
Exercises for Feynman integrals∗

Erik Panzer

August 2, 2023

1 Schwinger parameters and graph polynomials
1. Starting from the Schwinger parameter representation

I(D,n, z) =
(

N∏
e=1

∫ ∞
0

xne−1
e dxe
Γ(ne)

)
e−F/U

UD/2 ,

prove the projective and the Lee-Pomeransky representations.
Hint: Multiply with 1 =

∫∞
0 δ(ρ− h(x))dρ and change variables xe → ρxe.

2. Compute the number of spanning trees of the following graph: Hint: Use U = detA.

3. Consider a graph G with two external legs, external momentum p2 = −1, and vanishing internal
masses me = 0. Let V denote the “vacuum” graph obtained by gluing the external legs into a
new edge “0”, for example

G = ⇒ V =
0

Show that:
a) ω(V ) = ω(G) + n0 −D/2,
b) UV = x0 UG + FG, Hint: trees and 2-forests.
c) IG = Γ(D/2) · PV where

PV := Res
ω(V )=0

IV =
(

N∏
e=0

∫ ∞
0

xne−1
e dxe
Γ(ne)

)
δ(1− h(x))
UD/2
V

.

d) Conclude that in D = 4 dimensions with indices ne = 1, the Feynman integrals of the
following graphs all coincide:

Remark. This is called the “glue-and-cut” symmetry.
0complementing lectures at the Amplitudes Summer School 2023. Adapted from MITP Amplitudes Games 2021.
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2 Power counting and factorization
1. Determine the leading order in the ε-expansion (D = 4− 2ε) of the ne = 1 integral

Hint: There are three nested divergences.

2. Consider the Feynman integral IG(D,n, z) of the graph

G =
1

2

3 4p1

p2

p3

a) Compute the graph polynomials U and F .
b) Determine the two singular hyperplanes that contain the point (D,n) = (4, 1, 1, 1, 1).
c) Show that U and F factorize to leading order on the subdivergence, and conclude that the

leading order of the ε-expansion is

IG(4− 2ε, 1, 1, 1, 1, z) = 1
2ε2 +O

(
ε−1

)
.

d) Show that IG − IG′ is finite at (D,n) = (4, 1, 1, 1, 1), where G′ is the graph

G′ =
1

2

3 4p1

p2

p3

Hint: Compute both residues.
Remark. Such ’rerouting’ of momentum flow to compute divergent parts is used in the R∗
operation and infrared rearrangement [1].

e) For internal masses me = 0, obtain the subleading order (∝ 1/ε) of IG.
Hint: Compute IG′ with the formula for the massless bubble integral in terms of Γ-functions.
Remark. Such finite linear combinations are used in [2] to renormalize φ4 at 6 loops.

3 Analytic continuation
Consider the following graph with m2

1 = m2
2 = p2

1 = p2
2 = m2 and m3 = 0:

G = 12

3

p3

p1 p2

1. Show that F{1,2} = 0 for the tree subgraph with edges {1, 2} = G−{3}. Deduce, via the infrared
factorization formula, that FG must be independent of x3.
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2. Confirm by computing FG explicitly.

3. Draw the Newton polytope of U + F . Hint: It has 5 facets.

4. Describe the convergence domain in (D,n1, n2, n3) by inequalities, and find all finite integrals in
D = 6 dimensions with integer ne.

5. Set D = 4−2ε and all ne = 1. In the Lee-Pomeransky representation, insert 1 =
∫∞

0 δ(ρ−x−1
1 )dρ,

rescale xe → ρσexe for σ = (−1,−1,−2), and factor out the lowest powers of ρ to make the
infrared divergence explicit.

6. Integrate by parts in ρ to obtain the integral representation

I = − Γ(3− ε)
2εΓ(1− 2ε)

∫ ∞
0

dx1

∫ ∞
0

dx2

∫ ∞
0

dx3
x1 + x2

(U + F)3−ε .

and thus give a convergent integral formula for each coefficient in the ε-expansion.

7. Show that the leading order (coefficient of 1/ε) is proportional to a bubble integral.

8. Explain where the divergence comes from in momentum space.

4 Polynomial reduction
1. Show that the Landau variety of the massless box integral (m2

e = p2
i = 0)

p2 p3

p4p1

1

2

3

4

is L = {s, t, u} where


s = (p1 + p2)2

t = (p1 + p3)2

u = (p1 + p4)2

2. Consider the triangle integral for generic momenta p2
1, p

2
2, p

2
3 as in the lecture, but with an internal

mass m3 6= 0 (still m1 = m2 = 0):

12

3

p3

p1 p2

Show that with ∆ = p4
1 + p4

2 + p4
3 − 2p2

1p
2
2 − 2p2

1p
2
3 − 2p2

2p
2
3, its Landau variety is

L =
{
p2

1, p
2
2, p

2
3,∆,m2

3,m
2
3 − p2

1,m
2
3 − p2

2, (m2
3 − p2

1)(m2
3 − p2

2) +m2
3p

2
3

}
.
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