

Physical thresholds and cluster decomposition

Zeno Capatti ETH Zürich

Amplitudes 2023 07/06/2023, CERN, Switzerland

Physical thresholds and cluster decomposition

Zeno Capatti ETH Zürich

Amplitudes 2023 07/06/2023, CERN, Switzerland

First part: Cross-Free Families

- Sketch the derivation of the representation

$$f_{G_u}^{3d} = \int \left[\prod_{i=1}^{L} \frac{dk_i^0}{2\pi} \right] \frac{\mathcal{N}(\{q_e^0\}_{e \in \mathcal{E}})}{\prod_{e \in \mathcal{E}} (q_e^0)^2 - E_e^2}$$

- Highlight role of connectedness by comparison with Time-Ordered Perturbation Theory

(spurious singularities in TOPT)

Notation

Energy conservation

Acyclic graphs

We start with an arbitrary diagram integrated over loop energies only

Energy conservation

$$f_{G_u}^{3\mathrm{d}} = \int \left[\prod_{i=1}^L \frac{\mathrm{d}k_i^0}{2\pi} \right] \frac{\mathcal{N}(\{q_e^0\}_{e \in \mathcal{E}})}{\prod_{e \in \mathcal{E}} (q_e^0)^2 - E_e^2} \qquad \qquad \begin{aligned} q_e^0 &= p_e^0 + \sum_{i=1}^L s_{ei}k_i^0 & G_u \text{ undirected graph} \\ E_e &= \sqrt{|\vec{q}_e|^2 + m_e^2} & \mathcal{E} \text{ set of edges of graph} \end{aligned}$$

$$q_e^0 = p_e^0 + \sum_{i=1}^L s_{ei} k_i^0$$

$$G_u$$
 undirected graph

$${\mathcal E}$$
 set of edges of graph

Acyclic graphs

Notation

Energy conservation

Acyclic graphs

Acyclic graphs and edge contraction

We start with an arbitrary diagram integrated over loop energies only

$$f_{G_u}^{3\mathrm{d}} = \int \left[\prod_{i=1}^L \frac{\mathrm{d}k_i^0}{2\pi} \right] \frac{\mathcal{N}(\{q_e^0\}_{e \in \mathcal{E}})}{\prod_{e \in \mathcal{E}} (q_e^0)^2 - E_e^2} \qquad \qquad \begin{aligned} q_e^0 &= p_e^0 + \sum_{i=1}^L s_{ei}k_i^0 & G_u \text{ undirected graph} \\ E_e &= \sqrt{|\vec{q}_e|^2 + m_e^2} & \mathcal{E} \text{ set of edges of graph} \end{aligned}$$

$$q_e^0 = p_e^0 + \sum_{i=1}^L s_{ei} k_i^0$$

$$E_e = \sqrt{|\vec{q}_e|^2 + m_e^2}$$

Performing the integrals using residue theorem is a matter of correctly addressing energy conservation (depending on how, get TOPT, LTD, CFF). For CFF (zc [arXiv:2211.09653]):

$$\frac{1}{(q_e^0)^2 - E_e^2} = \int dx_e d\tau_e \frac{e^{i\tau_e(x_e - q_e^0)}}{x_e^2 - E_e^2}$$

Notation

Energy conservation

Acyclic graphs

Acyclic graphs and edge contraction

We start with an arbitrary diagram integrated over loop energies only

$$f_{G_u}^{3\mathrm{d}} = \int \left[\prod_{i=1}^L \frac{\mathrm{d}k_i^0}{2\pi} \right] \frac{\mathcal{N}(\{q_e^0\}_{e \in \mathcal{E}})}{\prod_{e \in \mathcal{E}} (q_e^0)^2 - E_e^2} \qquad \qquad \begin{aligned} q_e^0 &= p_e^0 + \sum_{i=1}^L s_{ei}k_i^0 & G_u \text{ undirected graph} \\ E_e &= \sqrt{|\vec{q_e}|^2 + m_e^2} & \mathcal{E} \text{ set of edges of graph} \end{aligned}$$

$$q_e^0 = p_e^0 + \sum_{i=1}^L s_{ei} k_i^0$$

$$G_u$$
 undirected graph

$$E_e = \sqrt{|\vec{q}_e|^2 + m_e^2}$$

Performing the integrals using residue theorem is a matter of correctly addressing energy conservation (depending on how, get TOPT, LTD, CFF). For CFF (zc [arXiv:2211.09653]):

$$\frac{1}{(q_e^0)^2 - E_e^2} = \int dx_e d\tau_e \frac{e^{i\tau_e(x_e - q_e^0)}}{x_e^2 - E_e^2} = \sum_{\sigma_e \in \{\pm 1\}} \int_0^\infty \frac{d\tau_e}{2E_e} e^{i\tau_e(E_e - \sigma_e q_e^0)}$$

Notation

We start with an arbitrary diagram integrated over loop energies only

Energy conservation

$$f_{G_u}^{3d} = \int \left[\prod_{i=1}^{L} \frac{dk_i^0}{2\pi} \right] \frac{\mathcal{N}(\{q_e^0\}_{e \in \mathcal{E}})}{\prod_{e \in \mathcal{E}} (q_e^0)^2 - E_e^2}$$
 q_e^0

$$f_{G_u}^{3\mathrm{d}} = \int \left[\prod_{i=1}^L \frac{\mathrm{d}k_i^0}{2\pi} \right] \frac{\mathcal{N}(\{q_e^0\}_{e \in \mathcal{E}})}{\prod_{e \in \mathcal{E}} (q_e^0)^2 - E_e^2} \qquad \qquad \begin{aligned} q_e^0 &= p_e^0 + \sum_{i=1}^L s_{ei}k_i^0 & G_u \text{ undirected graph} \\ E_e &= \sqrt{|\vec{q}_e|^2 + m_e^2} & \mathcal{E} \text{ set of edges of graph} \end{aligned}$$

Performing the integrals using residue theorem is a matter of correctly addressing energy conservation (depending on how, get TOPT, LTD, CFF). For CFF (zc [arXiv:2211.09653]):

$$\frac{1}{(q_e^0)^2 - E_e^2} = \int dx_e d\tau_e \frac{e^{i\tau_e(x_e - q_e^0)}}{x_e^2 - E_e^2} = \sum_{\sigma_e \in \{\pm 1\}} \int_0^\infty \frac{d\tau_e}{2E_e} e^{i\tau_e(E_e - \sigma_e q_e^0)}$$

Acyclic graphs

After insertion of this identity, loop energy integrations are trivial (dependence is only in exponents)

Notation

We start with an arbitrary diagram integrated over loop energies only

Energy conservation

$$f_{G_u}^{3\mathrm{d}} = \int \left[\prod_{i=1}^L \frac{\mathrm{d}k_i^0}{2\pi} \right] \frac{\mathcal{N}(\{q_e^0\}_{e \in \mathcal{E}})}{\prod_{e \in \mathcal{E}} (q_e^0)^2 - E_e^2} \qquad \qquad \begin{aligned} q_e^0 &= p_e^0 + \sum_{i=1}^L s_{ei} k_i^0 & G_u \text{ undirected graph} \\ E_e &= \sqrt{|\vec{q}_e|^2 + m_e^2} & \mathcal{E} \text{ set of edges of graph} \end{aligned}$$

$$q_e^0 = p_e^0 + \sum_{i=1}^L s_{ei} k_i^0$$

$$E_e = \sqrt{|\vec{q_e}|^2 + m_e^2}$$

Performing the integrals using residue theorem is a matter of correctly addressing energy conservation (depending on how, get TOPT, LTD, CFF). For CFF (zc [arXiv:2211.09653]):

$$\frac{1}{(q_e^0)^2 - E_e^2} = \int dx_e d\tau_e \frac{e^{i\tau_e(x_e - q_e^0)}}{x_e^2 - E_e^2} = \sum_{\sigma_e \in \{\pm 1\}} \int_0^\infty \frac{d\tau_e}{2E_e} e^{i\tau_e(E_e - \sigma_e q_e^0)}$$

