Exercises for Feynman integrals*

Erik Panzer

August 3, 2023

1 Schwinger parameters and graph polynomials

1. Starting from the Schwinger parameter representation
ne—l dze et U
.D n, Z (H/ T'Le ) L{D/2 )

prove the projective and the Lee-Pomeransky representations.

Hint: Multiply with 1 = [7°6(p — h(z))dp and change variables z. — pz..

Solution: Introducing p and rescaling z. as suggested, the polynomials ¢/ and F get multiplied
by p* and p*t!, respectively. From z7<~'dz. we also get a factor p"¢ for every edge. Since h(z)
is homoeneous, the delta distribution becomes d(p — ph(x)) = §(1 — h(z))/p after the rescaling
Te — pTe. The integral over p is a gamma function,

I(D,n,z) H ne_ldxe 1,—pF /U4
uD/2 e p

w) U/ F)e

which proves the projective representation of the Feynman integral. Applying the same procedure
to the Lee-Pomeransky integral, we get

<H/ zpe 1dxe>(u+f /2 _ (H/ T 1dfﬁe)5(1—h(a:))/ooop“’1(2/1+p.7-“)D/2dp

The substitution p — p-U/F gives
e _ U\” ., _ o0 w1 Blw,D/2 — w)
w—1 D/24 . _ D/2/ p _ )
U+ pF dp=(=) U dp =
/0 P ( +p ) p <f> 0 (1+p)D/2 P Uub/2—w Fw 7’

Euler’s beta function. In terms of gamma functions, f(w, D/2 — w) = I'(w)['(D/2 — w)/T'(D/2),
hence with the prefactor I'(D/2)/I'(D/2 — w) of the Lee-Pomeransky representation, only I'(w)
remains. We have thus arrived again at the projective representation of the Feynman integral.

2. Compute the number of spanning trees of the following graph: Hint: Use U = det A.
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Solution: Consider the loop momentum flow and edge labels as indicated in

The loop momentum through edges 7,8,5 of X is then ¢1 — #o, fo — £3 and {1 — £5 + /3, respectively.
This gives the matrix

xr1 + x5 + T + 7 —x5 — X7 Ts5
A= —x5 — I7 To + Ts5 + X7 + X8 —I5 — Tg
T —I5 — I8 T3+ x4+ T5 + I8

The number of spanning trees is equal to U = det A evaluated at z, = 1 for every edge e,

4 -2 1
Ulp—1 =det | -2 4 2| =36.
1 -2 4
. Consider a graph G with two external legs, external momentum p? = —1, and vanishing internal

masses m, = 0. Let V denote the “vacuum” graph obtained by gluing the external legs into a
new edge “0”, for example

0
Show that:

a) w(V)=w(G)+ng—D/2,
Solution: V has one additional edge (= +ng) and one additional loop (= —D/2).
b) Uy = xoUg + Fa, Hint: trees and 2-forests.
Solution: Every spanning tree T of V either:
e does not contain 0, in which case T is a spanning tree of V; or

o does contain 0, in which case F':= T\ {0} = T1 U7 is a 2-forest of G with one external
leg in T and the other external leg in T5, hence a 2-forest that contributes to Fg.

c) I =T(D/2) - Py where

o0 gle™ 1d:1:e o(l—nh
Py = (Res IV_(H/ ) (Z/{D/§ ))

Solution: The integral over z¢ is (compare with the Lee-Pomeransky integral in part 1.)

1 /oo ap°'dzg  B(no, D/2 —ng) (J%)"O _ T(D/2 —nyg) 1
IL'(no) Jo (wola + Fa)P/? r(no)}“g/Q Ug I'(D/2) ugo;(?/?—no'

In the integral for Py, we have w(V') = 0, hence D/2 — ng = w(G). The above thus becomes

CTW(@) (& [oatetda ) (1 — () 1
=T (13/0 () >ug/2 S0 7@~ T(Dj2) 1




d) Conclude that in D = 4 dimensions with indices n, = 1, the Feynman integrals of the
following graphs all coincide:

Solution: The left and centre graphs glue to the same graph V', the wheel with 4 spokes:

cut e cut f
— —_—

f

Also the indices agree, because ng = 1 in both cases. Hence both of these propagator
integrals are equal to the period of V' with unit indices everywhere. (FYI: it is Py = 20{(5).)

