that for z > 1 (which corresponds to s ≥ 4m2 and t > 0) they are positive
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and monotonically increasing functions of z and J . Again we plug the partial wave expansion into
(93) to get

aN = 16π

∫ ∞

4m2

ds′

(s′)N+1

∞∑
J=0

(2J + 1)ImfJ(s
′)PJ(1 +

8m2

s′ − 4m2
)

≥ 16π

∫ s

4m2

ds′

(s′)N+1

∞∑
J=L+2

(2J + 1)ImfJ(s
′)PJ(1 +

8m2

s′ − 4m2
)

≥ 16π
PL+2(1 +

8m2

s−4m2 )

sN+1

√
s

s− 4m2

∫ s

4m2

ds′
∞∑

J=L+2

(2J + 1)

√
s′ − 4m2

s′
ImfJ(s

′). (94)

In this way we have bounded the higher spin sum in (90) as follows

∞∑
J=L+2

∫ s

4m2

ds′
√
s′ − 4m2

s′
n
(d=4)
J ImfJ(s

′) ≤ aN
PL+2(1+

8m2

s−4m2 )

sN+1

√
s

s−4m2

. (95)

We can thus write the bound on the total cross section as follows

σ̄tot(s) ≤ 16π(L+ 1)(L+ 2) +

√
s− 4m2

s

aNs
N+1

PL+2(1 +
8m2

s−4m2 )
. (96)

Next we use the following property of the Legendre polynomials

PJ(z) ≥
ϕ0
π

(
z + cosϕ0

√
z2 − 1

)J
, z ≥ 1, 0 < ϕ0 < π. (97)

To simplify the expressions we now take L≫ 1 and s≫ 4m2. We then get√
s− 4m2

s

aNs
N+1

PL+2(1 +
8m2

s−4m2 )
≃ aNs

N+1

PL+2(1 +
8m2

s )
≲
πaNs

N+1

ϕ0

(
1 +

4m√
s
cosϕ0

)−L−2
. (98)

We thus get to leading order in s and L

σ̄tot(s) ≲ 16πL2 +
16π2aNs

N

ϕ0

(
1 +

4m√
s
cosϕ0

)−L
. (99)

To derive the final bound we would like to pick L in the expression above to optimize the bound.
The optimal choice turns out to be

L∗ =
(N − 1)

√
s log s

s0

4m cosϕ0
. (100)

Exercise: Derive (100) by extremizing (99) with respect to L. Check that on the solution the
second term in (99) goes to zero as s→ ∞.

In this way we finally get

σ̄tot(s) ≲ 16πs
((N − 1) log s

s0

4m cosϕ0

)2
. (101)
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This is almost the desired Froissart-Martin bound!

There are still a few wrinkles in the bound above: it depends on ϕ0, N and s0. With some
extra work, namely by using the result (101) to show that N = 2, and setting ϕ0 = 0 we get13

σ̄tot(s) ≲
π

m2
s(log

s

s0
)2, s≫ m2 (102)

Figure 2: The Froissart-Martin bound made precise.

Finally, s0 can be as well removed from the formula to get a rigorous finite energy bound in
terms of parameters that are measurable in the experiment only, see [9] and figure 2.

A quick recap:

Let us recapitulate again the two main results of this heroic exercises for the scattering of the
identical (lightest to avoid dragons) massive particles. For |t| < 4m2 the amplitude is analytic in
the cut s-plane. In addition the following results hold:

The Froissart−Martin bound : |T (s, t = 0)| < 2π
s

m2
(log

s

m2
)2, (103)

Two subtractions : lim
|s|→∞

|T (s, t)|
s2

= 0, |t| < 4m2, (104)

where the last fact has been proven in [11].

Similarly, using the fact that

|PJ(cos θ)| ≤ 2

√
1

π(2J + 1) sin θ
, 0 < θ < π, (105)

13In the original paper [8] Froissart used the Mandelstam representation (to be discussed below) which does not
follow from axiomatic analyticity and unitarity. So it does make sense to add Martin to its name.
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and the bounds above one gets

The fixed− angle bound : |T (s, t(cos θ))| < C
s3/4(log s)3/2

(sin θ)1/2
. (106)

4.3 Crossing

Let us consider first the scattering of identical scalar particles (let us also assume that these are the
lightest particles in the theory, e.g. pions in QCD). In this case all three channels (40) describe the
same physical process and are thus trivially equal. Moreover in each channel the relevant amplitude
is a boundary value obtained by taking the limit from the region of analyticity (45).

What is nontrivial is that in fact all these channels can be described by a single analytic function
T (s, t) that satisfies

T (s, t) = T (t, s) = T (u, t), s+ t+ u = 4m2, (107)

and describes different scattering channels which are connected through the region of analyticity.
This property is called crossing. We thus have a single function that encodes different channels.

The situation is simple in the case of scattering of the lightest particles in the theory. In this
case the amplitude is analytic and real inside the Mandelstam triangle

Mandelstam triangle : 0 < s, t, u < 4m2. (108)

This is unphysical region below all the cuts. Now by analytically continue through the Mandelstam
triangle we can connect any two channels to each other.

Figure 3: The s-plane without anomalous thresholds.

Exercise: Check that as an immediate consequence of crossing the partial waves fJ(s) as well
as the phase shift δ(s, b) have the left-cut starting at s = 0. This is what was depicted in figure 3

For scattering of particles of general masses the situation is more complicated. In this case we
do not know the analyticity properties of the amplitude in some region close to the origin (there are
anomalous thresholds to be discussed later). Therefore we cannot go from the s- to the u- channel
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(a) (b) (c)

Figure 4: A few simplest examples of graphs that represent various singularities of the 2 → 2 scattering
amplitude. a) The bubble diagram represents multi-particle normal thresholds. b) The two-particle box
diagram. It represents a Landau curve along which the scattering amplitude develops double discontinuity.
c) The four-particle box diagram. This diagram corresponds to four-particle scattering both in the s- and in
the t-channel. In this paper we systematically study the graphs of this type and the corresponding Landau
curves.

directly. Luckily, in this case there is the so-called Bros-Epstein-Glaser path which still allows to
connect different channels via analytic continuation. The basic idea is that we first perform s ↔ t
crossing by keeping u fixed and analytically continuing the amplitude through the upper half-plane.
In this way we connect T12→34 to T ∗

13→24. We then do the continuation t ↔ u with s fixed which
maps T ∗

13→24 to T23→14 = T14→23.
14

In the arguments above we assumed that all the particles are identical and that they coincide
with their anti-particle (same charge, opposite quantum numbers). More generally, the transfor-
mation of crossing relates amplitudes i,X → j, Y and j̄, X → ī, Y . By performing the crossing
transformation twice we also obtain the statement known as the CPT theorem, namely that

Ta,b→c,d(s, t) = Tc̄,d̄→ā,b̄(s, t). (109)

In this case the first crossing transformation relates Ta,b→c,d to T ∗
a,c̄→b̄,d

, and the second one maps

T ∗
a,c̄→b̄,d

to Tc̄,d̄→ā,b̄(s, t). Similarly, given the s-channel process T1,2→3,4(s, t) (s > (m1 +m2)
2), the

analytic continuation of T1,2→3,4(s, t) to t > (m1 +m3)
2 describes the process 1 + 3̄ → 2̄ + 4, and

similarly for the u-channel.

Crossing symmetry for 2 → 2 scattering amplitudes was famously established starting from
QFT axioms in the paper by Bros, Epstein, and Glaser [12] (Bros et al also generalized it later to
2 → 3). This year Sebastian Mizera gave a general argument for crossing in the planar limit [28].
In particular, see appendix A in that paper regarding subtleties in establishing crossing starting
from QFT axioms. See also the lectures by Simon Caron-Huot for a nice discussion of crossing.

4.4 Analyticity from Unitarity

Introduce the relation between analyticity and unitarity. This discussion is taken from [27].

The 2 → 2 scattering process is characterized by an analytic function T (s, t) that depends on
two independent (complex) Mandelstam variables s = −(p1 + p2)

2 and t = −(p1 + p4)
2, where pµi

are the on-shell momenta, p2i = −m2, of the scattered scalar particles.15

We would like to understand the minimal set of singularities possessed by T (s, t) as a con-
sequence of unitarity and crossing. Here we aim at revealing an infinite subset of singularities

14This is particularly important for crossing for scattering amplitudes of massless particles. In this case, there is
never an analog of (108).

15The results derived in this paper should equally apply to spinning particles.
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associated with multi-particle unitarity. The simplest singularities of this kind are normal thresh-
olds. These are branch-point singularities at s, t, u = (nm)2, with n ≥ 2. Their presence follows
directly from unitarity

DiscsT (s, t) ≡
T (s+ iϵ, t)− T (s− iϵ, t)

2i
=

∫∑
n

T2→nT
†
2→n ,

with s ≥ 4m2 , 4m2 − s < t < 0 , (110)

and the fact that T2→n = 0 for s < (nm)2. Here, the integral is over the n-particle phase space.
To each term in the sum in (110) we can assign a graph. The vertices in this graph represent the

amplitudes T2→n, T
†
n→2 and the lines between them represent the n-particle state.

As we analytically continue (110) to t > 0, we may encounter discontinuities of DiscsT (s, t) in

t. For example, consider the term in (110) with n = 2. Both T2→2(s, t
′) and T †

2→2(s, t
′′) have a

normal 2-particle threshold in the t-channel. These start to contribute to the corresponding phase
space integral in (110) at a new branch-point that is located at

(s− 4m2)(t− 16m2)− 64m4 = 0 , (111)

along which the scattering amplitude develops double discontinuity, see [35] or the discussion of the
box diagram below for details. These curves along which the double discontinuity is developed are
called Landau curves.

We can assign to this double discontinuity the graph in figure 4.b, where again, the lines repre-
sent (on-shell) particles and the vertices represent four-point amplitudes that have been analytically
continued outside the regime of real scattering angles.

As we take s > 16m2 more n’s contribute to (110) and more singularities are produced by the
corresponding phase space integration. For example, the integration over the four-particle phase
space (n = 4) can produce a cut of DiscsT (s, t) in t that results from the analytically continued

two-particle normal threshold of T2→4 and T †
2→4. The graph that represents this contribution to

the double discontinuity DisctDiscsT (s, t) is plotted in figure 4.c.

