Exercises for Feynman integrals*

Erik Panzer

August 3, 2023

1 Schwinger parameters and graph polynomials

1. Starting from the Schwinger parameter representation

$$
I(D, n, z)=\left(\prod_{e=1}^{N} \int_{0}^{\infty} \frac{x_{e}^{n_{e}-1} \mathrm{~d} x_{e}}{\Gamma\left(n_{e}\right)}\right) \frac{e^{-\mathcal{F} / \mathcal{U}}}{\mathcal{U}^{D / 2}},
$$

prove the projective and the Lee-Pomeransky representations.
Hint: Multiply with $1=\int_{0}^{\infty} \delta(\rho-h(x)) \mathrm{d} \rho$ and change variables $x_{e} \rightarrow \rho x_{e}$.
Solution: Introducing ρ and rescaling x_{e} as suggested, the polynomials \mathcal{U} and \mathcal{F} get multiplied by ρ^{L} and ρ^{L+1}, respectively. From $x_{e}^{n_{e}-1} \mathrm{~d} x_{e}$ we also get a factor $\rho^{n_{e}}$ for every edge. Since $h(x)$ is homoeneous, the delta distribution becomes $\delta(\rho-\rho h(x))=\delta(1-h(x)) / \rho$ after the rescaling $x_{e} \rightarrow \rho x_{e}$. The integral over ρ is a gamma function,

$$
I(D, n, z)=\left(\prod_{e=1}^{N} \int_{0}^{\infty} \frac{x_{e}^{n_{e}-1} \mathrm{~d} x_{e}}{\Gamma\left(n_{e}\right)}\right) \frac{\delta(1-h(x))}{\mathcal{U}^{D / 2}} \underbrace{\int_{0}^{\infty} \rho^{\omega-1} e^{-\rho \mathcal{F} / \mathcal{U}} \mathrm{d} \rho}_{\Gamma(\omega)(\mathcal{U} / \mathcal{F})^{\omega}}
$$

which proves the projective representation of the Feynman integral. Applying the same procedure to the Lee-Pomeransky integral, we get

$$
\left(\prod_{e=1}^{N} \int_{0}^{\infty} \frac{x_{e}^{n_{e}-1} \mathrm{~d} x_{e}}{\Gamma\left(n_{e}\right)}\right)(\mathcal{U}+\mathcal{F})^{-D / 2}=\left(\prod_{e=1}^{N} \int_{0}^{\infty} \frac{x_{e}^{n_{e}-1} \mathrm{~d} x_{e}}{\Gamma\left(n_{e}\right)}\right) \delta(1-h(x)) \int_{0}^{\infty} \rho^{\omega-1}(\mathcal{U}+\rho \mathcal{F})^{-D / 2} \mathrm{~d} \rho
$$

The substitution $\rho \rightarrow \rho \cdot \mathcal{U} / \mathcal{F}$ gives

$$
\int_{0}^{\infty} \rho^{\omega-1}(\mathcal{U}+\rho \mathcal{F})^{-D / 2} \mathrm{~d} \rho=\left(\frac{\mathcal{U}}{\mathcal{F}}\right)^{\omega} \mathcal{U}^{-D / 2} \int_{0}^{\infty} \frac{\rho^{\omega-1}}{(1+\rho)^{D / 2}} \mathrm{~d} \rho=\frac{\beta(\omega, D / 2-\omega)}{\mathcal{U}^{D / 2-\omega} \mathcal{F}^{\omega}}
$$

Euler's beta function. In terms of gamma functions, $\beta(\omega, D / 2-\omega)=\Gamma(\omega) \Gamma(D / 2-\omega) / \Gamma(D / 2)$, hence with the prefactor $\Gamma(D / 2) / \Gamma(D / 2-\omega)$ of the Lee-Pomeransky representation, only $\Gamma(\omega)$ remains. We have thus arrived again at the projective representation of the Feynman integral.
2. Compute the number of spanning trees of the following graph:

Hint: Use $\mathcal{U}=\operatorname{det} A$.

[^0]Solution: Consider the loop momentum flow and edge labels as indicated in

The loop momentum through edges $7,8,5$ of X is then $\ell_{1}-\ell_{2}, \ell_{2}-\ell_{3}$ and $\ell_{1}-\ell_{2}+\ell_{3}$, respectively. This gives the matrix

$$
A=\left(\begin{array}{ccc}
x_{1}+x_{5}+x_{6}+x_{7} & -x_{5}-x_{7} & x_{5} \\
-x_{5}-x_{7} & x_{2}+x_{5}+x_{7}+x_{8} & -x_{5}-x_{8} \\
x_{5} & -x_{5}-x_{8} & x_{3}+x_{4}+x_{5}+x_{8}
\end{array}\right) .
$$

The number of spanning trees is equal to $\mathcal{U}=\operatorname{det} A$ evaluated at $x_{e}=1$ for every edge e,

$$
\left.\mathcal{U}\right|_{x_{e}=1}=\operatorname{det}\left(\begin{array}{ccc}
4 & -2 & 1 \\
-2 & 4 & -2 \\
1 & -2 & 4
\end{array}\right)=36
$$