The third propagator glues into a different graph:

G = = V' =

But the central, glued edge has index ng = D/2 —w(G) = 0 so that it can be contracted,
therefore Py/|n,—0 = Py because V//0 = V.

Remark. This is called the “glue-and-cut” symmetry.

2 Power counting and factorization

1. Determine the leading order in the e-expansion (D = 4 — 2¢) of the n. = 1 integral

Hint: There are three nested divergences.

Solution: There is a logarithmic overall divergence w|, —1 = be and two nested, logarithmic
subdivergences

with w(d)|n.=1 = 3¢ and w()|n,=1 = 4e. Hence the leading order is a triple pole 1/[w - w(7y) -
wW(0)]|n.=1 = 1/(60e3) with coefficient
R Res Reslg =PFs-Py/5-Pg/, =6((3)-1-1
Res | Res Resla =Ps-Pys-Foyy ¢(3)
where § is the wheel with 3 spokes mentioned in the lecture, and ~/d = G/~ are both isomorphic
to the 1-loop bubble graph. In conclusion,
¢(3)

Io(4 =201 1,111 1111, 1,2) = 25 + 0 (5—2) :
[5)



2. Consider the Feynman integral I (D, n, z) of the graph

2)

b)

D2
1
G — pl 4
2
D3

Compute the graph polynomials ¢/ and F. Solution:

U = 2123 + T124 + T2T3 + ToTg + T324

2 2 2 2 2 2 2
F = —piziza(xs + x1) — par12324 — p5xox3rs + U(mizs + msxe + mszs + mizs)

Determine the two singular hyperplanes that contain the point (D,n) = (4,1,1,1,1).
Solution:

o overall divergence: w =0 where w =n1 +ng +n3+nqg — D

» subdivergence {3,4}: w({3,4}) = 0 where w({3,4}) =ng +n4s — D/2

Show that U and F factorize to leading order on the subdivergence, and conclude that the
leading order of the e-expansion is

1
Io(4 -2, 1,1,1,1,2) = .5 + O (5—1) :

Solution: With z3 — x3p and x4 — x4, the leading orders as p — 0 are
o U— p(z3+ 24) (71 + 22) + O (p?)
o F— p(xs+z4) [—piziza + (21 + 22)(mizy + m3as)] + O (p?)

By factorization, the coefficient of the double pole 1/[w - w({3,4})] is

Res Reslgo= Res Po=DP - P, =1-1=1
W(3AN)=0w=0 O w(3a=0 O 1BATTG/A34}

is the square of the period of the bubble (note both the subgraph {3,4}, and the quotent
graph G/ {3, 4}, are bubble graphs). Hence the double pole is 1/[w - w({3,4})] = 1/[2¢ - €].
Show that I — I is finite at (D,n) = (4,1,1,1,1), where G’ is the graph

D2
/ 1 D3
G — 4

P

Hint: Compute both residues.

Solution: The graph G’ has the same overall power counting, and also the same subdiver-
gence w({3,4}) = 0. The corresponding sub- and quotient graphs

1 2
304 CG.G,  G/{34} :p14<>-<p =G/ {3,4)

2 b3
are the same for G as they are for G’, hence they yield the same residue
Res Io=P - =P o = Res Ig.
s By do/an = Peay o = | Res e

The residue Pg = Res,—g Ig of the overall divergence depends only on U, but not F. Since
G and G’ differ only in the attachment of the external legs, they have the same Ug = Ugy,
and therefore P = Pgr. Hence, the difference I — Iv has neither a pole on w = 0 nor at
w({3,4}) = 0.