Similarly, for any singularity that follows from multiple iteration of (analytically continued)
unitarity we can associate a corresponding graph. By iteration of unitarity we mean the double
discontinuity of the amplitude that is generated from a singularity of T2→n and another singularity
of T †

2→n, through the analytic continuation of the phase space integration in (110) to t > 0. The

singularities of T2→n and T †
2→n themselves follows from analytically continued unitarity in a similar

fashion. The graph that we associate to such a contribution to DisctDiscsT (s, t) is defined recur-
sively, by gluing together a graph that represents a singularity of T2→n with a one that represents
a singularity T †

2→n with n-lines.

To enumerate all singularities that emerge in this way, we can go in the opposite direction and
first enumerate all graphs that may result in a singularity of the amplitude. Whether a given graph
leads to a singularity of the amplitude in a certain region in the complex s, t planes is a kinematical
question that does not depend on the details of the sub-amplitudes, represented by the vertices
in the graph.16 Hence, to answer this question we can equivalently take them to be constants.

16Note that the described way of generating new singularities from old ones involves analytic continuation of the
amplitudes. It might happen that due to some special properties of the amplitude, the expected singularity is not
there. Here we assume that this does not happens and expect the singularities which follow from unitarity to be
generically present.
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After doing so, it becomes evident that the same singularity, if it exists, is also generated by the
Feynman diagram that coincides with the graph obtained from unitarity. The relevant singularity
of the diagram comes from the region of loop integration where all propagators go on-shell. Other
singularities of Feynman diagrams may result from a region of the loop integration where only
a subset of propagators is on-shell. Those propagators that remain off-shell at the locus of a
given singularity can thus be regarded as part of an higher point vertex that is not constant. For
example, the Feynman diagrams that correspond to the graph in figure 4.a with two lines and the
graph in figure 4.b, both have normal threshold at s = 4m2. Hence, the set of all singularities
of a Feynmann diagram includes the singularities of the corresponding graph and graphs obtained
from it by collapsing some subset of lines into vertices with more legs. This operation is called a
contraction.

If a generic diagram has an n-particle cut then it has a normal threshold starting at n2m2 in s,
t or u (depending on which external legs are considered incoming/outgoing). This can be seen by
contracting the rest of the lines into a bubble diagram as in figure 4.a, with n legs.

In this way we immediately conclude that figure 4.b has normal thresholds at s = 4m2, t = 16m2,
and figure 4.c at s = 16m2, t = 16m2.

In conclusion, to enumerate the singularities that follow from unitarity we can equally enumerate
the singularities of Feynman diagrams.

In this classification, the Feynman diagrams are only used as a tool to study the location of
kinematical singularities of a non-perturbative amplitude. For more than two intermediate particles,
we find this tool more practical than directly analyzing the analytic continuation of the unitarity
relation (110).

The locations of singularities of Feynmann diagrams can be found using the Landau equations.
These are summarized below and we refer the reader, for example, to [2, 28] for a detailed review.

A leading singularity of a Feynmann diagram is a singularity that coincides with that of the
corresponding graph.

Therefore we may restrict our dissection to singularities of this type only. The Landau equations
that correspond to such a singularity are

1. All propagators are on-shell, k2i = m2
i , where the index i = 1, . . . , P labels all the propagators

and ki’s are oriented momenta that flow through them.

2. At each vertex v, the momentum is conserved,
∑

j∈v ±k
µ
i = 0, with + (−) for ingoing (out-

going) momenta.

3. For any loop l, the momenta satisfy∑
j∈l ±αjk

µ
i = 0, with + (−) sign for momenta along (opposite) the orientation of the loop,

and non-zero coefficients, αi ̸= 0.

Two solutions that are related by an overall rescaling of the coefficients corresponds to the same
singularity. We may therefore normalize them such that

∑
αi = 1.

For any solution to these equations we can associate a story in complexified spacetime. In
this story the Feynman parameters, αi, are the proper times of on-shell particles, k2i = m2

i , that
propagate along the spacetime interval ∆xµi = αik

µ
i . Every vertex represents a scattering of these

particles that takes place at a point. The spacetime interval between two vertices should not
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depend on the path between the vertices. This means that for a closed path (i.e. a loop) we have∑
i∈l ∆x

µ
i = 0.

No general answer is known to the question of which parts of the Landau curve lead to singu-
larities on the physical sheet (which is our main interest here).

4.5 Anomalous threshold: the triangle graph

Figure 5: Electromagnetic form factor. We can think of a neutral particle of mass M that couples to an
electron-positron pair which is then probed by a virtual photon (say, emitted by another electron).

How does a photon see something, for example, a positronium or an electron? It does it via an
electromagnetic form factor

F (q2) ≡ ⟨p+ q|JEM (q)|p⟩. (112)

In partcular, taking q2 = −q⃗2 and doing the Fourier transform we get17

F̃ (r = |x⃗|) =
∫
dd−1x⃗eiq⃗·x⃗F (q⃗2). (113)

for the effective distribution of charge in the object. If the object is point-like, e.g. an electron, we
will get to leading-order a δ(r). On the other hand, if the object has some electromagnetic size r0

we expect the form factor to be F̃ (r) ∼ e
− r

r0 .

The size of the object is controlled by the closest to the real axis non-analyticity in q⃗2. For
example, taking F (q⃗2) ∼ 1

q⃗2+m2 we will get the Yukawa potental F (r) ∼ e−mr coming from the

pole q⃗2 = −m2. Consider next a slightly more complicated triangle diagram, see figure 5. From
the point of view of this diagram the size of the object is controlled by the leading singularity in
s = −q⃗2. For example, for the analytic structure presented in figure 3 we will get that the size of
the form factor is F (r) ∼ e−2mr coming from the fact that the nearest singularity is at s = 4m2.

Let us now compute the triangle graph directly. For simplicity we imagine that all the propa-
gators are scalar (this will not affect the analytic structure of the diagram). We also set d = 4. In

17At this point, we randomly have switched to the mostly minus signature.
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this way we get

F (q2,M2) =

∫ 1

0

3∏
i=1

dαi
δ(1−

∑3
i=1 αi)

m2 − (α1 + α2)α3M2 − α1α2q2
. (114)

The result for this integral takes the form (to simplify the result we differentiate with respect
to m2)

∂m2F (q2,M2) =

(2M2−q2) log
(√

−q2
√

4m2−q2+2m2−q2

2m2

)
√

−q2
√

4m2−q2
+

2M log

(
M
√

M2−4m2+2m2−M2

2m2

)
√
M2−4m2

m2 (q2 − 4M2) +M4
. (115)

This result has singularities which are expected from unitarity M2 = 4m2 and q2 = 4m2 (check
that the expression is regular at q2 = 0).

The result however has also an apparent pole at

q2 = 4m2 − (M2 − 2m2)2

m2
. (116)

Let us check if this is actually a singularity or not. By analyzing the numerator we get a surprising
result: it is not a singularity for M2 < 2m2, but it is a singularity for

Anomalous threshold : s = 4m2 − (M2 − 2m2)2

m2
, M2 ≥ 2m2. (117)

The original graph indeed has a branch point singularity in this case that starts before 4m2! This is
an example of a “dragon” that hides in the region of small s, or the so-called anomalous threshold.
More generally, anomalous thresholds are non-analyticities which do not straightforwardly follow
from unitarity. In the context of 2 → 2 scattering these are singularities which are of the type
s, t = const.

Shall we be very surprised by this result? Thinking back in terms of a form factor, the answer
is “not really.” Consider for example a positronium, which is a bound state of an electron and a
positron. From the S-matrix point of view it is a particle with massM = 2m+EPs

n , where EPs
n < 0

is the binding energy which can be computed using the non-relativistic Schrödinger equation and
it satisfies EPs

n ≪ m.

Exercise: Remember from your quantum mechanics course the solution to the quantization of
the hydrogen atom problem. Let’s say the answer for the energy levels of hydrogen is given and is
EH

n , what are the energy levels for positronium EPs
n ?

Plugging this expression for M into the formula for the anomalous threshold (116) we get that

q2 = 16m|EPs
n |. (118)

Therefore photon sees positronium as an object of size a0 = 1

4
√

m|EPs
n |

. Up to O(1) coefficient this

is nothing but the Bohr radius of positronium as expected.

The lesson here is that there is nothing anomalous about anomalous thresholds, but one should
be careful in extrapolating unitarity relations away from their original region of validity: new
physics maybe hiding there.
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An interesting question one might ask is the following: let us start with the triangle graph
above with M = m (no anomalous thresholds) and continue it to M >

√
2m (anomalous threshold

present). How does the anomalous threshold come about? The answer is that it hides on the second
sheet for M <

√
2m and then enters to the physical sheet as we continue M past M =

√
2m. This

is something general to keep in mind. As we analytically continue s and t away from the values for
which we understand analytic properties well we should make sure that no new singularities enter
the physical sheet.

Finally, let us consider the total cross section of the positronium-positronium scattering, com-
bining what we just discussed with the previous derivation of the Froissart bound we thus expect
that

σ̄Ps,Ps→Ps,Ps
tot (s) ≲ (πa20)s(log

s

s0
)2, (119)

where a0 is the Bohr radius of the positronium as defined above.

4.6 Landau equations: derivation

Here we briefly review the standard derivation of the Landau equations for the Feynman diagrams.
A generic Feynman integral with trivial numerators takes the form

F =

∫ L∏
j=1

ddkj

1∫
0

P∏
i=1

dαi
δ(1−

∑
i αi)

ψP
, (120)

where L are the number of loops, P the number of internal lines and the denominator reads

ψ =
P∑

j=1

αj(k
2
j −m2

j ) , (121)

where the kj>L momenta depend linearly on the loop momenta kj≤L, due to momentum conserva-
tion at each vertex.

The integration over the loop momentum can then be readily done and yields

F =

1∫
0

P∏
j=1

dxj
δ(1−

∑P
j=1 xj)C

P−2L−2

DP−2L
, (122)

with

C = det aij , D = det

(
aij −bj
−bj c

)
, (123)

where i, j = 1, . . . , L and

aij =
1

2

∂2ψ

∂ki∂kj

∣∣∣∣
k=0

, bj =
1

2

∂ψ

∂kj

∣∣∣∣
k=0

, c = ψ|k=0 . (124)

As the integral is analytically continued in the Mandelstam variables, the contour of integration
may be deformed smoothly to avoid the singularities. If the contour cannot be deformed by e.g. a
pinch of two singularities of the integrand then the integral itself becomes singular.
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Figure 6: The box graph.