3. Consider a graph G with two external legs, external momentum $p^{2}=-1$, and vanishing internal masses $m_{e}=0$. Let V denote the "vacuum" graph obtained by gluing the external legs into a new edge " 0 ", for example

Show that:
a) $\omega(V)=\omega(G)+n_{0}-D / 2$,

Solution: V has one additional edge $\left(\Rightarrow+n_{0}\right)$ and one additional loop $(\Rightarrow-D / 2)$.
b) $\mathcal{U}_{V}=x_{0} \mathcal{U}_{G}+\mathcal{F}_{G}$,

Hint: trees and 2-forests.
Solution: Every spanning tree T of V either:

- does not contain 0 , in which case T is a spanning tree of V; or
- does contain 0 , in which case $F:=T \backslash\{0\}=T_{1} \sqcup T_{2}$ is a 2 -forest of G with one external leg in T_{1} and the other external leg in T_{2}, hence a 2 -forest that contributes to \mathcal{F}_{G}.
c) $I_{G}=\Gamma(D / 2) \cdot P_{V}$ where

$$
P_{V}:=\underset{\omega(V)=0}{\operatorname{Res}} I_{V}=\left(\prod_{e=0}^{N} \int_{0}^{\infty} \frac{x_{e}^{n_{e}-1} \mathrm{~d} x_{e}}{\Gamma\left(n_{e}\right)}\right) \frac{\delta(1-h(x))}{\mathcal{U}_{V}^{D / 2}} .
$$

Solution: The integral over x_{0} is (compare with the Lee-Pomeransky integral in part 1.)

$$
\frac{1}{\Gamma\left(n_{0}\right)} \int_{0}^{\infty} \frac{x_{0}^{n_{0}-1} \mathrm{~d} x_{0}}{\left(x_{0} \mathcal{U}_{G}+\mathcal{F}_{G}\right)^{D / 2}}=\frac{\beta\left(n_{0}, D / 2-n_{0}\right)}{\Gamma\left(n_{0}\right) \mathcal{F}_{G}^{D / 2}}\left(\frac{\mathcal{F}_{G}}{\mathcal{U}_{G}}\right)^{n_{0}}=\frac{\Gamma\left(D / 2-n_{0}\right)}{\Gamma(D / 2)} \frac{1}{\mathcal{U}_{G}^{n_{0}} \mathcal{F}_{G}^{D / 2-n_{0}}} .
$$

In the integral for P_{V}, we have $\omega(V)=0$, hence $D / 2-n_{0}=\omega(G)$. The above thus becomes

$$
P_{V}=\frac{\Gamma(\omega(G))}{\Gamma(D / 2)}\left(\prod_{e=0}^{N} \int_{0}^{\infty} \frac{x_{e}^{n_{e}-1} \mathrm{~d} x_{e}}{\Gamma\left(n_{e}\right)}\right) \frac{\delta(1-h(x))}{\mathcal{U}_{G}^{D / 2-\omega(G)} \mathcal{F}_{G}^{\omega(G)}}=\frac{1}{\Gamma(D / 2)} \cdot I_{G} .
$$

d) Conclude that in $D=4$ dimensions with indices $n_{e}=1$, the Feynman integrals of the following graphs all coincide:

Solution: The left and centre graphs glue to the same graph V, the wheel with 4 spokes:

$\stackrel{\text { cut } e}{\leftrightarrows}$

Also the indices agree, because $n_{0}=1$ in both cases. Hence both of these propagator integrals are equal to the period of V with unit indices everywhere. (FYI: it is $P_{V}=20 \zeta(5)$.) The third propagator glues into a different graph:

But the central, glued edge has index $n_{0}=D / 2-\omega(G)=0$ so that it can be contracted, therefore $\left.P_{V^{\prime}}\right|_{n_{0}=0}=P_{V}$ because $V^{\prime} / 0 \cong V$.
Remark. This is called the "glue-and-cut" symmetry.

2 Power counting and factorization

1. Determine the leading order in the ε-expansion $(D=4-2 \varepsilon)$ of the $n_{e}=1$ integral

Hint: There are three nested divergences.
Solution: There is a logarithmic overall divergence $\left.\omega\right|_{n_{e}=1}=5 \varepsilon$ and two nested, logarithmic subdivergences

with $\left.\omega(\delta)\right|_{n_{e}=1}=3 \varepsilon$ and $\left.\omega(\gamma)\right|_{n_{e}=1}=4 \varepsilon$. Hence the leading order is a triple pole $1 /[\omega \cdot \omega(\gamma)$. $\omega(\delta)]\left.\right|_{n_{e}=1}=1 /\left(60 \varepsilon^{3}\right)$ with coefficient

$$
\underset{\omega(\delta)=0}{\operatorname{Res}} \underset{\omega(\gamma)=0}{\operatorname{Res}} \operatorname{Res}_{\omega=0} I_{G}=P_{\delta} \cdot P_{\gamma / \delta} \cdot P_{G / \gamma}=6 \zeta(3) \cdot 1 \cdot 1
$$

where δ is the wheel with 3 spokes mentioned in the lecture, and $\gamma / \delta \cong G / \gamma$ are both isomorphic to the 1-loop bubble graph. In conclusion,

$$
I_{G}(4-2 \varepsilon, 1,1,1,1,1,1,1,1,1,1, z)=\frac{\zeta(3)}{10 \varepsilon^{3}}+\mathcal{O}\left(\varepsilon^{-2}\right) .
$$