Remark. Such ’rerouting’ of momentum flow to compute divergent parts is used in the R*
operation and infrared rearrangement [1].

e) For internal masses m. = 0, obtain the subleading order (x 1/¢) of Ig.
Hint: Compute I with the formula for the massless bubble integral in terms of I'-functions.
Solution: Let B(ni,ng) =T'(D/2 —n1)['(D/2 — na)T'(ny + na — D/2)/[T'(n1)T'(n2) (D —
n1—ns2)| so that the bubble integral is (—p?)~“B(n1,n2). Integrating out the subloop yields

p2 n

n p3
Ig = B(ng,n4) X n n3+n4fg = B(ng,n4) X P1<><

Ng + N3 + Ny — % b3

P2

n2

= B(ng,n4)B(n1,ng +ng +ny — D/2)(—p?) ™

Plugging in n, = 1 and D = 4 — 2¢, this gives the e-expansion
5. T(1—€)3T(1 — 26)[(e)T'(2¢)
Ig(4—26,1,1,1,1,2) = Ig + O (°) = (—p}) ™% o (&

115 ) .
—282+8(2—7E—10g(_l?1))+0<5)

Remark. Such finite linear combinations are used in [2] to renormalize ¢* at 6 loops.

3 Analytic continuation

Consider the following graph with m? = m3 = p? = p3 = m? and m3 = 0:
b1 5 P2
G = 2 1
p3

1. Show that F; o) = 0 for the tree subgraph with edges {1,2} = G — {3}. Deduce, via the infrared
factorization formula, that ¢ must be independent of x3.

Solution: The graph polynomials for the tree are Uy oy = 1 and
Fiioy = (mPxy + mPma)Ug 9y — plas — p3ar = x1(m? — p3) + z2(m® — pi) = 0.

Under the scaling (x1,z2) — (pz1, pr2) of the tree edges, the IR-factorization formula gives
Fa = pUguFpzy + O (PQ) =0 (/72)

hence every term in F¢ is of degree > 2 in the variables (z1,z2). But we know that F¢ is
homogeneous of degree 2 in all variables (because G has 1 loop); hence F¢ cannot have any 3.

2. Confirm by computing Fg explicitly.

Solution:

Fo =m? (21 + x2) (21 + 22 + 73) — piasws — paz13 — P3T1T:
2

2 2 2 2 2 2
=m*(x1 + 22)” — psr122 + T3(M 21 + M 22 — pIT2 — P51 )

=m?%(x1 + 22)% — piaizo. =F{1,2y=0



3. Draw the Newton polytope of U + F. Hint: It has 5 facets.

Solution: The Lee-Pomeransky polynomial
U + Fo = 11 + 22 + o3 + 2im® + 25m® + 2129 (2m2 - p%)

has 6 different monomials. We read off the Newton polytope Vs

NP = conv O,(1f,10],10,12],|1] ;=

U1

4. Describe the convergence domain in (D, nj,n2,n3) by inequalities, and find all finite integrals in
D = 6 dimensions with integer n,.

Solution: The Newton polytope is a pyramid with apex (0,0,1) over a quadrilateral in the
(z1,x2)-plane. This pyramid has 5 supporting hyperplanes (facets) that we can read off easily:

U1 207 /UQZOJ ’U320)
v +vy+vg > 1, v1 + vg + 2v3 < 2.

For example, v3 = 0 is the plane containing the base quadrilateral; and v; + vo 4+ 2v3 = 2 is the
supporting hyperplane that contains the three vertices (2,0,0), (0,2,0) and (0,0, 1).

The convergence region is Re(n) € interior(D/2 - NP), hence the conditions are

Re(n1) > 0, Re(ng) > 0, Re(ng) > 0,
Re(n1 + n2 +n3) > Re(D/2), Re(n1 + n2 + 2n3) < Re(D).

For D = 6, the only integer solutions are n = (2,1,1) and n = (1,2,1).

5. Set D =4 —2¢ and all n, = 1. In the Lee-Pomeransky representation, insert 1 = 5~ 6(p— z7h)dp,
rescale z, — p?cx, for 0 = (—1,—1,—-2), and factor out the lowest powers of p to make the
infrared divergence explicit.