The so-called leading singularities occur whenever two (or more) zeros of the denominator
coincide.18 These can be found by solving

∂ψ

∂αi
= 0 ,

∂ψ

∂kj
= 0 . (125)

The first condition puts all internal legs on-shell, k2i = m2
i , while the third condition relates momenta

belonging to the same loop, l ∑
i∈l

αiki = 0 . (126)

An equivalent form of the Landau equations is obtained for representation (122),

D = 0 ,
∂D

∂αi
= 0 . (127)

Note that since D ∝ αi
∂D
∂αi

is homogeneous, D = 0 is automatically satisfied.

There are P + 2 variables, s, t and the α parameters, and P + 1 Landau equations, which are
the P pinch conditions (127) supplemented by the normalization

P∑
i=1

αi = 1 . (128)

These equations may be solved for αi(s) and t(s), the Landau curve.

4.7 Mandelstam representation: the box graph

Consider an equal mass box integral, see figure 6. In d = 4 the result takes the form

I(s, t,m2) =

∫ 1

0

4∏
i=1

dαi
δ(1−

∑4
i=1 αi)

(sα1α3 + tα2α4 +m2(α1α2 + α2α3 + α1α4 + α3α4 − 1))2
. (129)

The Landau equations take the form

(s− 4m2)α3 − 2m2α4 = 0,

−2m2α3 − (t− 4m2)α4 = 0, (130)

18There are also end-point singularities, corresponding to pinches at end-points of the integration contour. However,
in the context of Feynman integrals, these are also leading singularities of contractions of the original graph [2].
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where we used the symmetry of the graph to impose α1 = α3 and α2 = α4. To get a nontrivial
solution the determinant should be zero which gives the equation for the Landau curve

(s− 4m2)(t− 4m2)− 4m4 = 0. (131)

We finally get for the Feynman parameters

α3 =
t− 4m2

t− 2m2
, α4 =

m2

t− 2m2
. (132)

which indeed satisfy α3+α4 =
1
2 . If we send s→ 4m2 or t→ 4m2 we recover the normal threshold

solution to the contracted Landau equations, where a pair of Feynman parameters has been set to
0.

It is convenient instead to write the result via the Mandelstam representation [20]

I(s, t,m2) =

∫ ∞

4m2

ds′dt′ρ(s′, t′)

(s− s′)(t− t′)
,

ρ(s′, t′) =
2θ((s′ − 4m2)(t′ − 4m2)− 4m4)

(s′t′)1/2
√
(s′ − 4m2)(t′ − 4m2)− 4m4

, (133)

where θ(x) = 1 for x ≥ 0 and 0 otherwise.

Consider a trivial change of variables s′ → 4m2 + 2m2s′, t′ → 4m2 + 2m2t′ so that we get

I(s, t,m2) =

∫ ∞

0

ds′dt′√
s′ + 2

√
t′ + 2

θ(s′t′ − 1)√
s′t′ − 1

1

s− 4m2 − 2m2s′
1

t− 4m2 − 2m2t′
. (134)

Note that for 0 < s, t < 4m2 the integral is manifestly regular. Then we define it by analytic
continuation.

At this point it is useful to note that the spectral density kernel admits a very simple Mellin
transform

θ(x− 1)√
x− 1

=

∫ i∞

−i∞

dα

2πi

π1/2Γ(12 − α)

Γ(1− α)
x−α , (135)

where Re[α] < 1
2 . For x < 1 we close the contour to the left and get zero. For x > 1 we close the

contour to the right and get 1√
x−1

.

Applying this identity to the formula above we note that the integral over s′ and t′ thus com-
pletely factorizes, so that we get

I(s, t,m2) =

∫ i∞

−i∞

dα

2πi

π1/2Γ(12 − α)

Γ(1− α)
Ĩ(s,m2, α)Ĩ(t,m2, α),

Ĩ(s,m2, α) ≡
∫ ∞

0

ds′√
s′ + 2

(s′)−α

s− 4m2 − 2m2s′
. (136)

The integral Ĩ(s,m2, α) can be explicitly computed and it takes the following form

Ĩ(s,m2, α) =
iπ√
2sm

(4m
2−s

2m2 )−α

cosπα
+

2
1
2
−αΓ(1− α)Γ(α− 1

2)√
π(s− 4m2)

2F1(1, 1− α,
3

2
− α,

4m2

4m2 − s
). (137)

The first term which is purely imaginary for 0 < s < 4m2 specifies the branch of 2F1 so that the
sum is real. This form is particularly useful to analyze the analytic continuation of the integral to
s, t > 4m2. Indeed in this case the second term is manifestly real and the continuation of the first
term is trivial.
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4.7.1 Analytic continuation to s, t > 4m2

There are two inequivalent ways to analytically continue I(s, t,m2) which we denote I++(s, t,m
2)

and I+−(s, t,m
2) (the other two are given by complex conjugation). The sign refers to going

above/below the cut in s or t. Correspondingly, we have

Ĩ+(s,m
2, α) = eiπα

iπ√
2sm

( s−4m2

2m2 )−α

cosπα
+

2
1
2
−αΓ(1− α)Γ(α− 1

2)√
π(s− 4m2)

2F1(1, 1− α,
3

2
− α,

4m2

4m2 − s
),

Ĩ−(s,m
2, α) = e−iπα iπ√

2sm

( s−4m2

2m2 )−α

cosπα
+

2
1
2
−αΓ(1− α)Γ(α− 1

2)√
π(s− 4m2)

2F1(1, 1− α,
3

2
− α,

4m2

4m2 − s
) ,

(138)

where note the appearance of phase in the first term. The second term is manifestly real for
s > 4m2.

In this way we get

I++(s, t,m
2) =

∫ i∞

−i∞

dα

2πi

π1/2Γ(12 − α)

Γ(1− α)
Ĩ+(s,m

2, α)Ĩ+(t,m
2, α),

I+−(s, t,m
2) =

∫ i∞

−i∞

dα

2πi

π1/2Γ(12 − α)

Γ(1− α)
Ĩ+(s,m

2, α)Ĩ−(t,m
2, α) . (139)

Let us ignore for a moment the regular term with 2F1 in (138). We immediately see the clear
difference between the two

I++(s, t,m
2) = − π2√

stm2

∫ i∞

−i∞

dα

2πi

π1/2Γ(12 − α)

Γ(1− α)

ei 2πα

(cosπα)2

(
(s− 4m2)(t− 4m2)

4m4

)−α

,

I+−(s, t,m
2) = − π2√

stm2

∫ i∞

−i∞

dα

2πi

π1/2Γ(12 − α)

Γ(1− α)

1

(cosπα)2

(
(s− 4m2)(t− 4m2)

4m4

)−α

. (140)

The Landau curve is located at (s−4m2)(t−4m2)
4m4 = 1. The two integrals behave very differently

in this limit. Indeed as α→ −i∞ we have

ei 2πα

(cosπα)2
→ 1,

1

(cosπα)2
→ e−2π|α|. (141)

This leads to the fact that I+−(s, t,m
2) is regular in the limit (s−4m2)(t−4m2)

4m4 → 1 or at the origin of
the Landau curve, whereas I++(s, t,m

2) exhibits a square-root singularity 1√
(s−4m2)(t−4m2)

4m4 −1

which

is nothing but the spectral density that we started with.

The fact that we got that I+−(s, t,m
2) to be regular is not accidental. If we look at the equation

for the Landau curve (131) and think of this as a curve in C2 we see that the complex part of the
Landau surface satisfies

Ims× Imt < 0. (142)

Therefore if were to find that I+−(s, t,m
2) is singular this singularity would propagate into the

complex domain on the physical sheet and would invalidate the Mandelstam representation (133).
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4.8 Maximal analyticity

It is clear from the discussion above that unitarity highly constrain the analytic structure of the
amplitude. It is tempting to conjecture that analyticity is fully fixed by unitarity on the physical
sheet. This conjecture gained some support in the context of scattering of lightest particles and the
corresponding maximal analyticity is well encapsulated by the Mandelstam representation.

The precise conjecture is the following:

Lighest Particle Maximal Analyticity: The 2 → 2 scattering amplitude of the lightest particles
in the theory, T (s, t), is analytic on the physical sheet for arbitrary complex s and t, except for
potential bound-state poles, a cut along the real axis starting at s = 4m2, and the images of these
singularities under the crossing symmetry transformations.

Establishing this hypothesis even within the framework of perturbation theory is an important,
open problem in S-matrix theory. Assuming lighest particle maximal analyticity (LPMA), the
analytic structure of the 2 → 2 amplitude is concisely encapsulated by the Mandelstam represen-
tation.19 From the point of view of our analysis, the nontrivial fact about LPMA is that scattering
of lightest particles contains infinitely many subgraphs that by themselves do not respect maxi-
mal analyticity. For example, some of the subgraphs that enter the scattering do not admit the
Mandelstam representation [20]. For LPMA to hold, embedding these subgraphs inside a larger
graph that describes scattering of the lightest particles in the theory should render the complicated
singularities of the subgraph harmless on the physical sheet. We have not studied the mechanism
of how this happens, and we leave this important question for future work. LPMA is a working
assumption in some of the recent explorations of the S-matrix bootstrap, see e.g. [29,31,35].

Comment: As a general comment, assuming the Mandelstam representation one can improve
various bounds, e.g. (106), and thus try to rule it out experimentally. To the best of our knowledge
the experimental data is consistent with the validity of the Mandelstam representation (it would
be good if someone checks it carefully!).

5 Dispersion relations

After we introduced some basic notions of S-matrix theory it is time to explore implications of
these properties. A very useful tool for that come from studying dispersion relations which nicely
encapsulate many of the properties that we have discussed so far.

We start by writing down dispersion relations for scattering of identical particles of mass m. To
derive dispersion relations we fix t < 4m2 and consider the integral around ∞∮

∞

ds′

2πi

T (s′, t)

(s− s′)(s1 − s′)(s2 − s′)
= 0, (143)

where we used the results of the previous sections, namely (104). In the formula above s1 and
s2 can depend on t. By closing the contour we pick two type of contributions: residues coming

from the poles T (s′,t)
(s−s′)(s1−s′)(s2−s′) and the discontinuity of the amplitude T (s, t). Via (143), the two

19The Mandelstam representation involves an extra assumption that the discontinuity of the amplitude is polyno-
mially bounded on the physical sheet.
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contributions should be equal to each other giving

T (s, t)

(s1 − s)(s2 − s)
+

T (s1, t)

(s− s1)(s2 − s1)
+

T (s2, t)

(s− s2)(s1 − s2)

+

∫ ∞

4m2

ds′

π

Ts(s
′, t)

(s− s′)(s1 − s′)(s2 − s′)
+

∫ −t

−∞

ds′

π

Ts(s
′, t)

(s− s′)(s1 − s′)(s2 − s′)
= 0. (144)

We can make use crossing by doing the change of variable in the last term s′ → 4m2 − t − s′ and
recalling that

Ts(4m
2 − t− s′, t) = −Ts(s′, t). (145)

In this way we get

T (s, t) =
1

(s2 − s1)

(
(s− s2)T (s1, t)− (s− s1)T (s2, t)

)
+ (s1 − s)(s2 − s)

∫ ∞

4m2

ds′

π
Ts(s

′, t)

(
1

(s′ − s)(s1 − s′)(s2 − s′)
+

1

(s′ − u)(u1 − s′)(u2 − s′)

)
.