Acyclic graphs

After insertion of this identity, loop energy integrations are trivial (dependence is only in exponents)

$$f_{G_u}^{3d} = \sum_{\substack{\text{directed graph } G}} \frac{\mathcal{N}_G}{\prod_{e \in \mathcal{E}} 2E_e} \int_{\mathcal{K}_G} \left[\prod_{e \in \mathcal{E}} d\tau_e e^{i\tau_e (E_e - p_e^G)} \right]$$

Notation

We start with an arbitrary diagram integrated over loop energies only

$$f_{G_u}^{3d} = \int \left[\prod_{i=1}^{L} \frac{dk_i^0}{2\pi} \right] \frac{\mathcal{N}(\{q_e^0\}_{e \in \mathcal{E}})}{\prod_{e \in \mathcal{E}} (q_e^0)^2 - E_e^2}$$

$$f_{G_u}^{3\mathrm{d}} = \int \left[\prod_{i=1}^L \frac{\mathrm{d}k_i^0}{2\pi} \right] \frac{\mathcal{N}(\{q_e^0\}_{e \in \mathcal{E}})}{\prod_{e \in \mathcal{E}} (q_e^0)^2 - E_e^2} \qquad \qquad \begin{aligned} q_e^0 &= p_e^0 + \sum_{i=1}^L s_{ei} k_i^0 & G_u \text{ undirected graph} \\ E_e &= \sqrt{|\vec{q}_e|^2 + m_e^2} & \mathcal{E} \text{ set of edges of graph} \end{aligned}$$

Performing the integrals using residue theorem is a matter of correctly addressing energy conservation (depending on how, get TOPT, LTD, CFF). For CFF (zc [arXiv:2211.09653]):

$$\frac{1}{(q_e^0)^2 - E_e^2} = \int dx_e d\tau_e \frac{e^{i\tau_e(x_e - q_e^0)}}{x_e^2 - E_e^2} = \sum_{\sigma_e \in \{\pm 1\}} \int_0^\infty \frac{d\tau_e}{2E_e} e^{i\tau_e(E_e - \sigma_e q_e^0)}$$

Acyclic graphs

After insertion of this identity, loop energy integrations are trivial (dependence is only in exponents)

$$f_{G_u}^{3d} = \sum_{\substack{\text{directed} \\ G \text{ or } G \text{ or } G}} \frac{\mathcal{N}_G}{\prod_{e \in \mathcal{E}} 2E_e} \int_{\mathcal{K}_G} \left[\prod_{e \in \mathcal{E}} \mathrm{d}\tau_e e^{i\tau_e(E_e - p_e^G)} \right] \quad \text{with} \quad \mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei}^G \tau_e = 0, \ i = 1, ..., L \right\}$$

Notation

We start with an arbitrary diagram integrated over loop energies only

$$f_{G_u}^{3\mathrm{d}} = \int \left[\prod_{i=1}^L \frac{\mathrm{d}k_i^0}{2\pi} \right] \frac{\mathcal{N}(\{q_e^0\}_{e \in \mathcal{E}})}{\prod_{e \in \mathcal{E}} (q_e^0)^2 - E_e^2} \qquad \qquad \begin{aligned} q_e^0 &= p_e^0 + \sum_{i=1}^L s_{ei}k_i^0 & G_u \text{ undirected graph} \\ E_e &= \sqrt{|\vec{q}_e|^2 + m_e^2} & \mathcal{E} \text{ set of edges of graph} \end{aligned}$$

$$q_e^0 = p_e^0 + \sum_{i=1}^L s_{ei} k_i^0$$

Performing the integrals using residue theorem is a matter of correctly addressing energy conservation (depending on how, get TOPT, LTD, CFF). For CFF (zc [arXiv:2211.09653]):

$$\frac{1}{(q_e^0)^2 - E_e^2} = \int dx_e d\tau_e \frac{e^{i\tau_e(x_e - q_e^0)}}{x_e^2 - E_e^2} = \sum_{\sigma_e \in \{\pm 1\}} \int_0^\infty \frac{d\tau_e}{2E_e} e^{i\tau_e(E_e - \sigma_e q_e^0)}$$

Acyclic graphs

After insertion of this identity, loop energy integrations are trivial (dependence is only in exponents)

$$f_{G_u}^{3d} = \sum_{\substack{\text{directed} \\ \text{graph } G}} \frac{\mathcal{N}_G}{\prod_{e \in \mathcal{E}} 2E_e} \int_{\mathcal{K}_G} \left[\prod_{e \in \mathcal{E}} \mathrm{d}\tau_e e^{i\tau_e(E_e - p_e^G)} \right] \quad \text{with } \mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei}^G \tau_e = 0, \ i = 1, ..., L \right\}$$

 (\mathcal{K}_G) is empty if graph not acyclic)

Notation

We start with an arbitrary diagram integrated over loop energies only

$$f_{G_u}^{3\mathrm{d}} = \int \left[\prod_{i=1}^L \frac{\mathrm{d}k_i^0}{2\pi} \right] \frac{\mathcal{N}(\{q_e^0\}_{e \in \mathcal{E}})}{\prod_{e \in \mathcal{E}} (q_e^0)^2 - E_e^2} \qquad \qquad \begin{aligned} q_e^0 &= p_e^0 + \sum_{i=1}^L s_{ei} k_i^0 & G_u \text{ undirected graph} \\ E_e &= \sqrt{|\vec{q}_e|^2 + m_e^2} & \mathcal{E} \text{ set of edges of graph} \end{aligned}$$

$$q_e^0 = p_e^0 + \sum_{i=1}^L s_{ei} k_i^0$$

Performing the integrals using residue theorem is a matter of correctly addressing energy conservation (depending on how, get TOPT, LTD, CFF). For CFF (zc [arXiv:2211.09653]):

$$\frac{1}{(q_e^0)^2 - E_e^2} = \int dx_e d\tau_e \frac{e^{i\tau_e(x_e - q_e^0)}}{x_e^2 - E_e^2} = \sum_{\sigma_e \in \{\pm 1\}} \int_0^\infty \frac{d\tau_e}{2E_e} e^{i\tau_e(E_e - \sigma_e q_e^0)}$$

Acyclic graphs

After insertion of this identity, loop energy integrations are trivial (dependence is only in exponents)

with
$$\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei}^G \tau_e = 0, i = 1, ..., L \right\}$$

 \mathcal{K}_G is empty if graph not acyclic)