Solution: Under this scaling, we have

dazy — plday, dag — p~tdas, das — p~2das,
U — p~2(z3 + pr1 + pr2), F—p2F, S(p—ayl) = p to(1 — ).

With D/2 =2 — ¢ and w = 1 + ¢, the Lee-Pomeransky integral thus becomes

5 p—2e—1dp
d d d 1-—
1 — 2¢) / xl/ xQ/ s 361)/0 (xg + F + px1 + pre)?—=

The integral over p is divergent at the lower boundary, unless w(o) = —2¢ > 0.

6. Integrate by parts in p to obtain the integral representation

T+ 22
2gr1—25/ dxl/ d“/ s e

and thus give a convergent integral formula for each coeflicient in the e-expansion.



Solution: The integration by parts in p gives

[e's) 0o —2e
261 e—2 5—2/ (w1 +22)p~ = dp
dp (3 + F + px1 + px =
/0 P p (3 pr1+ pr2) 9% Jo (w3 +F + pr1 + pra)i—s

Inverting the scaling, x1 — 1p, 3 — x2p and x3 — 3p? to return to the original Schwinger
parameters and to get rid of p, the resulting integral representation is as stated. The divergence at
e = 0 is explicit in the prefactor, but (in contrast to the original Lee-Pomeransky representation)
the integral over the Schwinger parameters is holomorphic also at € = 0. Hence we can expand
under the integral:

(3 — k 1
= FB-¢9 / dxl/ de/ s x1+ 2 log (U + F).
2T (1 — 2¢) M F)P

7. Show that the leading order (coefficient of 1/¢) is proportional to a bubble integral.
Solution: For the leading order, the p-integral in 6. simplifies to

1 [~ .. 0 1 1 1 0
- il =————=-+0|(¢
2¢ Jo P P Op (z3 + F + px1 + pra)?=© 2¢ (z3 + F)? ( )

and the subsequent x3-integral is straightforward, leaving:

:—7/ d:cl/ day 2L )+0()

Up to the prefactor, this is identical to the bubble integral of G/3 in D = 2 dimensions.
8. Explain where the divergence comes from in momentum space.

Solution: Let ¢ denote the momentum flowing through edge 3. Then

dPe 1 1 1
1,D—1 i7rD/2 —02m?— (f +p1)2 m? — (E _p2)2

I(D,1,1,1,2) :/
R

_ / aPe 1 1 1
— Jrup-1 iwD/2 —02 02 4 2Upy 02 — 20py

For ¢ — 0, the integrand grows with ||¢||~*, while the volume element in D = 4 scales as ||||> d ||/
This shows a logarithmic divergence at £ — 0.

4 Polynomial reduction

1. Show that the Landau variety of the massless box integral (mg = p? =0)

) 5 D3 s = (p1 + pa)?
1 3 is L={stul where {t=(p+ps)?
1 4 D4 u = (p +p4)2

Solution: Start with the singularities of the integrand, in the projective representation with
(1 —x4): Set s = —(p1 + p2)? and ¢ = —(p1 + p4)?, then

S = {U|x4:1,.7:‘z4:1} = {1 + 1+ a2 + 23,872 + t:clxg}.
Reduction of z1:

S1 ={1+x2+x3,s, 22, t,x3,502 — tw3(1 + 22+ 23)}
~——

r1—0 T1—00 resultant




Reduction of zs:
51,2 = {S, t,xs3, 1+ xr3,S — t:(}3}

Reduction of z3:
51,273 = {8, t,s 4+ t}

Hence the Landau variety L C S 23 has at most 3 components. Clearly {s =0} and {t =0}
are necessary, since the special cases n = (0,1,0,1) and n = (1,0,1,0) correspond to bubble
integrals oc s7¢ and o< t¢, respectively, which have singularities at s = 0 and ¢ = 0. To see that
singularities at s +t = 0 also appear, consider for example the finite box integral in D = 6:

o0 o0 o0 dl’ldwgdwg
I(6,1,1,1,1,5,t):/ / / ; . 5, set o — wax3
o Jo Jo (swa+tzixs)(l+z1+ 22+ x3)