(146)

This formula is known as dispersion relations with two subtractions. It expresses the scattering
amplitude as a sum of a linear polynomial in s (the first line) plus the integral over its discontinuity
(the second line).

5.1 Bound on chaos

Let us consider subtraction with a double pole s1 = s2 = 2m2 − t
2

T (s, t)

(s− 2m2 + t/2)2
=

1

2πi

∮
Cs

ds′

s′ − s

T (s′, t)

(s′ − 2m2 + t/2)2
=
T (2m2 − t/2, t)

(s− 2m2 + t)2
− ∂sT (2m

2 − t/2, t)

(2m2 − s− t/2)

+
1

π

∞∫
4m2

ds′

s′ − s

Ts(s
′, t)

(s′ − 2m2 + t/2)2
+

1

π

−t∫
−∞

ds′

s′ − s

Ts(s
′, t)

(s′ − 2m2 + t/2)2
. (147)

Note that the point s = 2m2 − t
2 goes to itself under crossing transformation s→ 4m2 − s− t. As

a result due to s− u crossing, ∂2n+1
s T (2m2 − t/2, t) = 0.

After some simple algebraic manipulations, (147) becomes

T (s, t)− T (2m2 − t/2, t)

(s− 2m2 + t/2)2
=

1

π

∞∫
4m2

ds′
Ts(s

′, t)

(s′ − 2m2 + t/2)2

(
1

s′ − s
+

1

s′ − u

)
. (148)

This formula is manifestly invariant under crossing s→ 4m2 − s− t.

Let us introduce a new variable for complex s, s = 2m2 − t/2 + (x+ iy) we have then

T (s(x, y), t)− T (s(0, 0), t)

(x+ iy)2
=

2

π

∞∫
2m2+t/2

dx′

x′
Ts(s(x

′, 0), t)

x′2 − (x+ iy)2
(149)
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In particular, we have

T (s(0, 0), t)− T (s(0, y), t)

y2
=

2

π

∞∫
2m2+t/2

dx′

x′
Ts(s(x

′, 0), t)

x2 + y2
=

∞∫
2m2+t/2

dx
ρ(x, t)

x2 + y2
, (150)

where

ρ(x, t) =
2

πx
Ts(2m

2 − t/2 + x, t) ≥ 0, 0 ≤ t ≤ 4m2. (151)

Expanding both sides at small y2 we get the relations between derivatives of the amplitudes and
set of moments of a positive density, (with respect to 1/x). So we can use the Stieltjies moment
problem results to write down the set of necessary and sufficient conditions (see Wikipedia).

We can extract from (150) the following local bound on growth of the scattering amplitude. We
can set x = 0 and take a derivative with respect to y to get rid of the subtraction term. In this
way we get

∂yT (s(y), t) = −2y

∞∫
2m2+t/2

dx ρ(x, t)
x2

(x2 + y2)2
≤ 0 (152)

and hence

Bound on chaos : −4 ≤ y∂y log ∂yT (s(y), t)− 1 = −4

∞∫
2m2+t/2

dx ρ(x,t)x2

(x2+y2)2
y2

x2+y2

∞∫
2m2+t/2

dx ρ(x,t)x2

(x2+y2)2

≤ 0. (153)

This condition says that locally

if T (s(y), t) ∼ yα then − 2 ≤ α ≤ 2. (154)

An example of a theory that saturates the upper bound is famously given by a weakly coupled
gravitational theory. In this case the graviton exchange in the t-channel gives T (s, t) ∼ GN

s2

t . Of
course here we talk about gapped theories but we can still ask about the variation of the Weinberg-
Witten question: is it possible to have emergent gravity within the framework of QFT? In the
context of the present discussion we can ask if it is possible to saturate the bound for α = 2.

Alternatively from (149) we see that (here we can use that T (s(0, 0), t) is real)

(xy)× Im [T (s(x, y), t)]=
2

π

∞∫
2m2+t/2

dx′

x′
Ts(s(x

′, 0), t) Im
xy(x+ iy)2

x′2 − (x+ iy)2
(155)

=
4

π

∞∫
2m2+t/2

dx′
Ts(s(x

′, 0), t) (xy)2x′

[x′2 − (x+ iy)2][x′2 − (x− iy)2]
≥ 0

Again we can bound the local behavior of the imaginary part. We get

4 ≤ y∂y log Im [T (s(x, y), t)]− 1 =

∞∫
2m2+t/2

dx′ Ts(s(x
′, 0), t) −4x′y2(x2+x′2+y2)

[x′2−(x+iy)2]2[x′2−(x−iy)2]2

∞∫
2m2+t/2

dx′ Ts(s(x′, 0), t)
x′

[x′2−(x+iy)2][x′2−(x−iy)2]

≤ 0 . (156)

Which again states that the imaginary part does not grow faster than linearly.
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5.2 Dispersive couplings and null constraints

Let us next do something outrageous, namely setm = 0 and (if we are very brave) include dynamical
gravity. Remarkably, even though many of the arguments (especially everything based on QFT
axioms) go out of the window we believe that dispersion relations still hold. Let us also for simplicity
assume that the number of subtractions stays 2.20

A fruitful way to think about the dispersion relations of the type (143) is

IR + UV = 0. (157)

In this formula the IR part corresponds to the part of the dispersive contour which can be computed
using the low-energy effective theory. The UV part expresses everything that we do not know about
the theory (however general principles such as unitarity still apply!).

For example we can ask about the structure of the higher-derivative operators in the theory. In
the absence of high energy experimental data this sounds like a very reasonable strategy to make
theoretical progress. Instead of talking about higher derivative operators we can introduce the
low-energy expansion of the amplitude

T (s, t) = −g2
(
1

s
+

1

t
+

1

u

)
− g0 + g2(s

2 + t2 + u2) + g3stu+

∞∑
p,q=0,2p+3q≥4

g2p+3q,qσ
p
2σ

q
3 , (158)

where we introduced

σk ≡ (−1)k
sk + tk + uk

k
. (159)

Note that σ3 = −stu.
Here gi are called Wilson coefficients and they can be related to the higher derivative operators

in the Lagrangian. In writing (158) we have neglected coming from loops of massless particles,
treating this requires care and this is something that has not been done very carefully yet. An
important comment about (158) is that it is manifestly fully crossing symmetric.

Consider next dispersion relations (143) with s1 = 0 and s2 = −t. The result takes the form

− T (s, t)

s(s+ t)
+ Ress′=0,−t

T (s′, t)

(s− s′)s′(t+ s′)
−
∫ ∞

m2
gap

ds′

π

Ts(s
′, t)

s′(s′ + t)

(
1

s− s′
+

1

u− s′

)
= 0. (160)

We can rewrite this as follows

T (s, t) = −g2
(
1

s
+

1

t
+

1

u

)
+ f0(t) + sf1(t) + s(s+ t)

∫ ∞

m2
gap

ds′

π

Ts(s
′, t)

s′(s′ + t)

(
1

s′ − s
+

1

s′ − u

)
(161)

Let us next compare dispersion relation (161) to the low-energy expansion (158). We see that
it is natural to split the set of all couplings gi,j into two classes: dispersive and non-dispersive.
Dispersive couplings are those that come from the integral over discontinuity (these are forces
generated by the UV). Non-dispersive couplings are those that do not admit such a representation.
In the example above g2 and g0 are non-dispersive couplings. All other couplings are dispersive.

20For gravitational theories this should hold for d > 7 only, for 5 ≤ d ≤ 7 the discussion requires some inessential
modification. For d = 4 the question is open.
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The simplest set of constraints one derives from dispersion relation takes the following form [37]

µn =
1

2

1

n!
∂2ns

(
T (s, t) + g2

(
1

s
+

1

t
+

1

u

))
|s,t=0 =

∫ ∞

m2
gap

ds′

π

Ts(s
′, 0)

(s′)2n−1
≥ 0, (162)

where we used unitarity which states that Ts(s
′, 0) > 0. We therefore see that in the forward

limit we naturally get a one-dimensional moment problem with very well-known consequences, see
e.g. [38].

The basic development of the last year is a simple observation that going away from t = 0 leads
to a two-dimensional moment problem [39]. To see this, let us note that the imaginary part admits
a decomposition in terms of partial waves with non-negative coefficients

Ts(s
′, t) =

∑
J

n
(d)
J ImfJ(s)P

(d)
J (1 +

2t

s′
), ImfJ(s

′) ≥ 0. (163)

We can think of ImfJ(s) ∼
∑

X λϕϕX2 where X are all possible states of spin J and mass m2 = s.
Expanding (163) around t = 0 leads to the following series

P
(d)
J (1 + x) = 1 +

J 2x

d− 2
+

J 2(2− d+ J 2)

2d(d− 2)
x2 + ..., (164)

where we introduced J 2 = J(J + d − 3) for the d-dimensional quadratic Casimir of the rotation
group SO(d). Therefore by studying expansion in both s and t we study two-dimensional moments
of the type

µm,n =
∑
J

∫
ds′

(s′)m
ρJ(s

′)J 2n, (165)

where ρJ(s
′) = n

(d)
J ImfJ(s

′) > 0. This two-dimensional moment problem that arises in the study
of the dispersion relations was dubbed the EFThedron [42]. It leads to much more complicated set
of bounds on couplings that follow from (162).

There is an interesting twist to this story! Observe the sharp contrast between the low-energy
expansion (158) and the dispersive representation of the amplitude (160) is that in the latter form
only the s ↔ u crossing is manifest. In other words, crossing symmetry T (s, t) = T (t, s) leads to
the following sum rule

Dispersive crossing : s
(
Ress′=0,−t

T (s′, t)

(s− s′)s′(t+ s′)
+

∫ ∞

m2
gap

ds′

π

Ts(s
′, t)

s′(s′ + t)

(
1

s− s′
+

1

u− s′

))
= t
(
Ress′=0,−s

T (s′, s)

(t− s′)s′(s+ s′)
+

∫ ∞

m2
gap

ds′

π

Ts(s
′, s)

s′(s′ + s)

(
1

t− s′
+

1

u− s′

))
.