Notation

We start with an arbitrary diagram integrated over loop energies only

$$f_{G_u}^{3\mathrm{d}} = \int \left[\prod_{i=1}^L \frac{\mathrm{d}k_i^0}{2\pi} \right] \frac{\mathcal{N}(\{q_e^0\}_{e \in \mathcal{E}})}{\prod_{e \in \mathcal{E}} (q_e^0)^2 - E_e^2} \qquad \qquad \begin{aligned} q_e^0 &= p_e^0 + \sum_{i=1}^L s_{ei} k_i^0 & G_u \text{ undirected graph} \\ E_e &= \sqrt{|\vec{q}_e|^2 + m_e^2} & \mathcal{E} \text{ set of edges of graph} \end{aligned}$$

$$q_e^0 = p_e^0 + \sum_{i=1}^L s_{ei} k_i^0$$

$$E_e = \sqrt{|\vec{q_e}|^2 + m_e^2}$$

Performing the integrals using residue theorem is a matter of correctly addressing energy conservation (depending on how, get TOPT, LTD, CFF). For CFF (zc [arXiv:2211.09653]):

$$\frac{1}{(q_e^0)^2 - E_e^2} = \int dx_e d\tau_e \frac{e^{i\tau_e(x_e - q_e^0)}}{x_e^2 - E_e^2} = \sum_{\sigma_e \in \{\pm 1\}} \int_0^\infty \frac{d\tau_e}{2E_e} e^{i\tau_e(E_e - \sigma_e q_e^0)}$$

Acyclic graphs

After insertion of this identity, loop energy integrations are trivial (dependence is only in exponents)

$$f_{G_u}^{3d} = \sum_{\substack{\text{acyclic} \\ \text{graph } C}} \frac{\mathcal{N}_G}{\prod_{e \in \mathcal{E}} 2E_e} \int_{\mathcal{K}_G} \left[\prod_{e \in \mathcal{E}} d\tau_e e^{i\tau_e(E_e - p_e^G)} \right] \text{ with } \mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei}^G \tau_e = 0, i = 1, ..., L \right\}$$

 \mathcal{K}_G is empty if graph not acyclic)

Notation

We start with an arbitrary diagram integrated over loop energies only

$$f_{G_u}^{3d} = \int \left[\prod_{i=1}^{L} \frac{dk_i^0}{2\pi} \right] \frac{\mathcal{N}(\{q_e^0\}_{e \in \mathcal{E}})}{\prod_{e \in \mathcal{E}} (q_e^0)^2 - E_e^2}$$

$$f_{G_u}^{3\mathrm{d}} = \int \left[\prod_{i=1}^L \frac{\mathrm{d}k_i^0}{2\pi} \right] \frac{\mathcal{N}(\{q_e^0\}_{e \in \mathcal{E}})}{\prod_{e \in \mathcal{E}} (q_e^0)^2 - E_e^2} \qquad \qquad q_e^0 = p_e^0 + \sum_{i=1}^L s_{ei} k_i^0 \qquad \qquad G_u \text{ undirected graph}$$

$$E_e = \sqrt{|\vec{q_e}|^2 + m_e^2} \qquad \qquad \mathcal{E} \text{ set of edges of graph}$$

Performing the integrals using residue theorem is a matter of correctly addressing energy conservation (depending on how, get TOPT, LTD, CFF). For CFF (zc [arXiv:2211.09653]):

$$\frac{1}{(q_e^0)^2 - E_e^2} = \int dx_e d\tau_e \frac{e^{i\tau_e(x_e - q_e^0)}}{x_e^2 - E_e^2} = \sum_{\sigma_e \in \{\pm 1\}} \int_0^\infty \frac{d\tau_e}{2E_e} e^{i\tau_e(E_e - \sigma_e q_e^0)}$$

Acyclic graphs

After insertion of this identity, loop energy integrations are trivial (dependence is only in exponents)

$$f_{G_u}^{3d} = \sum_{\substack{\text{acyclic} \\ \text{graph } G}} \frac{\mathcal{N}_G}{\prod_{e \in \mathcal{E}} 2E_e} \int_{\mathcal{K}_G} \left[\prod_{e \in \mathcal{E}} d\tau_e e^{i\tau_e(E_e - p_e^G)} \right] \text{ with } \mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei}^G \tau_e = 0, \ i = 1, ..., L \right\}$$

(\mathcal{K}_G is empty if graph not acyclic)

$$\underbrace{e_1 \left(e_4 + e_5\right)}_{e_3} e_2 \quad \tau_i > 0, \ i = 1, ..., 6 \quad \tau_2 + \tau_6 + \tau_5 = 0 \quad \tau_1 + \tau_2 + \tau_3 = 0 \quad \tau_3 + \tau_4 - \tau_6 = 0$$

Notation

Energy conservation

Acyclic graphs

We start with an arbitrary diagram integrated over loop energies only

$$f_{G_u}^{3\mathrm{d}} = \int \left[\prod_{i=1}^L \frac{\mathrm{d}k_i^0}{2\pi} \right] \frac{\mathcal{N}(\{q_e^0\}_{e \in \mathcal{E}})}{\prod_{e \in \mathcal{E}} (q_e^0)^2 - E_e^2} \qquad \qquad q_e^0 = p_e^0 + \sum_{i=1}^L s_{ei}k_i^0 \qquad \qquad G_u \text{ undirected graph}$$

$$E_e = \sqrt{|\vec{q}_e|^2 + m_e^2} \qquad \qquad \mathcal{E} \text{ set of edges of graph}$$

$$q_e^0 = p_e^0 + \sum_{i=1}^L s_{ei} k_i^0$$

$$E_e = \sqrt{|\vec{q_e}|^2 + m_e^2}$$

Performing the integrals using residue theorem is a matter of correctly addressing energy conservation (depending on how, get TOPT, LTD, CFF). For CFF (zc [arXiv:2211.09653]):

$$\frac{1}{(q_e^0)^2 - E_e^2} = \int dx_e d\tau_e \frac{e^{i\tau_e(x_e - q_e^0)}}{x_e^2 - E_e^2} = \sum_{\sigma_e \in \{\pm 1\}} \int_0^\infty \frac{d\tau_e}{2E_e} e^{i\tau_e(E_e - \sigma_e q_e^0)}$$

After insertion of this identity, loop energy integrations are trivial (dependence is only in exponents)

$$f_{G_u}^{3d} = \sum_{\substack{\text{acyclic} \\ \text{graph } G}} \frac{\mathcal{N}_G}{\prod_{e \in \mathcal{E}} 2E_e} \int_{\mathcal{K}_G} \left[\prod_{e \in \mathcal{E}} d\tau_e e^{i\tau_e(E_e - p_e^G)} \right] \text{ with } \mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei}^G \tau_e = 0, \ i = 1, ..., L \right\}$$

(\mathcal{K}_G is empty if graph not acyclic)

$$e_{1} \underbrace{e_{4} e_{5}}_{e_{6}} e_{2} \qquad \tau_{i} > 0, \ i = 1, ..., 6 \quad \tau_{2} + \tau_{6} + \tau_{5} = 0 \quad \tau_{1} + \tau_{2} + \tau_{3} = 0 \quad \tau_{3} + \tau_{4} - \tau_{6} = 0$$

Diagrammatically
$$\bigcirc$$
 + \bigcirc + \bigcirc + \bigcirc + \bigcirc + \bigcirc + \bigcirc