_/oo /OO /oo dridaedxs
- o Jo Jo (sx2+ta:1)(1+x1+x3(1+x2))2

_ /OO /OO daridaxs _ /OO dzq logm—l
o Jo (sxa+tx1)(l+x1)(1+ x2) o (14+z1)(tr1 —9) s

w2 +1log*(s/t)

 2(s+t)

Taking two variations around s = 0, this becomes (2i7)2/(s + t), which clearly has a pole at
s+t =0. In conclusion, L = S1 23 = {s,t,s + t}.

. Consider the triangle integral for generic momenta p?, p3, p% as in the lecture, but with an internal
mass mg # 0 (still m; = mg = 0):

b1 b2

p3
Show that with A = p‘l1 + p% + pg - 2p%p% - Zp%pg - 2p§p§, its Landau variety is
L= {p}.p3. 93, A, m3. m3 — pt,m3 — 3, (m3 — p})(m3 — p3) + m3n}
Solution: In the projective representation with x3 = 1, the singularities of the integrand are

S = { 1+ 21 + 29, —pire — p371 — piz122 + M3(1 + 21 + 29) }
u|z3:1 F|m3=1

Reduction of z1:

Sy = { 1+ 29, m3(1 + 22) — piaa, mj — p3 — P3xa, (1 + 22)(p3 + p3a2) — pias }

z1—0 T1—00 resultant [, F]

Reduction of zs:

Sto = { m3, m3 — p3,p3,m3 —pl. p3,pR, m3 + 3 — p3, (m3 — p)(m3 — p3) — mipl. A}

xr2—0 T2 —00 resultants

where A = p + p3 + pi — 2p?p3 — 2p?p3 — 2p2p3 denotes the discriminant that also appeared in
the massless case. By symmetry (flipping x; <> x2 and p; <> p2), note

Sa1= S10],, 1y, = (S12\ {m3 + 3 — p3}) U {m3 + 3 — p1}.



Hence the component m2 + p3 — p3 € S1 2 is spurious, and we get the upper bound

L - 5172 N 52»1 = {p%p%pg’A)mgam% _p%amg _p%a (m% _p%)(mg _pg) + m%pg} .

In fact, all these singularities indeed appear, hence L = S12 M Sa1.
For example, setting n; = 0, the contracted graph is a bubble with one massless and one massive

propagator. In D = 4 with the massive propagator squared (ng = 2), this bubble integral is

o0 r3dxs 1 ms — pi
1(4,0,1,2, 2 :/ = lo .
( ) o (1+ Ig)(m%xg(l +x3) — p%l‘g) —p% & m%

This exhibits singularities at p? = 0, m3 = 0 and m3 — p? = 0. By symmetry, the bubble with
n = (1,0,2) also gives singularities at p3 = 0 and m3 — p3 = 0. The massless bubble n = (1,1,0)
is proportional to a power of p3. In summary, the bubble quotients imply the lower bound
LoLp2 02 02 m2 m2— 2. m2 — p2
= \P1,P2,P3, M3, M3 — P1,M3 —Po -
The component (m3 — p?)(m3 — p3) + m3p3 = 0 is the leading Landau singularity of the triangle.
For example, it appears in

oo 00 2 o\ 2 .9
1(4,1,1,2,2) :/ / dzidzs _ 1 (m3 — p?)(m3 — p3)
0 0

= log .
F2lag=1 (M3 —pi)(m3 — p3) +m3p3 —p3m3

Finally, the fact that A € L is in some sense the most complicated. It is an example of a
“singularity of the second type” [? |. As the calculation above shows, A arises as the discriminant
of the resultant [, F]. In particular, it is absent in the integral I(4,1, 1,2, z) above because that
only depends on F. One can see A explicitly for example as the denominator of

o0 0 dxid 1
I(4,1,1,1,2) = /0 /0 U;LSZ = 7 X {sum of several dilogarithms} .
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