(166)

While the expression (166) does represent a nontrivial crossing equation it is still not very neat

because it involves the terms Ress′=0,−t
T (s′,t)

(s−s′)s′(t+s′) which acquire contributions from infinitely many

Wilson coefficients in (158).

At least in the context of the tree-level EFTs there is a nice way to get rid of this little nuisance.
To do this let us go back to the dispersive representation of the amplitude (161) and consider its
expansion around s, t = 0. To get rid of the subtractions we start with terms proportional to s2.
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Consider for example the following coupling in the expansion of T (s, t) ∼ g4,0(
s2+t2+u2

2 )2. We can
write this coupling in two ways

12g4,0 = ∂2s∂
2
t T̂ (s, t)|s,t=0 = ∂3s∂tT̂ (s, t)|s,t=0, (167)

where we have introduced

T̂ (s, t) ≡ T (s, t) + g2
(
1

s
+

1

t
+

1

u

)
. (168)

We therefore get the following constraint on the discontinuity of the amplitude(
∂2s∂

2
t − ∂3s∂t

) ∫ ∞

m2
gap

ds′

π

Ts(s
′, t)

s′(s′ + t)

(
1

s− s′
+

1

u− s′

) ∣∣∣
s,t=0

= 0. (169)

This is the simplest example of what became known as null constraints. Null constraints by def-
inition are the consequences of dispersive crossing applied to tree-level EFTs. In the presence of
logarithms dispersive crossing still definitely makes sense but extracting its consequences is more
complicated. For example, the simplest clean dispersive crossing would be applied to ∂2s∂

2
t T̂ (s, t)

which would be free of subtraction terms.

The basic idea behind null constraints is that they relate low spin contributions to high spin
contributions and they have been used to derive two-sided bounds on the dispersive couplings, see
e.g. [40] and [41] for the detailed derivation of this claim. Differently, we can think of dispersive
crossing as taking a particular slice of the EFThedron.

Exercise: Which couplings are dispersive and which are not in the Standard Model coupled
to gravity? Are any of the recent developments phenomenologically interesting? To answer this
question we need to understand how the story above generalizes when particles with spin are present
in the theory.

5.3 Superconvergence

The phenomenon of superconvergence is the following fact:

Spin makes couplings dispersive

To make this precise let us consider scattering of gravitons. For simplicity we restrict kinematics to
four-dimensions (to make the polarization analysis simple and to psychologically connect to reality).

Gravitons are labeled by helicity and the simplest (elastic or non-helicity flipping amplitude) is
given by the following expression

M4(1
+, 2−, 3−, 4+) = (⟨23⟩[14])4 f(s, u),

fGR(s, u) =
(κ
2

)2 1

stu
+ .... (170)

More generally this function satisfies crossing

f(s, u) = f(u, s), (171)

and let’s assume that the amplitude satisfies the same bound

lim
|t|→∞

M4(1
+, 2−, 3−, 4+) < |t|2, s < 0. (172)
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The crucial fact is that (⟨23⟩[14])4 ∼ |t|4, therefore we have t2f(s,−s− t) → 0. This leads to extra
sum rules of the type ∮

∞
dttnf(s,−s− t) = 0, n = 0, 1, 2. (173)

These sum rules mean that all terms in the low-energy expansion of f(s, u) are dispersive (including
the Einstein term)! This is something special about scattering of gravitons: their attraction comes
fully from integrating out the UV modes.

As an example let us write down the representation analogous to the one in the previous section
(see [43] for details)

f(t,−s− t) =

∮
ds′

2πi

f(t,−s′ − t)

s− s′
=
(κ
2

)2 1

stu
+ |βR3 |2

tu

s
− |βϕ|2

1

s

−
∫ ∞

m2
gap

dm2

π

( ∞∑
J=0

1 + (−1)J

2

ρ++
J (m2)dJ0,0(1 +

2t
m2 )

m8

1

s−m2

+
∞∑
J=4

ρ+−
J (m2)dJ4,4

(
1 + 2t

m2

)
(t+m2)4

1

−s− t−m2

)
. (174)

Note that the formula above is not manifestly crossing-symmetric f(t, u) = f(u, t), therefore we
have the constraints of dispersive crossing which becomes null constraints if we neglect the loops.

Exercise: Work out the implications of the dispersive relations for the possible UV completions
of the Standard Model coupled to gravity in flat space.

6 Bootstraps

In this section we discuss various incarnations of the S-matrix bootstrap: old and new. These will
go beyond general bounds based on dispersion relations that we discussed in the previous section.
We will explicitly specify what are the extra assumptions in each case. We also comment on the
connections to the CFT bootstrap.

6.1 The Froissart-Gribov formula

Extra assumption: Extended region of analyticity.

The Froissart-Gribov formula is a representation of the partial wave coefficients in terms of
the discontinuity of the amplitude. It has multiple applications and, in particular, it allows us to
analytically continue partial wave coefficients in spin.

Let us introduce the Gegenbauer Q-functions. These are given by the second linearly inde-
pendent solution of the second order Casimir equation (62). They are uniquely fixed by their
asymptotic behavior

lim
|z|→∞

Q
(d)
J (z) =

c
(d)
J

zJ+d−3
+ . . . , (175)

where c
(d)
J is a normalization constant. The corresponding Q-function is

Q
(d)
J (z) =

c
(d)
J

zJ+d−3 2
F1

(
J + d− 3

2
,
J + d− 2

2
, J +

d− 1

2
,
1

z2

)
. (176)
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Figure 7: a. The partial wave projection integral (180) is a contour integral (in blue) that circles around
the cut of the Q-function, between t = 0 and t = −(s − 4m2), (in red). b. We partially open up the
contour. Sometimes this representation for partial waves is called the truncated Froissart-Gribov formula.
The advantage of this representation is that we only use a finite amount of extended analyticity that has
not been rigorously proven. c. We open the contour all the way to infinity and arrive at the usual Froissart-
Gribov formula (181) with two integrations of the discontinuity of the amplitude along the t-channel and
u-channel cuts (in black).

Our convention is

c
(d)
J =

√
πΓ(J + 1)Γ(d−2

2 )

2J+1Γ(J + d−1
2 )

. (177)

The Q-function has a cut running between z = −1 and z = 1. The fact that there are only two
independent solutions to the Casimir equation means that the discontinuity of Q can be expressed
in terms of Q and P . The precise relation takes the form

Discz(z
2 − 1)

d−4
2 Q

(d)
J (z) = −π

2
(1− z2)

d−4
2 P

(d)
J (z) , z ∈ [−1, 1] , (178)

or equivalently (for integer J)

Q
(d)
J (z) =

1

2

1∫
−1

dz′
(
1− z′2

z2 − 1

) d−4
2 P

(d)
J (z′)

z − z′
. (179)

We can then plug (B.4) into the partial wave coefficient (66) as

fJ(s) = Nd

∮
[−1,1]

dz

2πi

(
z2 − 1

) d−4
2 Q

(d)
J (z)T (s, t(z)) , (180)

where the integral is counterclockwise around the interval z ∈ [−1, 1]. By blowing up the contour,
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we get two integrals along the t- and the u-channel cuts, see figure 7

fJ(s) =
Nd

π

 ∞∫
z1

dz(z2 − 1)
d−4
2 Q

(d)
J (z)Tt(s, t(z)) +

−z1∫
−∞

dz(z2 − 1)
d−4
2 Q

(d)
J (z)Tu(s, u(z))

 , (181)

where

z1 ≡ z|t=4m2 = 1 +
8m2

s− 4m2
, (182)

and we have assumed that s > 4m2, so that the t channel cut runs from z1 = z1 > 1 to infinity.
Here we have dropped the contributions of the arcs at infinity. This is justified for large enough
spin J > J0(s) using (B.1), where J0(s) is the Regge intercept

lim
|t|→∞

|T (s, t)| < |t|J0(s) . (183)

We can now use crossing to simplify (181). We change the integration variable for the u-channel
integral from z to −z. Crossing symmetry implies that Tu (s, u(z)) = −Tt (s, t(−z)), where we have
used that z(u) = −z. Under this change of variables

(z2 − 1)
d−4
2 → (−1)d−4(z2 − 1)

d−4
2 , Q

(d)
J (z) → Q

(d)
J (−z) = (−1)J+3−dQ

(d)
J (z) . (184)

We get that fJ = 0 for odd J . For even J we get

fJ(s) =
2Nd

π

∞∫
z1

dz (z2 − 1)
d−4
2 Q

(d)
J (z)Tt(s, t(z)) , ReJ > J0(s) . (185)

As opposed to (66), the Froissart-Gribov representation of the partial waves (185) is suitable for
analytic continuation in J . It follows from the Carlson’s theorem that this analytic continuation is
the unique continuation that does not grow too fast at large J . The Froissart-Gribov integral (185)
converges as long as ReJ > J0(s) thanks to (183) and (B.1).

This integral is written for s > 4m2. As s approaches the threshold from above s− 4m2 → 0+,
the lower end of the integral is pushed to infinity, z1 → ∞. To analyze fJ(s) in this limit, it is
useful to use (B.1) and to switch back to an integral over t. In that way one finds

fJ(s) =
2Nd

π
c
(d)
J

(
s− 4m2

2

)J ∞∫
4m2

dt

tJ+1
Tt(4m

2, t)
(
1 +O

(
(s− 4m2)/t

))
. (186)

This integral should be understood as follows. The large t contribution is finite because |ImtT (4m
4, t)| <

|T (4m2, t)| < tJ0(4m
2) and J > J0(4m

2) by assumption. If the integrand diverges at some finite t,
and in particular as t− 4m2 → 0+, then we should step back and write it as a contour integral of
T (4m2, t) around the cut, which is manifestly finite.

Comments:

• The coefficients that multiply (s − 4m2)J and measures in the low-energy experiments are
known as scattering lengths. From the formula above we again encounter a one-dimensional
moment problem since Tt(4m

2, t) ≥ 0. For more on this see [10].
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• In deriving the FG formula we had to assume extra analyticity beyond what has been proven.
In CFTs the analogous formulas (the so-called Lorentzian inversion formula [45]) does not
require extra assumptions.