2. Consider the Feynman integral $I_{G}(D, n, z)$ of the graph

a) Compute the graph polynomials \mathcal{U} and \mathcal{F}. Solution:

$$
\begin{aligned}
& \mathcal{U}=x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4} \\
& \mathcal{F}=-p_{1}^{2} x_{1} x_{2}\left(x_{3}+x_{4}\right)-p_{2}^{2} x_{1} x_{3} x_{4}-p_{3}^{2} x_{2} x_{3} x_{4}+\mathcal{U}\left(m_{1}^{2} x_{1}+m_{2}^{2} x_{2}+m_{3}^{2} x_{3}+m_{4}^{2} x_{4}\right)
\end{aligned}
$$

b) Determine the two singular hyperplanes that contain the point $(D, n)=(4,1,1,1,1)$.

Solution:

- overall divergence: $\omega=0$ where $\omega=n_{1}+n_{2}+n_{3}+n_{4}-D$
- subdivergence $\{3,4\}: \omega(\{3,4\})=0$ where $\omega(\{3,4\})=n_{3}+n_{4}-D / 2$
c) Show that \mathcal{U} and \mathcal{F} factorize to leading order on the subdivergence, and conclude that the leading order of the ε-expansion is

$$
I_{G}(4-2 \varepsilon, 1,1,1,1, z)=\frac{1}{2 \varepsilon^{2}}+\mathcal{O}\left(\varepsilon^{-1}\right)
$$

Solution: With $x_{3} \rightarrow x_{3} \rho$ and $x_{4} \rightarrow x_{4}$, the leading orders as $\rho \rightarrow 0$ are

- $\mathcal{U} \rightarrow \rho\left(x_{3}+x_{4}\right)\left(x_{1}+x_{2}\right)+\mathcal{O}\left(\rho^{2}\right)$
- $\mathcal{F} \rightarrow \rho\left(x_{3}+x_{4}\right)\left[-p_{1}^{2} x_{1} x_{2}+\left(x_{1}+x_{2}\right)\left(m_{1}^{2} x_{1}+m_{2}^{2} x_{2}\right)\right]+\mathcal{O}\left(\rho^{2}\right)$

By factorization, the coefficient of the double pole $1 /[\omega \cdot \omega(\{3,4\})]$ is

$$
\underset{\omega(\{3,4\})=0}{\operatorname{Res}} \underset{\omega=0}{\operatorname{Res}} I_{G}=\underset{\omega(\{3,4\})=0}{\operatorname{Res}} P_{G}=P_{\{3,4\}} \cdot P_{G /\{3,4\}}=1 \cdot 1=1
$$

is the square of the period of the bubble (note both the subgraph $\{3,4\}$, and the quotent graph $G /\{3,4\}$, are bubble graphs). Hence the double pole is $1 /[\omega \cdot \omega(\{3,4\})]=1 /[2 \varepsilon \cdot \varepsilon]$.
d) Show that $I_{G}-I_{G^{\prime}}$ is finite at $(D, n)=(4,1,1,1,1)$, where G^{\prime} is the graph

Hint: Compute both residues.
Solution: The graph G^{\prime} has the same overall power counting, and also the same subdivergence $\omega(\{3,4\})=0$. The corresponding sub- and quotient graphs

$$
3 \bigcap_{0} 4 \subset G, G^{\prime}
$$

are the same for G as they are for G^{\prime}, hence they yield the same residue

$$
\underset{\omega(\{3,4\})=0}{\operatorname{Res}} I_{G}=P_{\{3,4\}} \cdot I_{G /\{3,4\}}=P_{\{3,4\}} \cdot I_{G^{\prime} /\{3,4\}}=\underset{\omega(\{3,4\})=0}{\operatorname{Res}} I_{G^{\prime}} .
$$

The residue $P_{G}=\operatorname{Res}_{\omega=0} I_{G}$ of the overall divergence depends only on \mathcal{U}, but not \mathcal{F}. Since G and G^{\prime} differ only in the attachment of the external legs, they have the same $\mathcal{U}_{G}=\mathcal{U}_{G^{\prime}}$, and therefore $P_{G}=P_{G^{\prime}}$. Hence, the difference $I_{G}-I_{G^{\prime}}$ has neither a pole on $\omega=0$ nor at $\omega(\{3,4\})=0$.