Notation

We start with an arbitrary diagram integrated over loop energies only

Energy conservation

$$f_{G_u}^{3\mathrm{d}} = \int \left[\prod_{i=1}^L \frac{\mathrm{d}k_i^0}{2\pi} \right] \frac{\mathcal{N}(\{q_e^0\}_{e \in \mathcal{E}})}{\prod_{e \in \mathcal{E}} (q_e^0)^2 - E_e^2} \qquad \qquad q_e^0 = p_e^0 + \sum_{i=1}^L s_{ei}k_i^0 \qquad \qquad G_u \text{ undirected graph}$$

$$E_e = \sqrt{|\vec{q_e}|^2 + m_e^2} \qquad \qquad \mathcal{E} \text{ set of edges of graph}$$

$$q_e^0 = p_e^0 + \sum_{i=1}^L s_{ei} k_i^0$$

$$E_e = \sqrt{|\vec{q_e}|^2 + m_e^2}$$

Performing the integrals using residue theorem is a matter of correctly addressing energy conservation (depending on how, get TOPT, LTD, CFF). For CFF (zc [arXiv:2211.09653]):

$$\frac{1}{(q_e^0)^2 - E_e^2} = \int dx_e d\tau_e \frac{e^{i\tau_e(x_e - q_e^0)}}{x_e^2 - E_e^2} = \sum_{\sigma_e \in \{\pm 1\}} \int_0^\infty \frac{d\tau_e}{2E_e} e^{i\tau_e(E_e - \sigma_e q_e^0)}$$

Acyclic graphs

After insertion of this identity, loop energy integrations are trivial (dependence is only in exponents)

$$f_{G_u}^{3d} = \sum_{\substack{\text{acyclic} \\ \text{graph } G}} \frac{\mathcal{N}_G}{\prod_{e \in \mathcal{E}} 2E_e} \int_{\mathcal{K}_G} \left[\prod_{e \in \mathcal{E}} d\tau_e e^{i\tau_e(E_e - p_e^G)} \right] \text{ with } \mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei}^G \tau_e = 0, \ i = 1, ..., L \right\}$$

(\mathcal{K}_G is empty if graph not acyclic)

$$e_{1} \underbrace{e_{4} e_{5}}_{e_{3}} e_{2} \qquad \tau_{i} > 0, \ i = 1, ..., 6 \quad \tau_{2} + \tau_{6} + \tau_{5} = 0 \quad \tau_{1} + \tau_{2} + \tau_{3} = 0 \quad \tau_{3} + \tau_{4} - \tau_{6} = 0$$

$$+$$

Position space: Fourier duality maps acyclic graphs to strongly-connected graphs

$$= \int \left[\prod_{j=1}^{4} \frac{d\tau_{j}}{2E_{j}} e^{i\tau_{j}(E_{j}^{0} - \sigma_{j}p_{j}^{0})} \Theta(\tau_{j}) \right] \delta(-\tau_{1} - \tau_{2} + \tau_{3} + \tau_{4})$$

$$\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$$

 $\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \, \middle| \, \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\} \quad \text{Triangulation introduces spurious singularities or spurious intersections}$

$$\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \, \middle| \, \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$$

 $\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \, \middle| \, \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\} \quad \text{Triangulation introduces spurious singularities or spurious intersections}$

Edge contraction

$$= \int \left[\prod_{j=1}^{4} \frac{\mathrm{d}\tau_j}{2E_j} e^{i\tau_j (E_j^0 - \sigma_j p_j^0)} \Theta(\tau_j) \right] \delta(-\tau_1 - \tau_2 + \tau_3 + \tau_4)$$

$$\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$$

 $\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \, \middle| \, \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\} \quad \text{Triangulation introduces spurious singularities or spurious intersections}$

Edge contraction

$$\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \, \middle| \, \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$$

 $\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \, \middle| \, \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\} \quad \text{Triangulation introduces spurious singularities or spurious intersections}$

Edge contraction

How do we perform the remaining integrations (one for each edge)? Edge-contraction

1. Choose sink/source with connected complement

$$= \int \left[\prod_{j=1}^{4} \frac{\mathrm{d}\tau_j}{2E_j} e^{i\tau_j (E_j^0 - \sigma_j p_j^0)} \Theta(\tau_j) \right] \delta(-\tau_1 - \tau_2 + \tau_3 + \tau_4)$$

$$\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$$

 $\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \, \middle| \, \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\} \quad \text{Triangulation introduces spurious singularities or spurious intersections}$

Edge contraction

- 1. Choose sink/source with connected complement
- 2. Contract one-by-one adjacent edges
- 3. Multiply by inverse sum of energies of adjacent edges

$$= \int \left[\prod_{j=1}^{4} \frac{\mathrm{d}\tau_j}{2E_j} e^{i\tau_j (E_j^0 - \sigma_j p_j^0)} \Theta(\tau_j) \right] \delta(-\tau_1 - \tau_2 + \tau_3 + \tau_4)$$

$$\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$$

 $\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \, \middle| \, \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$ Triangulation introduces spurious singularities or spurious intersections

Edge contraction

- 1. Choose sink/source with connected complement
- 2. Contract one-by-one adjacent edges
- 3. Multiply by inverse sum of energies of adjacent edges

$$= \int \left[\prod_{j=1}^{4} \frac{\mathrm{d}\tau_j}{2E_j} e^{i\tau_j (E_j^0 - \sigma_j p_j^0)} \Theta(\tau_j) \right] \delta(-\tau_1 - \tau_2 + \tau_3 + \tau_4)$$

$$\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$$

 $\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \, \middle| \, \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\} \quad \text{Triangulation introduces spurious singularities or spurious intersections}$

Edge contraction

- 1. Choose sink/source with connected complement
- 2. Contract one-by-one adjacent edges
- 3. Multiply by inverse sum of energies of adjacent edges

$$= \int \left[\prod_{j=1}^{4} \frac{\mathrm{d}\tau_j}{2E_j} e^{i\tau_j (E_j^0 - \sigma_j p_j^0)} \Theta(\tau_j) \right] \delta(-\tau_1 - \tau_2 + \tau_3 + \tau_4)$$

$$\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$$

 $\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$ Triangulation introduces spurious singularities or spurious intersections

Edge contraction

$$= \int \left[\prod_{j=1}^{4} \frac{\mathrm{d}\tau_j}{2E_j} e^{i\tau_j (E_j^0 - \sigma_j p_j^0)} \Theta(\tau_j) \right] \delta(-\tau_1 - \tau_2 + \tau_3 + \tau_4)$$

$$\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$$

 $\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$ Triangulation introduces spurious singularities or spurious intersections

Edge contraction

$$= \int \left[\prod_{j=1}^{4} \frac{\mathrm{d}\tau_j}{2E_j} e^{i\tau_j (E_j^0 - \sigma_j p_j^0)} \Theta(\tau_j) \right] \delta(-\tau_1 - \tau_2 + \tau_3 + \tau_4)$$

$$\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$$

 $\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$ Triangulation introduces spurious singularities or spurious intersections

Edge contraction

$$= \int \left[\prod_{j=1}^{4} \frac{\mathrm{d}\tau_j}{2E_j} e^{i\tau_j (E_j^0 - \sigma_j p_j^0)} \Theta(\tau_j) \right] \delta(-\tau_1 - \tau_2 + \tau_3 + \tau_4)$$

$$\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \, \middle| \, \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$$

 $\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$ Triangulation introduces spurious singularities or spurious intersections

Edge contraction

$$= \int \left[\prod_{j=1}^{4} \frac{\mathrm{d}\tau_j}{2E_j} e^{i\tau_j (E_j^0 - \sigma_j p_j^0)} \Theta(\tau_j) \right] \delta\left(-\tau_1 - \tau_2 + \tau_3 + \tau_4\right)$$

$$\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$$

 $\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$ Triangulation introduces spurious singularities or spurious intersections