• Nuclear democracy is a dynamical assumption that analyticity in spin continues to J = 0,
namley that the Froissart-Gribov formula maybe we some simple subtractions should correctly
reproduce the spectrum of J = 0 particles: All particle poles are Regge poles. There has been
an interesting discussion of something similar happening in CFTs recently [46].

6.1.1 Neat subtractions

There is a convenient way to write down dispersion relations without arbitrary subtraction con-
stants. Consider the following split of the amplitude in spin (recall that sum goes over even spins
only)

T (s, t) =

J0−2∑
J=0

n
(d)
J fJ(s)P

(d)
J (z) +

∞∑
J=J0

n
(d)
J fJ(s)P

(d)
J (z). (187)

Let us now plug the Froissart-Gribov formula (185) for the high spin tail

∞∑
J=J0

n
(d)
J fJ(s)P

(d)
J (z) =

∞∑
J=J0

n
(d)
J P

(d)
J (z)

2Nd

π

∞∫
z1

dẑ (ẑ2 − 1)
d−4
2 Q

(d)
J (ẑ)Tt(s, t(ẑ)). (188)

We can use the identity21

1

2

(
1

ẑ − z
+

1

ẑ + z

)
= Nd(ẑ

2 − 1)
d−4
2

∞∑
J=0,J−even

n
(d)
J P

(d)
J (z)Q

(d)
J (ẑ) (189)

to rewrite the sum as follows

Nd(ẑ
2 − 1)

d−4
2

∞∑
J=J0

n
(d)
J P

(d)
J (z)Q

(d)
J (ẑ) =

1

2

(
1

ẑ − z
+

1

ẑ + z

)
−Nd(ẑ

2 − 1)
d−4
2

J0−2∑
J=0

n
(d)
J P

(d)
J (z)Q

(d)
J (ẑ).

(190)

In this way we get the following representation for the amplitude

T (s, t) =

J0−2∑
J=0

n
(d)
J fJ(s)P

(d)
J (z) (191)

− 2

π

∞∫
z1

dẑ

(
Nd (ẑ

2 − 1)
d−4
2

J0−2∑
J=0

n
(d)
J P

(d)
J (z)Q

(d)
J (ẑ) +

ẑ

z2 − ẑ2

)
Tt(s, t(ẑ)) . (192)

As expected the expression in the brackets behaves as 1
ẑJ0+1 at large ẑ. Namely, the first 1/ẑ2n+1

terms with n < J0/2 cancels between the two terms in the bracket.

21Note that this is nothing but 1
2
times the dispersion integral for the sum of the the t and the u channels. Namely,

1
2

(
1

ẑ−z
+ 1

ẑ+z

)
= 1

2

(
1

ẑ−z(t)
+ 1

ẑ−z(u)

)
.
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6.2 The Aks theorem and bound on inelasticity

Extra assumptions: Extended analyticity.

Let us now ask the following question: is it possible to have scattering without production
when the number of spacetime dimensions is d > 2? In d = 2 this is definitely possible and the
corresponding theories are integrable [47]. In d > 2 the answer to this question is negative: given
scattering, production is necessary.

We now review the elegant argument that establishes this for scalar particles by Aks [21]. It
states that scattering implies particle production in d > 2. Namely, provided that T2→2 ̸= 0, also
T2→n ̸= 0 with n > 2. The theorem applies to any crossing symmetric scalar scattering amplitude
in d ≥ 3 that satisfies extended analyticity in a finite region above the leading Landau curve.

To derive the result of Aks, let us therefore assume that we have a nontrivial scattering amplitude
T (s, t), but T2→n are identically zero for n > 2. This implies that elastic unitarity holds for any
s > 4m2. Let us write it down explicitly

fJ(s+ i0)− fJ(s− i0) = i
(s− 4m2)

d−3
2

√
s

fJ(s+ i0)fJ(s− i0), (193)

where in our previous discussion fJ(s) ≡ fJ(s + i0). From the results of the previous section we
see that (193) actually holds for any complex J with Re[J ] > J0(s)!

There is a nice way to express elastic unitarity at complex J which is known as the Mandelstam
equation

ρ(s, t) =
(s− 4m2)

d−3
2

4π2(4π)d−2
√
s

∞∫
z1

dη′
∞∫

z1

dη′′ Tt(s+ i0, η′)Tt(s− i0, η′′)DisczKd(z, η
′, η′′) , (194)

where recall that ρ(s, t) is the double discontinuity of the amplitude. Here, the lower limit of
integration is the point where the t channel cut starts (182). The discontinuity of the kernel, for
η′η′′ > 0 and z > 1 is given by

DisczK3(z, η
′, η′′) = 4π2δ(z − η+)

√
z2 − 1

η+ − η−
,

DisczKd≥4(z, η
′, η′′) =

4π
d+1
2

Γ(d−3
2 )

Θ(z − η+)
(z2 − 1)

4−d
2

(z − η−)
5−d
2 (z − η+)

5−d
2

≥ 0 . (195)

What is the relation between (194) and (193)? In fact it is very easy

(193) :

∫ ∞

z1

dz (z2 − 1)
d−4
2 QJ(z) (194). (196)

This relies on some very special property of the Mandelstam kernel (195), see [35] for details.

Finally, what is the advantage of (194) compared to (193)? It is crossing! Indeed, we have

ρ(s, t) = ρ(t, s). (197)

Moreover, using the Mandelstam equation and partial wave expansion, one can show that whenever
elastic unitarity applies we have

Nontrivial scattering : ρ(s, t) > 0 ,
16m2s

s− 4m2
< t ≤ 4m2 (3s+ 4m2)2

(s− 4m2)2
. (198)
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Figure 8: The region of integration in equation (194). As s or t approaches the Landau curve from above,
the integration region shrinks to zero. As a result, the double spectral density vanishes below the Landau
curve z = 2z21 − 1.

Figure 9: The regime of positivity of the double spectral density ρ(s, t) in the elastic strip 4m2 < t < 16m2,
(dashed region). This is the region above the first Karplus curve s1(t) (in blue) and below the curve

t = 4m2
√
s+2m√
s−6m

(in green). There is an identical positive region in the crossed strip of 4m2 < s < 16m2, see

(198).

This result follows from unitarity and applying partial wave expansion to (194).

Now comes the beautiful argument of Aks: nontrivial scattering (or (198)) is not consistent
with zero production (which is validity of (194) beyond s < 16m2) due to crossing (197) (which
implies vanishing of ρ(s, t) in the region (198)).

Note that the argument above also implies that we must have four-particle production. That
is because the crossed region of positivity starts at s1(16m

2) = 64
3 m

2 < 36m2, it is enough to
assume that T2→4 = 0 to reach a contradiction. One can wonder if having T2→4 is enough to fix the
problem, or T2→2n with n > 2 are also necessary? To address this question, we can then proceed
via crossing.22 By unitarity of the 4 → 4 amplitude, ImT4→4 ∼ |T2→4|2, non-vanishing T2→4 implies
that we have a non-vanishing T4→4 amplitude. Applying crossing this becomes T2→6. Continuing
this recursion we conclude that all T2→2n should be non-zero. Therefore, not only scattering implies
production but it requires all possible production (here we assumed Z2 symmetry so that only an

22Note that crossing has been only rigorously proven within the standard QFT framework for 2 → 2 (and 2 → 3)
amplitudes [12].
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Figure 10: a. We consider a scattering experiment at fixed impact parameters b. This process is controlled
by the exchanged momentum t ∼ 1

b2 > 0. b. At large impact parameters the amplitude can be organized as
a sum over on-shell particles exchange. The dominant contribution comes from the exchanged of the lightest
on-shell particle.

even number of particles is present in the final state).

Gribov’s theorem: Interestingly, elastic unitarity continued in spin constrains the high-energy
behavior of the amplitude. Indeed, consider t → ∞ limit and imagine that the amplitude (and its
discontinuity) behave as T ∼ tJ0(s). Via the Froissart-Gribov formula this leads to fJ(s) ∼ 1

J−J0(s)
.

Gribov’s theorem is the statement that J0(s) cannot be real for 4m2 < s < sMP (whenever elastic
unitarity (193) holds). The reason is trivial: as we take J → J0(s)

+ the RHS of (193) has a
double pole, whereas the LHS at most single pole. This is of course a contradiction. The simplest
resolution is that J0(s) ∈ C.

6.3 Bounding Inelasticity

There is another, more intuitive way to think about the result of Aks and necessity of particle
production in higher dimensions. Ideally, one would like to take a discontinuity of the 2 → 4
amplitude that is given by a product of two 2 → 2 amplitudes. For physical kinematics however,
such a discontinuity only exist for the 3 → 3 setup. Instead, let us discuss impact parameter
scattering, which is only possible in d ≥ 3.

As reviewed for example in appendix E of [34], the effect of going to the impact parameter
space is the same as continuing the conjugate momentum invariant to the unphysical kinematics. It
follows that inelasticity in a gapped theory cannot be exactly zero at very large impact parameters.
To see this, decompose the four particles in the final state into a pair of dipoles. Then consider
a scattering in which the two dipoles in the final state, as well as the pair of incoming particles
in the initial state, are separated by a finite distance b in the transverse space, see figure 10.a.
Unitarity becomes, in the impact parameter space, the expansion in Yukawa potential suppressed
terms T2→4(s, b) ∼ T 2

2→2 × e−bm + [multi-particle ∼ e−nbm]. At large separation, this expansion
is dominated by the one-particle exchange e−bm, while the multi-particle corrections are further
exponentially suppressed.23 In that way, a non-trivial (analytically continued) four-point amplitude
imply a non-trivial 2 → 4 amplitude. We would then like to bound the 2 → 4 amplitude from below.

23In terms of partial waves, large impact parameter scattering corresponds to the large spin limit and therefore we
expect to have inelasticity at large spin which will be analyzed in detail in the sections below.
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There is a convenient way of bounding the integrated discontinuity of T2→4 in the kinematical
regime of figure 10.b from below. Let us start with the the square of T2→4 that appears in the
discontinuity of the 2 → 2 amplitude, Ts(s, t)

T inel,2→4
s (s, t) ≡ 1

2

1

4!

∫ 4∏
i=1

dd−1q⃗i
(2π)d−1(2Eq⃗i)

(2π)dδd(p1 + p2 −
4∑

i=1

qi)T
(+)
2→4(p1, p2|qi)T

(−)
2→4(qi|p3, p4) .

(199)

By construction, the unitarity integral in the right-hand side of (199) depends only on s and t. For
physical scattering we consider s > 16m2 and t < 0.