Remark. Such 'rerouting' of momentum flow to compute divergent parts is used in the \mathcal{R}^{*} operation and infrared rearrangement [1].
e) For internal masses $m_{e}=0$, obtain the subleading order $(\propto 1 / \varepsilon)$ of I_{G}.

Hint: Compute $I_{G^{\prime}}$ with the formula for the massless bubble integral in terms of Γ-functions.
Solution: Let $B\left(n_{1}, n_{2}\right)=\Gamma\left(D / 2-n_{1}\right) \Gamma\left(D / 2-n_{2}\right) \Gamma\left(n_{1}+n_{2}-D / 2\right) /\left[\Gamma\left(n_{1}\right) \Gamma\left(n_{2}\right) \Gamma(D-\right.$ $\left.\left.n_{1}-n_{2}\right)\right]$ so that the bubble integral is $\left(-p^{2}\right)^{-\omega} B\left(n_{1}, n_{2}\right)$. Integrating out the subloop yields

Plugging in $n_{e}=1$ and $D=4-2 \varepsilon$, this gives the ε-expansion

$$
\begin{aligned}
I_{G}(4-2 \varepsilon, 1,1,1,1, z) & =I_{G^{\prime}}+\mathcal{O}\left(\varepsilon^{0}\right)=\left(-p_{1}^{2}\right)^{-2 \varepsilon} \frac{\Gamma(1-\varepsilon)^{3} \Gamma(1-2 \varepsilon) \Gamma(\varepsilon) \Gamma(2 \varepsilon)}{\Gamma(1+\varepsilon) \Gamma(2-2 \varepsilon) \Gamma(2-3 \varepsilon)}+\mathcal{O}\left(\varepsilon^{0}\right) \\
& =\frac{1}{2 \varepsilon^{2}}+\frac{1}{\varepsilon}\left(\frac{5}{2}-\gamma_{E}-\log \left(-p_{1}^{2}\right)\right)+\mathcal{O}\left(\varepsilon^{0}\right)
\end{aligned}
$$

Remark. Such finite linear combinations are used in [2] to renormalize ϕ^{4} at 6 loops.

3 Analytic continuation

Consider the following graph with $m_{1}^{2}=m_{2}^{2}=p_{1}^{2}=p_{2}^{2}=m^{2}$ and $m_{3}=0$:

1. Show that $\mathcal{F}_{\{1,2\}}=0$ for the tree subgraph with edges $\{1,2\}=G-\{3\}$. Deduce, via the infrared factorization formula, that \mathcal{F}_{G} must be independent of x_{3}.
Solution: The graph polynomials for the tree are $\mathcal{U}_{\{1,2\}}=1$ and

$$
\mathcal{F}_{\{1,2\}}=\left(m^{2} x_{1}+m^{2} x_{2}\right) \mathcal{U}_{\{1,2\}}-p_{1}^{2} x_{2}-p_{2}^{2} x_{1}=x_{1}\left(m^{2}-p_{2}^{2}\right)+x_{2}\left(m^{2}-p_{1}^{2}\right)=0 .
$$

Under the scaling $\left(x_{1}, x_{2}\right) \rightarrow\left(\rho x_{1}, \rho x_{2}\right)$ of the tree edges, the IR-factorization formula gives

$$
\mathcal{F}_{G}=\rho^{1} \mathcal{U}_{G /\{1,2\}} \mathcal{F}_{\{1,2\}}+\mathcal{O}\left(\rho^{2}\right)=\mathcal{O}\left(\rho^{2}\right)
$$

hence every term in \mathcal{F}_{G} is of degree ≥ 2 in the variables $\left(x_{1}, x_{2}\right)$. But we know that \mathcal{F}_{G} is homogeneous of degree 2 in all variables (because G has 1 loop); hence \mathcal{F}_{G} cannot have any x_{3}.
2. Confirm by computing \mathcal{F}_{G} explicitly.

Solution:

$$
\begin{aligned}
\mathcal{F}_{G} & =m^{2}\left(x_{1}+x_{2}\right)\left(x_{1}+x_{2}+x_{3}\right)-p_{1}^{2} x_{2} x_{3}-p_{2}^{2} x_{1} x_{3}-p_{3}^{2} x_{1} x_{2} \\
& =m^{2}\left(x_{1}+x_{2}\right)^{2}-p_{3}^{2} x_{1} x_{2}+x_{3}(\underbrace{m^{2} x_{1}+m^{2} x_{2}-p_{1}^{2} x_{2}-p_{2}^{2} x_{1}}_{=\mathcal{F}_{\{1,2\}}=0}) \\
& =m^{2}\left(x_{1}+x_{2}\right)^{2}-p_{3}^{2} x_{1} x_{2} .
\end{aligned}
$$