Edge contraction

- 1. Choose sink/source with connected complement
- 3. Multiply by inverse sum

$$=\frac{i}{E_1+E_4-p_1^0}\left[\frac{i}{E_2+E_3+p_3^0}\underbrace{v_{123}}_{e_4}v_4+v_{12}\underbrace{v_{24}}_{e_4}v_4\right] \qquad \text{of energies of adjacent edges}$$

$$+\frac{i}{E_1+E_3-p_1^0-p_4^0}\underbrace{v_{134}}_{e_1}\underbrace{v_{24}}_{e_4}v_4+v_{124}\underbrace{v_{24}}_{e_3}v_3\right] \qquad \text{4. Throw out non-acyclic graphs}$$

$$=\frac{i}{E_1+E_4-p_1^0}\left[\frac{i}{E_2+E_3+p_3^0}\underbrace{v_{134}}_{E_2+E_3+p_3^0}\underbrace{v_{134}}_{E_2+E_4-p_1^0-p_2^0}+\frac{i}{E_1+E_3-p_1^0-p_3^0}\underbrace{v_{124}}_{E_2+E_3+p_3^0}\right]$$

$$= \int \left[\prod_{j=1}^{4} \frac{\mathrm{d}\tau_j}{2E_j} e^{i\tau_j (E_j^0 - \sigma_j p_j^0)} \Theta(\tau_j) \right] \delta(-\tau_1 - \tau_2 + \tau_3 + \tau_4)$$

$$\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$$

 $\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$ Triangulation introduces spurious singularities or spurious intersections

Edge contraction

How do we perform the remaining integrations (one for each edge)? Edge-contraction

- 1. Choose sink/source with connected complement
- 3. Multiply by inverse sum of energies of adjacent edges

$$= \frac{i}{E_1 + E_4 - p_1^0} \left[\frac{i}{E_2 + E_3 + p_3^0} \left(v_{123} \right) + \frac{i}{E_1 + E_3 - p_1^0 - p_4^0} \left(v_{134} \right) + \frac{i}{E_1 + E_2 - E_3 - E_3} \right) + \frac{i}{E_1 + E_3 - E_3 - E_3} \left(v_{134} \right) + \frac{i}{E_1 + E_3 - E_3} \left(v_{134} \right) + \frac{i}{E_1 + E_3 - E_3} \left(v_{134} \right) + \frac{i}{E_1 + E_3 - E_3} \left(v_{134} \right) + \frac{i}{E_1 + E_3} \left(v_{134} \right) + \frac{i}{E_1$$

4. Throw out non-acyclic graphs

5. Contract parallel

edges

$$=\frac{i}{E_1+E_4-p_1^0}\left[\frac{i}{E_2+E_3+p_3^0}\frac{i}{E_2+E_4-p_1^0-p_2^0}+\frac{i}{E_1+E_3-p_1^0-p_4^0}\frac{i}{E_2+E_3+p_3^0}\right]$$

$$= \int \left[\prod_{j=1}^{4} \frac{\mathrm{d}\tau_j}{2E_j} e^{i\tau_j (E_j^0 - \sigma_j p_j^0)} \Theta(\tau_j) \right] \delta\left(-\tau_1 - \tau_2 + \tau_3 + \tau_4\right)$$

$$\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$$

 $\mathcal{K}_G = \left\{ (\tau_e)_{e \in \mathcal{E}} \in \mathbb{R}_+^{|\mathcal{E}|} \middle| \sum_{e \in \mathcal{E}} s_{ei} \tau_e \right\}$ Triangulation introduces spurious singularities or spurious intersections

Edge contraction

How do we perform the remaining integrations (one for each edge)? Edge-contraction

- 1. Choose sink/source with connected complement
- 3. Multiply by inverse sum of energies of adjacent edges

$$= \frac{i}{E_1 + E_4 - p_1^0} \left[\frac{i}{E_2 + E_3 + p_3^0} \left(v_{123} + v_{123} + v_{123} + v_{123} \right) \right]$$

$$+\frac{i}{E_1+E_3-p_1^0-p_4^0}\left(v_{134}+v_{124}+v_{124}+v_{124}+v_{124}\right)$$

graphs

5. Contract parallel

$$= \frac{i}{E_1 + E_4 - p_1^0} \left[\frac{i}{E_2 + E_3 + p_3^0} \frac{i}{E_2 + E_4 - p_1^0 - p_2^0} + \frac{i}{E_1 + E_3 - p_1^0 - p_4^0} \frac{i}{E_2 + E_3 + p_3^0} \right]$$

All time integrations are performed diagrammatically!

Cross-Free Families

Boundary operator

Cross-Free Families

Cross-Free Families

Collecting the chosen vertices and collecting them according to order of choice, we get a decision tree, whose root is the first chosen vertex

Boundary operator

Cross-Free Families

Collecting the chosen vertices and collecting them according to order of choice, we get a decision tree, whose root is the first chosen vertex

Boundary operator

Collecting the chosen vertices and collecting them according to order of choice, we get a decision tree, whose root is the first chosen vertex

Tracing the route from the leaves to the root gives sets of vertices

Boundary operator

Collecting the chosen vertices and collecting them according to order of choice, we get a decision tree, whose root is the first chosen vertex

Tracing the route from the leaves to the root gives sets of vertices

$$F_1 = \{\{v_1\}, \{v_3\}, \{v_1, v_2\}\}$$

Boundary operator

Collecting the chosen vertices and collecting them according to order of choice, we get a decision tree, whose root is the first chosen vertex

Tracing the route from the leaves to the root gives sets of vertices

$$F_1 = \{\{v_1\}, \{v_3\}, \{v_1, v_2\}\}$$

$$F_2 = \{\{v_1\}, \{v_1, v_4\}, \{v_1, v_2, v_4\}\}$$

Boundary operator

Collecting the chosen vertices and collecting them according to order of choice, we get a decision tree, whose root is the first chosen vertex

Tracing the route from the leaves to the root gives sets of vertices

$$F_1 = \{\{v_1\}, \{v_3\}, \{v_1, v_2\}\}$$

$$e_{1} = e_{2} + e_{3} = \frac{i}{E_{1} + E_{4} - p_{1}^{0}} \frac{i}{E_{2} + E_{3} + p_{3}^{0}} \frac{i}{E_{2} + E_{4} - p_{1}^{0} - p_{2}^{0}}$$

$$F_2 = \{\{v_1\}, \{v_1, v_4\}, \{v_1, v_2, v_4\}\}$$

Boundary operator

Boundary operator provides nexus

e.g.
$$\partial(\{v_1, v_2\}) = \{e_2, e_4\}$$

$$\Rightarrow$$

$$rac{\imath}{E_2 + E_4 - p_1^0 - p_2^0}$$

Collecting the chosen vertices and collecting them according to order of choice, we get a decision tree, whose root is the first chosen vertex