We would like next to analytically continue (199) to the unphysical Martin-Mahoux region
discussed above

4m2 < t < 16m2 ,
16m2t

t− 4m2
< s < 4m2 (3t+ 4m2)2

(t− 4m2)2
. (200)

We also would like to consider 16m2 < s < 36m2 to focus on the T2→4 amplitude. This condition
together with (200) imply 36m2

5 < t.

After taking a discontinuity in t and using crossing symmetry of the double spectral density, we
arrive at the following schematic form24

ρ(s, t) =
(t− 4m2)

d−3
2

4π2(4π)d−2
√
t

∞∫
z̄1

dη′
∞∫

z̄1

dη′′DiscsT
(+)
2→2(t, η

′)DiscsT
(−)
2→2(t, η

′′)×Discz̄Kd(z̄, η
′, η′′)

=

∫
dLIPS4 × DisctT

(+)
2→4DisctT

(−)
2→4 ×K2→4

Mandelstam , (201)

where in the formula above we switched to z̄ = 1+ 2s
t−4m2 and z̄1 = 1+ 8m2

t−4m2 . Here in the right-hand
side each DiscT2→4 contains a delta-function that puts the exchanged particle in figure 10 on-shell.
The phase space integral dLIPS4 should be understood in terms of the analytic continuation a-la
Mandelstam.

6.4 The Dragt bootstrap: large J is simple

Extra assumptions: Extended analyticity.
Result: Large J expansion of partial waves is mapped to the low-energy physics.

There is an analytic S-matrix bootstrap that maps near-threshold physics in one channel to
the large spin physics in the other channel. It is in some sense a simple generalization of what is
depicted in figure 10 and goes as follows [22].

Let us write down a few key formulas:

• Low-energy/threshold expansion for σs =
s

4m2 −1 ≪ 1. Solution to elastic unitarity takes the
form

1

fJ(s+ iϵ)
= bJ(σs)−

i

2

(4m2σs)
d−3
2

√
s

×
{

1 d even
i
π [log σs − iπ] d odd

, (202)

where bJ(σs) is a real analytic and single-valued function in some finite neighborhood around
the origin, except for potentially isolated singularity at σs = 0.

24Note that T2→2 is not present in the second line of (201) since the region 4m2 < t < 16m2, 16m2 < s < 36m2

lies below the leading t-channel Landau curve t = 16m2s/(s− 4m2).
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Figure 11: The analytic S-matrix bootstrap (or the Dragt boostrap).

• Via the Mandelstam equation this leads to the threshold expansion for ρ(s, t) close to the
leading Landau curves (where we also used crossing).

• The Froissart-Gribov formula then turns the near-threshold expansions into the large J ex-
pansion of partial waves. This is based on the following simple fact

Q
(d)
J (z) = 2d−4√π

Γ
(
d−2
2

)
J

d−3
2

λ(z)−J

(λ(z)2 − 1)
d−3
2

(1 +O(1/J)) , (203)

The weakness of this approach is lack of good control over the corrections at finite s and finite J .

Comment: A very similar scheme works for CFTs, indeed in this case instead of the threshold
expansion it is the lightcone expansion that gets mapped to the large spin J expansion [48, 49].
Until recently it was also not clear how to control this scheme at finite J . Recently however such
a proposal has been made in [50]. Presumably, a similar improvement should work here (but this
has not been done).

6.5 The fixed point method

Extra assumptions: Mandelstam representation. Multi-particle physics is given.

One possible answer to the question ”what are the nonperturbative scattering amplitudes?” is
somewhat trivially:

Nonperturbative scattering amplitudes are fixed points of the unitarity equations. (204)
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Of course unitarity equations (44) include infinitely many scattering amplitudes Tm→n, however
they admit natural simplifications in theories of massive particles. Indeed, as we discussed before
if energy is such that no particle production is possible, say for 4m2 ≤ s < 16m2 unitarity leads
to a non-linear equation on the 2 → 2 amplitude. Similarly, taking 16m2 ≤ s < 36m2 only T2→2

and T2→4 enter the unitarity relations. At this point to close the system of equations we need to
include more Tm→n into the considerations, or alternatively we can keep talking about T2→2 only
and introduce some parameterization for our ignorance of the multi-particle contributions. Until
today all attempts to do nonperturbative S-matrix bootstrap followed the latter path: including
multi-particle amplitudes into considerations looks like a complicated (if not unsurmountable) task.

Let us describe this idea in the simplest possible higher-dimensional setting (d > 2). We assume
that the scattering amplitude admits Mandelstam representation without subtractions

T (s, t) =
1

π2

∞∫
4m2

ds′dt′ ρ(s′, t′)

(s′ − s)(t′ − t)
+

1

π2

∞∫
4m2

du′dt′ ρ(u′, t′)

(u′ − u)(t′ − t)
+

1

π2

∞∫
4m2

ds′du′ ρ(s′, u′)

(s′ − s)(u′ − u)
, (205)

where ρ(s, t) is the double spectral density.

As we briefly discussed the double spectral density acquires its support along the Landau curves
which (at least for the case of the lightest mass scattering) form an hierarchical structure. For
example a recent study [27] reveals the following structure of the leading Landau curves.

It is therefore very natural to write down the following split

ρ(s, t) = ρel(s, t) + ρel(t, s) + ρMP (s, t), (206)

where ρMP (s, t) stands for multi-particle contribution, and ρel(s, t) is the elastic double spectral
density that satisfies the Mandelstam equation.

In the Atkinson program, ρMP (s, t) is an input and does not change in the process of iterations.
It encodes the contribution of the multi-particle scattering which thus does not participate in the
bootstrap scheme. Elastic unitarity is imposed via the Mandelstam equation

ρel(s, t) =
(s− 4m2)

d−3
2

4π2(4π)d−2
√
s

∞∫
z1

dη′
∞∫

z1

dη′′T
(+)
t (s, η′)T

(−)
t (s, η′′)DisczKd(z, η

′, η′′) , (207)

where T
(±)
t is the t-channel discontinuity of the amplitude.

The iteration process now goes as follows:

1. Start with a fixed ρMP (s, t) which has only support above the leading multi-particle Landau
curve.

2. Compute the discontinuity Tt(s, t) of the amplitude using (205).

3. Compute ρel(s, t) using (194).

4. Update ρ(s, t) using (206) and repeat steps 2-4.

5. Compute the full amplitude T (s, t) and check inelastic unitarity.
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Figure 12: The leading Landau curves for the lightest particle scattering.
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In this scheme unitarity serves as a mapping that generates the amplitude at the next iteration
step. Atkinson has proven in [24] that if ρMP (s, t) satisfies some additional constraints, this map-
ping is contracting and therefore it converges and the solution is unique (see REF for a pedagogical
introduction [51]). This allows one to construct a function T (s, t) that satisfies properties (elas-
tic+inelastic) unitarity, crossing, and analyticity. Until today this is the only proposed algorithm
to impose these conditions.

6.5.1 The strip model approximation

In the old days people tried something called the strip model approximation. It states that:

Strip model approximation: T (s, t) is small unless s, t, or u is close to 4m2. (208)

This is an ad hoc proposal of dealing with the multi-particle physics in the scheme above. The
basic hope is that ρMP should be somehow not very relevant and therefore one starts with the
amplitude ansatz that incorporates a few Regge trajectories (say observed in the experiment) and
then runs the iteration scheme above, where the ad hoc modification for the Mandelstam equation
is also proposed (to enlarge it to the multi-particle region).

The name for the strip model comes from the fact that effectively all the action and the support
of the double spectral density is effectively restricted to the elastic strips 4m2 < s, t, u < 16m2.
It would be useful to have a critical assessment of this scheme from the standpoint of our current
understanding of both QCD and the S-matrix bootstrap. To the best of my knowledge this has not
been done.

In fact, it seems that in QCD the opposite is true and the amplitude is very big for s, t≫ 4m2

[32]!

6.6 Primal bootstrap

Extra assumptions: Maximal analyticity. Multi-particle physics is arbitrary. Elastic unitarity and
the multi-particle threshold structure is not respected.

Here we briefly review the setup of [29]. The basic idea underlying this approach can be stated
as follows: given that we cannot properly control the multi-particle physics, we should focus on the
questions for which it is maximally irrelevant. A natural candidate is the low-energy coupling that
can be defined as the value of the amplitude at the crossing-symmetric point s = t = u = 4

3m
2.

Further explorations indeed provided evidence that this question is not very sensitive to the multi-
particle structure of the amplitude.

One then writes an ansatz for the expansion of the scattering amplitude which is linear in
unknown real parameters αabc

T (s, t) =
∑

a,b,c=0

αabcρ
a
sρ

b
tρ

c
u + extra

∣∣∣
u=4m2−s−t

, (209)

where, the function ρs ≡
√

4m2−s0−
√
4m2−s√

4m2−s0+
√
4m2−s

maps the complex s-plane minus the s-channel cut

to the unit circle and the point s0 to the origin. Here, the extra terms may be added to make
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some particular properties of the amplitude manifest. Their presence or absence depends on the
particular problem at hand. Crossing symmetry is imposed by demanding that the coefficients αabc

are permutation-invariant. Finally, the relation s+ t+ u = 4m2 leads to a redundancy in the basis
of coefficients that can be addressed systematically.

To approximate an amplitude using the ansatz (209), the sum is truncated such that

a+ b+ c ≤ Nmax . (210)

Given a finite Nmax, unitary in the form

|SJ(s)| ≤ 1 , s ≥ 4m2 , J ∈ 2Z+ , (211)

is imposed over a finite grid of points and for spins that are truncated by some maximal value
J ≤ Jmax(Nmax). As shown in [29], remarkably unitarity in the form of (211) can be restated as a
semidefiniteness condition as follows. We write for physical J and s

SJ(s) = 1 + iα⃗ · f⃗J(s) , (212)

where f̂J(s) are kinematical objects and all the dynamical information is in the coefficients α⃗. The
condition (211) can be then rewritten as a semi-definitedness condition for the matrix

M ≡

(
1 + α⃗ · Ref⃗J(s) 1− α⃗ · Imf⃗J(s)
1− α⃗ · Imf⃗J(s) 1− α⃗ · Ref⃗J(s)

)
≽ 0 . (213)

At this point one can maximize numerically some quantity linear in the α-parameters by imposing
unitarity in the form (213) over the chosen grip in s and for J ≤ Jmax(Nmax). For example, in [29]

the “coupling”, T (4m
2

3 , 4m
2

3 ), is maximized. If a certain maximization task reliably saturates as a
function of Nmax we stop the process and trivially extrapolate to Nmax = ∞ to get the actual
bound on the space of physical S-matrices.