3. Draw the Newton polytope of $\mathcal{U}+\mathcal{F}$.

Hint: It has 5 facets.
Solution: The Lee-Pomeransky polynomial

$$
\mathcal{U}_{G}+\mathcal{F}_{G}=x_{1}+x_{2}+x_{3}+x_{1}^{2} m^{2}+x_{2}^{2} m^{2}+x_{1} x_{2}\left(2 m^{2}-p_{3}^{2}\right)
$$

has 6 different monomials. We read off the Newton polytope

$$
\mathrm{NP}=\mathrm{conv}\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\}=
$$

4. Describe the convergence domain in (D, n_{1}, n_{2}, n_{3}) by inequalities, and find all finite integrals in $D=6$ dimensions with integer n_{e}.
Solution: The Newton polytope is a pyramid with apex $(0,0,1)$ over a quadrilateral in the (x_{1}, x_{2})-plane. This pyramid has 5 supporting hyperplanes (facets) that we can read off easily:

$$
\begin{gathered}
v_{1} \geq 0, \quad v_{2} \geq 0, \quad v_{3} \geq 0 \\
v_{1}+v_{2}+v_{3} \geq 1, \quad v_{1}+v_{2}+2 v_{3} \leq 2 .
\end{gathered}
$$

For example, $v_{3}=0$ is the plane containing the base quadrilateral; and $v_{1}+v_{2}+2 v_{3}=2$ is the supporting hyperplane that contains the three vertices $(2,0,0),(0,2,0)$ and $(0,0,1)$.
The convergence region is $\operatorname{Re}(n) \in \operatorname{interior}(D / 2 \cdot \mathrm{NP})$, hence the conditions are

$$
\begin{gathered}
\operatorname{Re}\left(n_{1}\right)>0, \quad \operatorname{Re}\left(n_{2}\right)>0, \quad \operatorname{Re}\left(n_{3}\right)>0, \\
\operatorname{Re}\left(n_{1}+n_{2}+n_{3}\right)>\operatorname{Re}(D / 2), \quad \operatorname{Re}\left(n_{1}+n_{2}+2 n_{3}\right)<\operatorname{Re}(D) .
\end{gathered}
$$

For $D=6$, the only integer solutions are $n=(2,1,1)$ and $n=(1,2,1)$.
5. Set $D=4-2 \varepsilon$ and all $n_{e}=1$. In the Lee-Pomeransky representation, insert $1=\int_{0}^{\infty} \delta\left(\rho-x_{1}^{-1}\right) \mathrm{d} \rho$, rescale $x_{e} \rightarrow \rho^{\sigma_{e}} x_{e}$ for $\sigma=(-1,-1,-2)$, and factor out the lowest powers of ρ to make the infrared divergence explicit.

Solution: Under this scaling, we have

$$
\begin{array}{rlr}
\mathrm{d} x_{1} \rightarrow \rho^{-1} \mathrm{~d} x_{1}, & \mathrm{~d} x_{2} \rightarrow \rho^{-1} \mathrm{~d} x_{2}, & \mathrm{~d} x_{3} \rightarrow \rho^{-2} \mathrm{~d} x_{3}, \\
\mathcal{U} \rightarrow \rho^{-2}\left(x_{3}+\rho x_{1}+\rho x_{2}\right), & \mathcal{F} \rightarrow \rho^{-2} \mathcal{F}, & \delta\left(\rho-x_{1}^{-1}\right) \rightarrow \rho^{-1} \delta\left(1-x_{1}\right) .
\end{array}
$$

With $D / 2=2-\varepsilon$ and $\omega=1+\varepsilon$, the Lee-Pomeransky integral thus becomes

$$
I=\frac{\Gamma(2-\varepsilon)}{\Gamma(1-2 \varepsilon)} \int_{0}^{\infty} \mathrm{d} x_{1} \int_{0}^{\infty} \mathrm{d} x_{2} \int_{0}^{\infty} \mathrm{d} x_{3} \delta\left(1-x_{1}\right) \int_{0}^{\infty} \frac{\rho^{-2 \varepsilon-1} \mathrm{~d} \rho}{\left(x_{3}+\mathcal{F}+\rho x_{1}+\rho x_{2}\right)^{2-\varepsilon}} .
$$

The integral over ρ is divergent at the lower boundary, unless $\omega(\sigma)=-2 \varepsilon>0$.
6. Integrate by parts in ρ to obtain the integral representation

$$
I=-\frac{\Gamma(3-\varepsilon)}{2 \varepsilon \Gamma(1-2 \varepsilon)} \int_{0}^{\infty} \mathrm{d} x_{1} \int_{0}^{\infty} \mathrm{d} x_{2} \int_{0}^{\infty} \mathrm{d} x_{3} \frac{x_{1}+x_{2}}{(\mathcal{U}+\mathcal{F})^{3-\varepsilon}} .
$$

and thus give a convergent integral formula for each coefficient in the ε-expansion.