Tracing the route from the leaves to the root gives sets of vertices

$$F_1 = \{\{v_1\}, \{v_3\}, \{v_1, v_2\}\}$$

$$e_{1} = e_{2}$$

$$e_{3} = \frac{i}{E_{1} + E_{4} - p_{1}^{0}} \frac{i}{E_{2} + E_{3} + p_{3}^{0}} \frac{i}{E_{2} + E_{4} - p_{1}^{0} - p_{2}^{0}}$$

$$v_{4}$$

$$F_2 = \{\{v_1\}, \{v_1, v_4\}, \{v_1, v_2, v_4\}\}$$

Boundary operator

Boundary operator provides nexus

e.g.
$$\partial(\{v_1, v_2\}) = \{e_2, e_4\}$$

$$\Rightarrow$$

$$rac{\imath}{E_2+E_4-p_1^0-p_2^0}$$

Cross-Free Families

We notice some regularities... these families of cuts satisfy

$$S \in F \implies S, V \setminus S$$
 are connected

$$S_1, S_2 \in F \implies S_1 \subset S_2 \text{ or } S_2 \subset S_1 \text{ or } S_1 \cap S_2 = \emptyset$$

$$S \in F \implies S$$
 cannot be written as union of other sets in F

Abreu, Britto, Duhr, Gardi Bloch, Kreimer arXiv:2010.01068 (2014) arXiv:1512.01705 (2015) Arkani-Hamed, Benincasa, Postnikov

arXiv:1709.02813 (2017) Benincasa, McLeod, Vergu

arXiv:2009.03047 (2020) Capatti, Hirschi, Pelloni, Ruijl,

arXiv:2010.01068 (2020)

General formula

connectedness

General formula

crossing

connectedness

obstruction

General formula

Repeating the same edge-contraction procedure for all acyclic graphs

$$f_{G_u}^{3d} = \sum_{\substack{\text{acyclic} \\ \text{graph } G}} \frac{\mathcal{N}_G}{\prod_e 2E_e} \sum_{F \in \mathcal{F}_G} \frac{1}{\prod_{S \in F} \left[\mathbf{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 \right]}$$

crossing

connectedness

obstruction

General formula

Repeating the same edge-contraction procedure for all acyclic graphs

$$f_{G_u}^{3d} = \sum_{\substack{\text{acyclic} \\ \text{graph } G}} \frac{\mathcal{N}_G}{\prod_e 2E_e} \sum_{F \in \mathcal{F}_G} \frac{1}{\prod_{S \in F} \left[\mathbf{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 \right]}$$

crossing

connectedness

obstruction

General formula

Repeating the same edge-contraction procedure for all acyclic graphs

$$f_{G_u}^{3d} = \sum_{\substack{\text{acyclic} \\ \text{graph } G}} \frac{\mathcal{N}_G}{\prod_e 2E_e} \sum_{F \in \mathcal{F}_G} \frac{1}{\prod_{S \in F} \left[\mathbf{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 \right]}$$

connectedness

obstruction

General formula

Repeating the same edge-contraction procedure for all acyclic graphs

$$f_{G_u}^{3\mathrm{d}} = \sum_{\substack{\text{acyclic}\\ \text{graph } G}} \frac{\mathcal{N}_G}{\prod_e 2E_e} \sum_{F \in \mathcal{F}_G} \frac{1}{\prod_{S \in F} \left[\boldsymbol{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 \right]}$$

connectedness

obstruction

General formula

Repeating the same edge-contraction procedure for all acyclic graphs

$$f_{G_u}^{3\text{d}} = \sum_{\substack{\text{acyclic} \\ \text{graph } G}} \frac{\mathcal{N}_G}{\prod_e 2E_e} \sum_{F \in \mathcal{F}_G} \frac{1}{\prod_{S \in F} \left[\boldsymbol{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 \right]}$$

connectedness

obstruction

General formula

Repeating the same edge-contraction procedure for all acyclic graphs

$$f_{G_u}^{3\text{d}} = \sum_{\substack{\text{acyclic} \\ \text{graph } G}} \frac{\mathcal{N}_G}{\prod_e 2E_e} \sum_{F \in \mathcal{F}_G} \frac{1}{\prod_{S \in F} \left[\boldsymbol{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 \right]}$$

$$G = e_1 \qquad e_2 \qquad v_3 \qquad e_3 \qquad e_4 \qquad v_4$$

$$\mathcal{F}_G = \{F_1, F_2\}$$

$$F_2 = \underbrace{\begin{array}{c} v_2 \\ v_3 \\ v_4 \end{array}}$$

connectedness

obstruction

General formula

Repeating the same edge-contraction procedure for all acyclic graphs

$$f_{G_u}^{3\text{d}} = \sum_{\substack{\text{acyclic} \\ \text{graph } G}} \frac{\mathcal{N}_G}{\prod_e 2E_e} \sum_{F \notin \mathcal{F}_G} \frac{1}{\prod_{S \in F} \left[\boldsymbol{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 \right]}$$

$$G = e_1 \qquad e_2 \qquad v_3 \qquad e_3 \qquad e_3 \qquad e_4 \qquad v_4$$

$$\mathcal{F}_G = \{F_1, F_2\}$$

$$F_1 = \bigcup_{v_4}^{v_2}$$

$$F_2 = \underbrace{\begin{array}{c} v_2 \\ v_3 \\ v_4 \end{array}}$$

crossing

connectedness

obstruction

General formula

Repeating the same edge-contraction procedure for all acyclic graphs

$$f_{G_u}^{3d} = \sum_{\substack{\text{acyclic} \\ \text{graph } G}} \frac{\mathcal{N}_G}{\prod_e 2E_e} \sum_{F \notin \mathcal{F}_G} \frac{1}{\prod_{S \in F} \left[\boldsymbol{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 \right]}$$

Repeating the same edge-contraction procedure for all acyclic graphs. For our example, we had

$$G = e_1 \underbrace{\begin{array}{c} e_2 & v_3 \\ e_3 & \\ v_1 & e_4 & v_4 \end{array}} \qquad F_G = \{F_1, F_2\} \qquad F_1 = \underbrace{\begin{array}{c} v_2 \\ v_4 \\ v_4 \end{array}} \qquad F_2 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_2 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_2 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_3 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_3 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_3 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_3 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_4 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_4 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \\ v_4 \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \\ v_4 \\ v_4 \\ v_4 \\ \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \\ v_4 \\ v_4 \\ v_4 \\ \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \\ v_4 \\ v_4 \\ \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \\ v_4 \\ v_4 \\ v_4 \\ \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\ v_4 \\ v_4 \\ v_4 \\ v_4 \\ \end{array}} \qquad F_5 = \underbrace{\begin{array}{c} v_4 \\ v_4 \\$$

Each element of a cross-free family corresponds to a threshold

$$F_1 = \{\{v_1\}, \{v_3\}, \{v_1, v_2\}\}$$

crossing

connectedness

obstruction

General formula

Repeating the same edge-contraction procedure for all acyclic graphs

$$f_{G_u}^{3d} = \sum_{\substack{\text{acyclic} \\ \text{graph } G}} \frac{\mathcal{N}_G}{\prod_e 2E_e} \sum_{F \notin \mathcal{F}_G} \frac{1}{\left[\mathbf{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0\right]}$$

Repeating the same edge-contraction procedure for all acyclic graphs. For our example, we had

$$G = e_1 \underbrace{\begin{array}{c} v_2 & e_2 \\ v_3 \\ v_1 & e_4 \end{array}}_{v_4} v_4 \qquad F_2 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}}_{v_4} \qquad F_2 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}}_{v_4} \qquad F_2 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}}_{v_4}$$

Each element of a cross-free family corresponds to a threshold

$$F_1 = \{\{v_1\}, \{v_3\}, \{v_1, v_2\}\}$$

crossing

connectedness

obstruction

General formula

Repeating the same edge-contraction procedure for all acyclic graphs

$$f_{G_u}^{3d} = \sum_{\substack{\text{acyclic} \\ \text{graph } G}} \frac{\mathcal{N}_G}{\prod_e 2E_e} \sum_{F \in \mathcal{F}_G} \frac{1}{\left[\mathbf{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0\right]}$$

