Exercises for Feynman integrals*

Erik Panzer

August 2, 2023

1 Schwinger parameters and graph polynomials

1. Starting from the Schwinger parameter representation

$$
I(D, n, z)=\left(\prod_{e=1}^{N} \int_{0}^{\infty} \frac{x_{e}^{n_{e}-1} \mathrm{~d} x_{e}}{\Gamma\left(n_{e}\right)}\right) \frac{e^{-\mathcal{F} / \mathcal{U}}}{\mathcal{U}^{D / 2}}
$$

prove the projective and the Lee-Pomeransky representations.
Hint: Multiply with $1=\int_{0}^{\infty} \delta(\rho-h(x)) \mathrm{d} \rho$ and change variables $x_{e} \rightarrow \rho x_{e}$.
2. Compute the number of spanning trees of the following graph:

Hint: Use $\mathcal{U}=\operatorname{det} A$.

3. Consider a graph G with two external legs, external momentum $p^{2}=-1$, and vanishing internal masses $m_{e}=0$. Let V denote the "vacuum" graph obtained by gluing the external legs into a new edge " 0 ", for example

Show that:
a) $\omega(V)=\omega(G)+n_{0}-D / 2$,
b) $\mathcal{U}_{V}=x_{0} \mathcal{U}_{G}+\mathcal{F}_{G}$,

Hint: trees and 2-forests.
c) $I_{G}=\Gamma(D / 2) \cdot P_{V}$ where

$$
P_{V}:=\operatorname{Res}_{\omega(V)=0} I_{V}=\left(\prod_{e=0}^{N} \int_{0}^{\infty} \frac{x_{e}^{n_{e}-1} \mathrm{~d} x_{e}}{\Gamma\left(n_{e}\right)}\right) \frac{\delta(1-h(x))}{\mathcal{U}_{V}^{D / 2}} .
$$

d) Conclude that in $D=4$ dimensions with indices $n_{e}=1$, the Feynman integrals of the following graphs all coincide:

Remark. This is called the "glue-and-cut" symmetry.

[^0]
2 Power counting and factorization

1. Determine the leading order in the ε-expansion $(D=4-2 \varepsilon)$ of the $n_{e}=1$ integral

Hint: There are three nested divergences.
2. Consider the Feynman integral $I_{G}(D, n, z)$ of the graph

a) Compute the graph polynomials \mathcal{U} and \mathcal{F}.
b) Determine the two singular hyperplanes that contain the point $(D, n)=(4,1,1,1,1)$.
c) Show that \mathcal{U} and \mathcal{F} factorize to leading order on the subdivergence, and conclude that the leading order of the ε-expansion is

$$
I_{G}(4-2 \varepsilon, 1,1,1,1, z)=\frac{1}{2 \varepsilon^{2}}+\mathcal{O}\left(\varepsilon^{-1}\right)
$$

d) Show that $I_{G}-I_{G^{\prime}}$ is finite at $(D, n)=(4,1,1,1,1)$, where G^{\prime} is the graph

Hint: Compute both residues.
Remark. Such 'rerouting' of momentum flow to compute divergent parts is used in the \mathcal{R}^{*} operation and infrared rearrangement [1].
e) For internal masses $m_{e}=0$, obtain the subleading order $(\propto 1 / \varepsilon)$ of I_{G}.

Hint: Compute $I_{G^{\prime}}$ with the formula for the massless bubble integral in terms of Γ-functions. Remark. Such finite linear combinations are used in [2] to renormalize ϕ^{4} at 6 loops.

3 Analytic continuation

Consider the following graph with $m_{1}^{2}=m_{2}^{2}=p_{1}^{2}=p_{2}^{2}=m^{2}$ and $m_{3}=0$:

1. Show that $\mathcal{F}_{\{1,2\}}=0$ for the tree subgraph with edges $\{1,2\}=G-\{3\}$. Deduce, via the infrared factorization formula, that \mathcal{F}_{G} must be independent of x_{3}.
2. Confirm by computing \mathcal{F}_{G} explicitly.
3. Draw the Newton polytope of $\mathcal{U}+\mathcal{F}$.
4. Describe the convergence domain in $\left(D, n_{1}, n_{2}, n_{3}\right)$ by inequalities, and find all finite integrals in $D=6$ dimensions with integer n_{e}.
5. Set $D=4-2 \varepsilon$ and all $n_{e}=1$. In the Lee-Pomeransky representation, insert $1=\int_{0}^{\infty} \delta\left(\rho-x_{1}^{-1}\right) \mathrm{d} \rho$, rescale $x_{e} \rightarrow \rho^{\sigma_{e}} x_{e}$ for $\sigma=(-1,-1,-2)$, and factor out the lowest powers of ρ to make the infrared divergence explicit.
6. Integrate by parts in ρ to obtain the integral representation

$$
I=-\frac{\Gamma(3-\varepsilon)}{2 \varepsilon \Gamma(1-2 \varepsilon)} \int_{0}^{\infty} \mathrm{d} x_{1} \int_{0}^{\infty} \mathrm{d} x_{2} \int_{0}^{\infty} \mathrm{d} x_{3} \frac{x_{1}+x_{2}}{(\mathcal{U}+\mathcal{F})^{3-\varepsilon}}
$$

and thus give a convergent integral formula for each coefficient in the ε-expansion.
7. Show that the leading order (coefficient of $1 / \varepsilon$) is proportional to a bubble integral.
8. Explain where the divergence comes from in momentum space.

4 Polynomial reduction

1. Show that the Landau variety of the massless box integral $\left(m_{e}^{2}=p_{i}^{2}=0\right)$

2. Consider the triangle integral for generic momenta $p_{1}^{2}, p_{2}^{2}, p_{3}^{2}$ as in the lecture, but with an internal mass $m_{3} \neq 0\left(\right.$ still $\left.m_{1}=m_{2}=0\right)$:

Show that with $\Delta=p_{1}^{4}+p_{2}^{4}+p_{3}^{4}-2 p_{1}^{2} p_{2}^{2}-2 p_{1}^{2} p_{3}^{2}-2 p_{2}^{2} p_{3}^{2}$, its Landau variety is

$$
L=\left\{p_{1}^{2}, p_{2}^{2}, p_{3}^{2}, \Delta, m_{3}^{2}, m_{3}^{2}-p_{1}^{2}, m_{3}^{2}-p_{2}^{2},\left(m_{3}^{2}-p_{1}^{2}\right)\left(m_{3}^{2}-p_{2}^{2}\right)+m_{3}^{2} p_{3}^{2}\right\}
$$

References

[1] K. G. Chetyrkin, Combinatorics of $R-, R^{-1}$, and R^{*}-operations and asymptotic expansions of Feynman integrals in the limit of large momenta and masses, tech. rep., Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Munich, Germany, Mar., 1991, arXiv:1701.08627 [hep-th].
[2] M. V. Kompaniets and E. Panzer, Minimally subtracted six loop renormalization of $O(n)$-symmetric ϕ^{4} theory and critical exponents, Phys. Rev. D 96 (Aug., 2017) p. 036016, arXiv:1705.06483 [hep-th].

[^0]: ${ }^{0}$ complementing lectures at the Amplitudes Summer School 2023. Adapted from MITP Amplitudes Games 2021.