Solution: The integration by parts in ρ gives

$$
\int_{0}^{\infty} \rho^{-2 \varepsilon-1} \mathrm{~d} \rho\left(x_{3}+\mathcal{F}+\rho x_{1}+\rho x_{2}\right)^{\varepsilon-2}=\frac{\varepsilon-2}{2 \varepsilon} \int_{0}^{\infty} \frac{\left(x_{1}+x_{2}\right) \rho^{-2 \varepsilon} \mathrm{~d} \rho}{\left(x_{3}+\mathcal{F}+\rho x_{1}+\rho x_{2}\right)^{3-\varepsilon}}
$$

Inverting the scaling, $x_{1} \rightarrow x_{1} \rho, x_{2} \rightarrow x_{2} \rho$ and $x_{3} \rightarrow x_{3} \rho^{2}$ to return to the original Schwinger parameters and to get rid of ρ, the resulting integral representation is as stated. The divergence at $\varepsilon=0$ is explicit in the prefactor, but (in contrast to the original Lee-Pomeransky representation) the integral over the Schwinger parameters is holomorphic also at $\varepsilon=0$. Hence we can expand under the integral:

$$
I=-\frac{\Gamma(3-\varepsilon)}{2 \Gamma(1-2 \varepsilon)} \sum_{k \geq 0} \frac{\varepsilon^{k-1}}{k!} \int_{0}^{\infty} \mathrm{d} x_{1} \int_{0}^{\infty} \mathrm{d} x_{2} \int_{0}^{\infty} \mathrm{d} x_{3} \frac{x_{1}+x_{2}}{(\mathcal{U}+\mathcal{F})^{3}} \log ^{k}(\mathcal{U}+\mathcal{F}) .
$$

7. Show that the leading order (coefficient of $1 / \varepsilon$) is proportional to a bubble integral.

Solution: For the leading order, the ρ-integral in 6 . simplifies to

$$
\frac{1}{2 \varepsilon} \int_{0}^{\infty} \rho^{-2 \varepsilon} \mathrm{~d} \rho \frac{\partial}{\partial \rho} \frac{1}{\left(x_{3}+\mathcal{F}+\rho x_{1}+\rho x_{2}\right)^{2-\varepsilon}}=-\frac{1}{2 \varepsilon} \frac{1}{\left(x_{3}+\mathcal{F}\right)^{2}}+\mathcal{O}\left(\varepsilon^{0}\right)
$$

and the subsequent x_{3}-integral is straightforward, leaving:

$$
I=-\frac{1}{2 \varepsilon} \int_{0}^{\infty} \mathrm{d} x_{1} \int_{0}^{\infty} \mathrm{d} x_{2} \frac{\delta\left(1-x_{1}\right)}{\mathcal{F}}+\mathcal{O}\left(\varepsilon^{0}\right) .
$$

Up to the prefactor, this is identical to the bubble integral of $G / 3$ in $D=2$ dimensions.
8. Explain where the divergence comes from in momentum space.

Solution: Let ℓ denote the momentum flowing through edge 3. Then

$$
\begin{aligned}
I(D, 1,1,1, z) & =\int_{\mathbb{R}^{1, D-1}} \frac{\mathrm{~d}^{D} \ell}{i \pi^{D / 2}} \frac{1}{-\ell^{2}} \frac{1}{m^{2}-\left(\ell+p_{1}\right)^{2}} \frac{1}{m^{2}-\left(\ell-p_{2}\right)^{2}} \\
& =\int_{\mathbb{R}^{1, D-1}} \frac{\mathrm{~d}^{D} \ell}{i \pi^{D / 2}} \frac{1}{-\ell^{2}} \frac{1}{\ell^{2}+2 \ell p_{1}} \frac{1}{\ell^{2}-2 \ell p_{2}}
\end{aligned}
$$

For $\ell \rightarrow 0$, the integrand grows with $\|\ell\|^{-4}$, while the volume element in $D=4$ scales as $\|\ell\|^{3} \mathrm{~d}\|\ell\|$. This shows a logarithmic divergence at $\ell \rightarrow 0$.

4 Polynomial reduction

1. Show that the Landau variety of the massless box integral $\left(m_{e}^{2}=p_{i}^{2}=0\right)$

Solution: Start with the singularities of the integrand, in the projective representation with $\delta\left(1-x_{4}\right):$ Set $s=-\left(p_{1}+p_{2}\right)^{2}$ and $t=-\left(p_{1}+p_{4}\right)^{2}$, then

$$
S=\left\{\left.\mathcal{U}\right|_{x_{4}=1},\left.\mathcal{F}\right|_{x_{4}=1}\right\}=\left\{1+x_{1}+x_{2}+x_{3}, s x_{2}+t x_{1} x_{3}\right\} .
$$

Reduction of x_{1} :

$$
S_{1}=\{\underbrace{1+x_{2}+x_{3}, s, x_{2}}_{x_{1} \rightarrow 0}, \underbrace{t, x_{3}}_{x_{1} \rightarrow \infty}, \underbrace{s x_{2}-t x_{3}\left(1+x_{2}+x_{3}\right)}_{\text {resultant }}\}
$$