Repeating the same edge-contraction procedure for all acyclic graphs. For our example, we had

$$G = e_1 \underbrace{\begin{array}{c} v_2 & e_2 \\ v_3 \\ v_1 & e_4 \end{array}}_{v_4} v_4$$

$$F_G = \{F_1, F_2\}$$

$$F_1 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}}_{v_4} F_2 = \underbrace{\begin{array}{c} v_3 \\ v_4 \\ v_4 \end{array}}_{v_4}$$

Each element of a cross-free family corresponds to a threshold

$$F_1 = \{\{v_1\}, \{v_3\}, \{v_1, v_2\}\} \quad \partial(\{v_1, v_2\}) = \{e_2, e_4\} \quad \mathbf{E} \cdot \mathbf{1}^{\partial(\{v_1, v_2\})} - \sum_{v \in \{v_1, v_2\}} p_v^0 = E_2 + E_4 - p_1^0 - p_2^0 = E_1 + E_2 - E_2 -$$

connectedness

obstruction

General formula

Repeating the same edge-contraction procedure for all acyclic graphs

$$f_{G_u}^{3d} = \sum_{\substack{\text{acyclic} \\ \text{graph } G}} \frac{\mathcal{N}_G}{\prod_e 2E_e} \sum_{F \notin \mathcal{F}_G} \frac{1}{\left[\mathbf{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0\right]}$$

Repeating the same edge-contraction procedure for all acyclic graphs. For our example, we had

$$G = e_1 \underbrace{v_2}_{v_1} \underbrace{e_2}_{e_3} \underbrace{v_3}_{e_4}$$

$$F_G = \{F_1, F_2\}$$

$$F_1 = \underbrace{v_2}_{v_4} \underbrace{v_3}_{v_4}$$

$$F_2 = \underbrace{v_3}_{v_4}$$

Each element of a cross-free family corresponds to a threshold

$$F_1 = \{\{v_1\}, \{v_3\}, \{v_1, v_2\}\} \quad \partial(\{v_1, v_2\}) = \{e_2, e_4\} \quad \mathbf{E} \cdot \mathbf{1}^{\partial(\{v_1, v_2\})} - \sum_{v \in \{v_1, v_2\}} p_v^0 = E_2 + E_4 - p_1^0 - p_2^0 = E_1 + E_2 - p_2^0 - E_2 + E_4 - p_2^0 - E_2 - E$$

And the cross-free family corresponds to a product of thresholds

$$= \frac{i}{E_1 + E_4 - p_1^0} \frac{i}{E_2 + E_3 + p_3^0} \frac{i}{E_2 + E_4 - p_1^0 - p_2^0}$$

Local discontinuities

Spurious singularities in TOPT

Local discontinuities | We can compute discontinuities (Bourjaily, Hannesdottir, McLeod, Schwartz, Vergu [arXiv:2007.13747])

$$\frac{1}{\prod_{S \in F} \left[\mathbf{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 + i\varepsilon \right]} - \frac{1}{\prod_{S \in F} \left[\mathbf{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 - i\varepsilon \right]} = \sum_{S \in F} \frac{\delta \left(\mathbf{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 \right)}{\prod_{S' \in F \setminus \{S\}} \left[\mathbf{E} \cdot \mathbf{1}^{\partial(S')} - \sum_{v \in S'} p_v^0 \right]}$$

Spurious singularities in TOPT

Local discontinuities | We can compute discontinuities (Bourjaily, Hannesdottir, McLeod, Schwartz, Vergu [arXiv:2007.13747])

$$\frac{1}{\prod_{S \in F} \left[\mathbf{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 + i\varepsilon \right]} - \frac{1}{\prod_{S \in F} \left[\mathbf{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 - i\varepsilon \right]} = \sum_{S \in F} \frac{\delta \left(\mathbf{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 \right)}{\prod_{S' \in F \setminus \{S\}} \left[\mathbf{E} \cdot \mathbf{1}^{\partial(S')} - \sum_{v \in S'} p_v^0 \right]}$$

Local discontinuities | We can compute discontinuities (Bourjaily, Hannesdottir, McLeod, Schwartz, Vergu [arXiv:2007.13747])

 $\frac{1}{\prod_{S \in F} \left[\mathbf{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 + i\varepsilon \right]} - \frac{1}{\prod_{S \in F} \left[\mathbf{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 - i\varepsilon \right]} = \sum_{S \in F} \frac{\delta \left(\mathbf{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 \right)}{\prod_{S' \in F \setminus \{S\}} \left[\mathbf{E} \cdot \mathbf{1}^{\partial(S')} - \sum_{v \in S'} p_v^0 \right]}$

Spurious singularities in TOPT

Why use the CFF rep. and not TOPT? Focus on the TOPT term ordering $\{v_1, v_3, v_2, v_4\}$

Local discontinuities | We can compute discontinuities (Bourjaily, Hannesdottir, McLeod, Schwartz, Vergu [arXiv:2007.13747])

$$\frac{1}{\prod_{S \in F} \left[\boldsymbol{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 + i\varepsilon \right]} - \frac{1}{\prod_{S \in F} \left[\boldsymbol{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 - i\varepsilon \right]} = \sum_{S \in F} \frac{\delta \left(\boldsymbol{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 \right)}{\prod_{S' \in F \setminus \{S\}} \left[\boldsymbol{E} \cdot \mathbf{1}^{\partial(S')} - \sum_{v \in S'} p_v^0 \right]}$$

Spurious singularities in TOPT

Why use the CFF rep. and not TOPT? Focus on the TOPT term ordering $\{v_1, v_3, v_2, v_4\}$

Looking at the second cut

Divides the graph in four connected components, but the CFF representation tells us this is not possible! It is a spurious threshold

Local discontinuities | We can compute discontinuities (Bourjaily, Hannesdottir, McLeod, Schwartz, Vergu [arXiv:2007.13747])

$$\frac{1}{\prod_{S \in F} \left[\boldsymbol{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 + i\varepsilon \right]} - \frac{1}{\prod_{S \in F} \left[\boldsymbol{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 - i\varepsilon \right]} = \sum_{S \in F} \frac{\delta \left(\boldsymbol{E} \cdot \mathbf{1}^{\partial(S)} - \sum_{v \in S} p_v^0 \right)}{\prod_{S' \in F \setminus \{S\}} \left[\boldsymbol{E} \cdot \mathbf{1}^{\partial(S')} - \sum_{v \in S'} p_v^0 \right]}$$

Spurious singularities in TOPT

Why use the CFF rep. and not TOPT? Focus on the TOPT term ordering $\{v_1, v_3, v_2, v_4\}$

Looking at the second cut

Divides the graph in four connected components, but the CFF representation tells us this is not possible! It is a spurious threshold

$$\delta(E_1 + E_2 + E_3 + E_4 - p_1^0 - p_3^0)$$

How do we see that it is spurious?