6.7 Dual bootstrap

Extra assumptions: None!

While in all other approaches extra assumptions that go beyond what has been proven are
necessary there is a way to derive bounds without extra assumptions. In fact, it has been known
how to derive such rigorous bounds since 70’s! Recently this approach has been revisited in the
paper by Andrea Guerrieri and Amit Sever [30]. I refer the reader to this paper (and references
therein) and to the lectures by Andrea Guerrieri at the Bootstrap School 2021 for further details.

A Derivation of the Unitarity Kernel

The kernel Pd(z, z
′, z′′) Recall that z′ and z′′ are cosine of the angles between n⃗ in (52) and the

vectors p⃗1 and p⃗3, (51). They are related to the coordinates in the Sudakov decomposition of the
unit vector n⃗

n⃗ = α
p⃗1
|p⃗1|

+ β
p⃗3
|p⃗3|

+ n⃗⊥ , n⃗⊥ · p⃗1 = n⃗⊥ · p⃗3 = 0 (A.1)
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as

z′ = α+ βz , z′′ = β + αz , α =
z′ − zz′′

1− z2
, β =

z′′ − zz′

1− z2
. (A.2)

In term of these coordinates, the angular integration in (52) reads∫
dd−2Ωn⃗ = 2

∫
dd−1n⃗ δ(n⃗2 − 1)

= 2
√

1− z2
∫
dα dβ dd−3n⃗⊥δ(n⃗

2
⊥ + α2 + β2 + 2αβz − 1)

= 2
√
1− z2

∫
dα dβ

Θ(1− α2 − β2 − 2αβz)

(1− α2 − β2 − 2αβz)
5−d
2

∫
dd−3n⃗⊥δ(n⃗

2
⊥ − 1),

=
√

1− z2VolSd−4

∫
dα dβ

Θ(1− α2 − β2 − 2αβz)

(1− α2 − β2 − 2αβz)
5−d
2

, (A.3)

where VolSd−4 = 2π(d−3)/2

Γ( d−3
2

)
. The above formula is only true in d ≥ 4. In d = 3 we have∫

dΩn⃗ = 2

∫
d2n⃗ δ(n⃗2 − 1) = 2

√
1− z2

∫
dα dβ δ(α2 + β2 + 2αβz − 1) , (A.4)

which can be also obtained as a distributional limit from (A.3) when d → 3. By plugging the
relation (A.2) into (A.3) and (A.4), we arrive at (53).

B Q-functions

Let us introduce the Gegenbauer Q-functions. These are given by the second linearly independent
solution of the second order Casimir equation (62). They are uniquely fixed by their asymptotic
behavior

lim
|z|→∞

Q
(d)
J (z) =

c
(d)
J

zJ+d−3
+ . . . , (B.1)

where c
(d)
J is a normalization constant. The corresponding Q-function is

Q
(d)
J (z) =

c
(d)
J

zJ+d−3 2
F1

(
J + d− 3

2
,
J + d− 2

2
, J +

d− 1

2
,
1

z2

)
. (B.2)

Our convention is

c
(d)
J =

√
πΓ(J + 1)Γ(d−2

2 )

2J+1Γ(J + d−1
2 )

. (B.3)

The Q-function has a cut running between z = −1 and z = 1. The fact that there are only two
independent solutions to the Casimir equation means that the discontinuity of Q can be expressed
in terms of Q and P . The precise relation takes the form

Discz(z
2 − 1)

d−4
2 Q

(d)
J (z) = −π

2
(1− z2)

d−4
2 P

(d)
J (z) , z ∈ [−1, 1] , (B.4)

or equivalently (for integer J)

Q
(d)
J (z) =

1

2

1∫
−1

dz′
(
1− z′2

z2 − 1

) d−4
2 P

(d)
J (z′)

z − z′
. (B.5)
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C Martin’s extension of the Lehmann ellipse

Recall that the Lehmann ellipse shrinks with energy tL(s) ∼ C
s as s → ∞. The basic point of

Martin’s extension is that such a shrinking of the analyticity domain in t is not consistent with
unitarity and in fact we have analyticity for |t| < R where R does not depend on s.

Here we sketch the basic argument postponing further technical details to the original papers
[3], [6] . We consider elastic scattering A,B → A,B and the basic new ingredient compared to the
analysis done before Martin is unitarity.

More precisely, the assumptions of the original paper [3] are:

1. existence of dispersion relations for −tM ≤ t ≤ 0 where the amplitude in s is analytic outside
of the unitarity cuts;

2. for physical s the amplitude and its absorptive part are analytic inside the Lehmann ellipse;

3. from [13] and [14] it follows that in the neighbourhood of any point s0 (outside the unitarity
cuts) and −tM ≤ t0 ≤ 0 there is analyticity in both s and t in

|s− s0| < η(s0, t0), |t− t0| < η(s0, t0). (C.1)

A priori η(s0, t0) can go to zero as s0 → ∞. Our task is to show that this does not happen.

Let us for simplicity ignore the left cut and subtractions. Therefore we assume that the ampli-
tude is analytic in the cut s-plane with the cut starting from s ≥ (mA +mB)

2. Unitarity

DiscsT (s, z) =
∑
J

n
(d)
J ImfJ(s)P

(d)
J (z) , ImfJ(s) ≥ 0, (C.2)

where z = 1 + 2t
s−4m2 implies that

∂nzDiscsT (s, z)
∣∣∣
z=1

≥ 0, (C.3)∣∣∣∂nzDiscsT (s, z)
∣∣∣
−1≤z≤1

≤ ∂nzDiscsT (s, z)
∣∣∣
z=1

. (C.4)

In the formulas above we made use of the basic properties of the Legendre polynomials and the
fact that ImfJ(s) ≥ 0.

Step 1

Consider an unphysical real s1 < (mA+mB)
2 (below the cut). Using property 3 the amplitude

is analytic in some neighbourhood |t| < R. We have at this point for the amplitude∣∣∣( d
dt
)nT (s1, 0)

∣∣∣ ≤ Mn!

Rn
. (C.5)

Here we assumed that T (s1, Re
iϕ) is finite otherwise we take R− ϵ.

Step 2

Let’s write down dispersion relations (unsubtracted, without the left cut)

T (s, t) =
1

π

∫ ∞

(mA+mB)2

ds′

π

DiscsT (s
′, t)

s′ − s
. (C.6)
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Martin next argues that we can differentiate under the dispersion relations so that

(
d

dt
)nT (s1, 0) =

1

π

∫ ∞

(mA+mB)2

ds′

π

( d
dt)

nDiscsT (s
′, 0)

s′ − s1
. (C.7)

Let us discuss the first derivative at t = 0

d

dt
T (s1, 0) = lim

τ→0,τ>0

T (s1, 0)− T (s1,−τ)
τ

=
1

π
lim

τ→0,τ>0

∫ ∞

(mA+mB)2

ds′

π

[DiscsT (s
′, 0)−DiscsT (s

′,−τ)]/τ
s′ − s1

.

(C.8)

We split the integral over s′ and we use (C.3) (together with a trivial positivity of 1
s′−s1

) to get

d

dt
T (s1, 0) ≥

1

π
lim

τ→0,τ>0

∫ x

(mA+mB)2

ds′

π

[DiscsT (s
′, 0)−DiscsT (s

′,−τ)]/τ
s′ − s1

(C.9)

Using analyticity inside the large Lehmann ellipse we can differentiate under the integral and we
get

d

dt
T (s1, 0) ≥

1

π

∫ x

(mA+mB)2

ds′

π

d
dtDiscsT (s

′, 0)

s′ − s1
. (C.10)

This holds for arbitrary x and recall that d
dtDiscsT (s

′, t) ≥ 0. Therefore the limit x → ∞ exists
and we get

d

dt
T (s1, 0) ≥

1

π

∫ ∞

(mA+mB)2

ds′

π

d
dtDiscsT (s

′, 0)

s′ − s1
. (C.11)

Let us now get the opposite estimate. We again split the integral into
∫ x
(mA+mB)2 and

∫∞
x∫ ∞

x

ds′

π

[DiscsT (s
′, 0)−DiscsT (s

′,−τ)]/τ
s′ − s1

=

∫ ∞

x

ds′

π

[ ddtDiscsT (s
′,−τ(s′))

s′ − s1
≤
∫ ∞

x

ds′

π

[ ddtDiscsT (s
′, 0)

s′ − s1
,

(C.12)

where in the first step we used Rolle’s theorem? (0 ≤ τ(s′) ≤ τ) and in the second step unitarity
(C.3). To sum up we conclude that

d

dt
T (s1, 0) =

1

π

∫ ∞

(mA+mB)2

ds′

π

d
dtDiscsT (s

′, 0)

s′ − s1
. (C.13)

We then combine (C.7) with (C.5) to get

| 1
π

∫ ∞

(mA+mB)2

ds′

π

( d
dt)

nDiscsT (s
′, 0)

s′ − s1
| ≤ Mn!

Rn
. (C.14)

Step 3

We next continue (C.7) in s1 away from s1 < (mA +mB)
2. We then use∣∣∣( d

dt)
nDiscsT (s

′, 0)

s′ − s

∣∣∣ ≤ B(s, s1)
( d
dt)

nDiscsT (s
′, 0)

s′ − s1
, (C.15)
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where

B(s, s1) ≡ maxs′≥(mA+mB)2

∣∣∣s′ − s1
s′ − s

∣∣∣. (C.16)

In this way we conclude that ∣∣∣( d
dt
)nT (s, 0)

∣∣∣ ≤ B(s, s1)
Mn!

Rn
, (C.17)

which shows that series

T (s, t) =
∑
n

1

n!
(
d

dt
)nT (s, 0) (C.18)

converges for |t| < R where R does not depend on s. Note that B(s+ iϵ, s1) ∼ s
ϵ .

Further comments:

• Here we have not explained the origin of property 3 which led to the crucial inequality (C.5).
At first glance we have not found the discussion of this in [14], but [13] does precisely that
using dispersion relations and analyticity inside the Lehmann ellipse.

• We have ignored the left cut and subtractions.

• We have not found what R is for a given scattering process.

• We have not explained how to formulate this discussion using the BES analyticity domain
(for which we cannot go to the harmless region s < (mA +mB)

2).

Martin claims to address all these issues in [6] at least for the pion-pion scattering (and some of
them in [3]).
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