Reduction of x_{2} :

$$
S_{1,2}=\left\{s, t, x_{3}, 1+x_{3}, s-t x_{3}\right\}
$$

Reduction of x_{3} :

$$
S_{1,2,3}=\{s, t, s+t\}
$$

Hence the Landau variety $L \subseteq S_{1,2,3}$ has at most 3 components. Clearly $\{s=0\}$ and $\{t=0\}$ are necessary, since the special cases $n=(0,1,0,1)$ and $n=(1,0,1,0)$ correspond to bubble integrals $\propto s^{-\varepsilon}$ and $\propto t^{-\varepsilon}$, respectively, which have singularities at $s=0$ and $t=0$. To see that singularities at $s+t=0$ also appear, consider for example the finite box integral in $D=6$:

$$
\begin{aligned}
I(6,1,1,1,1, s, t) & =\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3}}{\left(s x_{2}+t x_{1} x_{3}\right)\left(1+x_{1}+x_{2}+x_{3}\right)^{2}}, \quad \text { set } x_{2} \rightarrow x_{2} x_{3} \\
& =\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3}}{\left(s x_{2}+t x_{1}\right)\left(1+x_{1}+x_{3}\left(1+x_{2}\right)\right)^{2}} \\
& =\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2}}{\left(s x_{2}+t x_{1}\right)\left(1+x_{1}\right)\left(1+x_{2}\right)}=\int_{0}^{\infty} \frac{\mathrm{d} x_{1}}{\left(1+x_{1}\right)\left(t x_{1}-s\right)} \log \frac{t x_{1}}{s} \\
& =\frac{\pi^{2}+\log ^{2}(s / t)}{2(s+t)}
\end{aligned}
$$

Taking two variations around $s=0$, this becomes $(2 i \pi)^{2} /(s+t)$, which clearly has a pole at $s+t=0$. In conclusion, $L=S_{1,2,3}=\{s, t, s+t\}$.
2. Consider the triangle integral for generic momenta $p_{1}^{2}, p_{2}^{2}, p_{3}^{2}$ as in the lecture, but with an internal mass $m_{3} \neq 0\left(\right.$ still $\left.m_{1}=m_{2}=0\right)$:

Show that with $\Delta=p_{1}^{4}+p_{2}^{4}+p_{3}^{4}-2 p_{1}^{2} p_{2}^{2}-2 p_{1}^{2} p_{3}^{2}-2 p_{2}^{2} p_{3}^{2}$, its Landau variety is

$$
L=\left\{p_{1}^{2}, p_{2}^{2}, p_{3}^{2}, \Delta, m_{3}^{2}, m_{3}^{2}-p_{1}^{2}, m_{3}^{2}-p_{2}^{2},\left(m_{3}^{2}-p_{1}^{2}\right)\left(m_{3}^{2}-p_{2}^{2}\right)+m_{3}^{2} p_{3}^{2}\right\}
$$

Solution: In the projective representation with $x_{3}=1$, the singularities of the integrand are

$$
S=\{\underbrace{1+x_{1}+x_{2}}_{\left.\mathcal{U}\right|_{x_{3}=1}}, \underbrace{-p_{1}^{2} x_{2}-p_{2}^{2} x_{1}-p_{3}^{2} x_{1} x_{2}+m_{3}^{2}\left(1+x_{1}+x_{2}\right)}_{\left.\mathcal{F}\right|_{x_{3}=1}}\}
$$

Reduction of x_{1} :

$$
S_{1}=\{\underbrace{1+x_{2}, m_{3}^{2}\left(1+x_{2}\right)-p_{1}^{2} x_{2}}_{x_{1} \rightarrow 0}, \underbrace{m_{3}^{2}-p_{2}^{2}-p_{3}^{2} x_{2}}_{x_{1} \rightarrow \infty}, \underbrace{\left(1+x_{2}\right)\left(p_{2}^{2}+p_{3}^{2} x_{2}\right)-p_{1}^{2} x_{2}}_{\text {resultant }[\mathcal{U}, \mathcal{F}]}\}
$$

Reduction of x_{2} :

$$
S_{1,2}=\{\underbrace{m_{3}^{2}, m_{3}^{2}-p_{2}^{2}, p_{2}^{2}}_{x_{2} \rightarrow 0}, \underbrace{m_{3}^{2}-p_{1}^{2}, p_{3}^{2}}_{x_{2} \rightarrow \infty}, \underbrace{p_{1}^{2}, m_{3}^{2}+p_{3}^{2}-p_{2}^{2},\left(m_{3}^{2}-p_{1}^{2}\right)\left(m_{3}^{2}-p_{2}^{2}\right)-m_{3}^{2} p_{3}^{2}}_{\text {resultants }}, \Delta\}
$$

where $\Delta=p_{1}^{4}+p_{2}^{4}+p_{3}^{4}-2 p_{1}^{2} p_{2}^{2}-2 p_{1}^{2} p_{3}^{2}-2 p_{2}^{2} p_{3}^{2}$ denotes the discriminant that also appeared in the massless case. By symmetry (flipping $x_{1} \leftrightarrow x_{2}$ and $p_{1} \leftrightarrow p_{2}$), note

$$
S_{2,1}=\left.S_{1,2}\right|_{p_{1} \leftrightarrow p_{2}}=\left(S_{1,2} \backslash\left\{m_{3}^{2}+p_{3}^{2}-p_{2}^{2}\right\}\right) \cup\left\{m_{3}^{2}+p_{3}^{2}-p_{1}^{2}\right\}
$$

Hence the component $m_{3}^{2}+p_{3}^{2}-p_{2}^{2} \in S_{1,2}$ is spurious, and we get the upper bound

$$
L \subseteq S_{1,2} \cap S_{2,1}=\left\{p_{1}^{2}, p_{2}^{2}, p_{3}^{2}, \Delta, m_{3}^{2}, m_{3}^{2}-p_{1}^{2}, m_{3}^{2}-p_{2}^{2},\left(m_{3}^{2}-p_{1}^{2}\right)\left(m_{3}^{2}-p_{2}^{2}\right)+m_{3}^{2} p_{3}^{2}\right\} .
$$

In fact, all these singularities indeed appear, hence $L=S_{1,2} \cap S_{2,1}$.
For example, setting $n_{1}=0$, the contracted graph is a bubble with one massless and one massive propagator. In $D=4$ with the massive propagator squared ($n_{3}=2$), this bubble integral is

$$
I(4,0,1,2, z)=\int_{0}^{\infty} \frac{x_{3} \mathrm{~d} x_{3}}{\left(1+x_{3}\right)\left(m_{3}^{2} x_{3}\left(1+x_{3}\right)-p_{1}^{2} x_{3}\right)}=\frac{1}{-p_{1}^{2}} \log \frac{m_{3}^{2}-p_{1}^{2}}{m_{3}^{2}} .
$$

This exhibits singularities at $p_{1}^{2}=0, m_{3}^{2}=0$ and $m_{3}^{2}-p_{1}^{2}=0$. By symmetry, the bubble with $n=(1,0,2)$ also gives singularities at $p_{2}^{2}=0$ and $m_{3}^{2}-p_{2}^{2}=0$. The massless bubble $n=(1,1,0)$ is proportional to a power of p_{3}^{2}. In summary, the bubble quotients imply the lower bound

$$
L \supseteq\left\{p_{1}^{2}, p_{2}^{2}, p_{3}^{2}, m_{3}^{2}, m_{3}^{2}-p_{1}^{2}, m_{3}^{2}-p_{2}^{2}\right\} .
$$

The component $\left(m_{3}^{2}-p_{1}^{2}\right)\left(m_{3}^{2}-p_{2}^{2}\right)+m_{3}^{2} p_{3}^{2}=0$ is the leading Landau singularity of the triangle. For example, it appears in

$$
I(4,1,1,2, z)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2}}{\left.\overline{\mathcal{F}}^{2}\right|_{x_{3}=1}}=\frac{1}{\left(m_{3}^{2}-p_{1}^{2}\right)\left(m_{3}^{2}-p_{2}^{2}\right)+m_{3}^{2} p_{3}^{2}} \log \frac{\left(m_{3}^{2}-p_{1}^{2}\right)\left(m_{3}^{2}-p_{2}^{2}\right)}{-p_{3}^{2} m_{3}^{2}} .
$$

Finally, the fact that $\Delta \in L$ is in some sense the most complicated. It is an example of a "singularity of the second type" [?]. As the calculation above shows, Δ arises as the discriminant of the resultant $[\mathcal{U}, \mathcal{F}]$. In particular, it is absent in the integral $I(4,1,1,2, z)$ above because that only depends on \mathcal{F}. One can see Δ explicitly for example as the denominator of

$$
I(4,1,1,1, z)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2}}{\left.\mathcal{U} \mathcal{F}\right|_{x_{3}=1}}=\frac{1}{\sqrt{\Delta}} \times\{\text { sum of several dilogarithms }\} .
$$

References

[1] K. G. Chetyrkin, Combinatorics of R-, R^{-1}-, and R^{*}-operations and asymptotic expansions of Feynman integrals in the limit of large momenta and masses, tech. rep., Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Munich, Germany, Mar., 1991, arXiv:1701.08627 [hep-th].
[2] D. B. Fairlie, P. V. Landshoff, J. Nuttall and J. C. Polkinghorne, Singularities of the second type, Journal of Mathematical Physics 3 (1962), no. 4 pp. 594-602.
[3] M. V. Kompaniets and E. Panzer, Minimally subtracted six loop renormalization of $O(n)$-symmetric ϕ^{4} theory and critical exponents, Phys. Rev. D 96 (Aug., 2017) p. 036016, arXiv:1705.06483 [hep-th].

[^0]: ${ }^{0}$ complementing lectures at the Amplitudes Summer School 2023. Adapted from MITP Amplitudes Games 2021.