We can see that in general from a diagram-level factorisation formula

We can see that in general from a diagram-level factorisation formula

We can see that in general from a diagram-level factorisation formula

If more than two disconnected components, it is of order one

We can see that in general from a diagram-level factorisation formula

If more than two disconnected components, it is of order one

$$\Delta = E_2 + E_4 - p_1^0 - p_4^0 \to 0$$

$$e_1$$
 e_3 e_4 e_4 e_4 e_4 e_4 e_4 e_4 e_4 e_4

We can see that in general from a diagram-level factorisation formula

If more than two disconnected components, it is of order one

$$\Delta = E_2 + E_4 - p_1^0 - p_4^0 \to 0$$

$$e_1$$
 e_2
 e_3

$$\Delta = E_1 + E_2 + E_3 + E_4 - p_1^0 - p_4^0 \to 0$$

$$e_1$$
 e_2 $e_3 = o(1)$

We can see that in general from a diagram-level factorisation formula

If more than two disconnected components, it is of order one

$$\Delta = E_2 + E_4 - p_1^0 - p_4^0 \to 0$$

$$e_1$$
 e_2 e_3 e_4 e_4 e_4 e_4 e_4 e_4 e_4

$$e_1$$
 e_2 e_3

$$\Delta = E_1 + E_2 + E_3 + E_4 - p_1^0 - p_4^0 \to 0$$

$$e_1$$
 e_2 $e_3 = o(1)$

Spectators

We can see that in general from a diagram-level factorisation formula

If more than two disconnected components, it is of order one

$$\Delta = E_2 + E_4 - p_1^0 - p_4^0 \to 0$$

$$e_1$$
 e_2
 e_3
 e_4
 e_4
 e_4
 e_4
 e_4
 e_4
 e_4
 e_4
 e_4

$$e_1$$
 e_2
 e_3

$$\Delta = E_1 + E_2 + E_3 + E_4 - p_1^0 - p_4^0 \to 0$$

$$e_1$$
 $e_3 = o(1)$

Spectators

We can see that in general from a diagram-level factorisation formula

If more than two disconnected components, it is of order one

$$\Delta = E_2 + E_4 - p_1^0 - p_4^0 \to 0$$

$$e_1$$
 e_2
 e_3
 e_4
 e_4
 e_4
 e_4
 e_4
 e_4
 e_4
 e_4
 e_4

$$e_1$$
 e_2 e_3

$$\Delta = E_1 + E_2 + E_3 + E_4 - p_1^0 - p_4^0 \to 0$$

$$e_1$$
 $e_3 = o(1)$

Spectators

We can see that in general from a diagram-level factorisation formula

$$\Delta = E_2 + E_4 - p_1^0 - p_4^0 \to 0$$

$$e_1 \underbrace{ \begin{bmatrix} e_2 \\ e_3 \end{bmatrix}}_{e_4} e_3 = \frac{i}{\Delta} e_1 \underbrace{ \begin{bmatrix} e_2 \\ e_4 \end{bmatrix}}_{e_4} e_3 + o(1)$$

connected

graph

$$e_1$$
 e_2
 e_3

$$\Delta = E_1 + E_2 + E_3 + E_4 - p_1^0 - p_4^0 \to 0$$

$$e_1$$
 e_2 $e_3 = o(1)$

Spectators

Second part: cluster decomposition and infrared finiteness

- Highlight role of connectedness at the operator level

$$ra{lpha|\mathbf{T}_{\mathrm{c}}|eta} \supset lpha \left\{egin{array}{c} \mathsf{connected} \ \mathsf{graph} \end{array}
ight\}eta$$

Reconstruct unitarity, cluster decomposition principle and infrared finiteness from the diagrammatic analysis

- Use Local Unitarity methods to take advantage of this analysis to numerically evaluate cross-sections

Connected transition matrix

S-matrix

"Unitarity"

Cluster Decomposition

Cluster Decomposition

Can we express the role of connectedness at the operator level? Define the connected

transition matrix

 $ra{lpha|\mathbf{T}_{\mathrm{c}}|eta} \supset lpha \left\{egin{array}{c} \mathsf{connected} \ \mathsf{graph} \end{array}
ight\}eta$

S-matrix

Cluster Decomposition

Can we express the role of connectedness at the operator level? Define the connected transition matrix

$$ra{lpha|\mathbf{T}_{\mathrm{c}}|eta} \supset lpha \left\{egin{array}{c} \mathsf{connected} \ \mathsf{graph} \end{array}
ight\}eta$$

S-matrix

The connected transition matrix is not unitary (expected). What is the relationship with S-matrix?

Cluster Decomposition

Can we express the role of connectedness at the operator level? Define the connected transition matrix

$$ra{lpha}{\mathbf{T}_{\mathrm{c}}\ket{oldsymbol{eta}}} lpha \left\{egin{array}{c} \mathsf{connected} \ \mathsf{graph} \end{array}
ight\}oldsymbol{eta}$$

S-matrix

The connected transition matrix is not unitary (expected). What is the relationship with S-matrix?

Cluster Decomposition

Can we express the role of connectedness at the operator level? Define the connected transition matrix

 $ra{lpha}{\mathbf{T}_{\mathrm{c}}\ket{oldsymbol{eta}}} lpha \left\{egin{array}{c} \mathsf{connected} \\ \mathsf{graph} \end{array}
ight\}eta$

S-matrix

The connected transition matrix is not unitary (expected). What is the relationship with S-matrix?

$$\mathbf{S} = + \underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \underbrace{\frac{1}{2!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}$$

Cluster Decomposition

Can we express the role of connectedness at the operator level? Define the connected transition matrix

$$ra{lpha|\mathbf{T}_{\mathrm{c}}|eta} \geq lpha \left\{egin{array}{c} \mathsf{connected} \ \mathsf{graph} \end{array}
ight\}eta$$

S-matrix

The connected transition matrix is not unitary (expected). What is the relationship with S-matrix?

$$\mathbf{S} = + \underbrace{\text{"connected graph"}}_{\text{graph"}} + \underbrace{\frac{1}{2!} \left(\underbrace{\text{"connected graph"}}_{\text{graph"}} + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"co$$

$$\mathbf{S} = 1 + i\mathbf{T}_{c} + \frac{i^{2}}{2!}\mathbf{T}_{c}^{2} + \frac{i^{3}}{3!}\mathbf{T}_{c}^{3} + \dots = e^{i\mathbf{T}_{c}}$$

Cluster Decomposition

Can we express the role of connectedness at the operator level? Define the connected

transition matrix $\left<\alpha\right|\mathbf{T}_{\mathrm{c}}\left|\boldsymbol{\beta}\right>\supset\alpha\left\{\begin{array}{c}\mathsf{connected}\\\mathsf{graph}\end{array}\right\}\boldsymbol{\beta}$

S-matrix

The connected transition matrix is not unitary (expected). What is the relationship with S-matrix?

$$S = + = \text{"connected graph"} + \text{"connected graph"} + \text{"connected graph"} + \text{"connected graph"} + \cdots$$

$$\mathbf{S} = \mathbf{I} + \mathbf{I} +$$

$$\mathbf{S} = 1 + i\mathbf{T}_{c} + \frac{i^{2}}{2!}\mathbf{T}_{c}^{2} + \frac{i^{3}}{3!}\mathbf{T}_{c}^{3} + ... = e^{i\mathbf{T}_{c}}$$
 (evokes $Z[J] = e^{iW[J]}$)

Cluster Decomposition

Can we express the role of connectedness at the operator level? Define the connected transition matrix

$$ra{lpha|\mathbf{T}_{\mathrm{c}}|eta} \supset lpha \left\{egin{array}{c} \mathsf{connected} \ \mathsf{graph} \end{array}
ight\}eta$$

S-matrix

The connected transition matrix is not unitary (expected). What is the relationship with S-matrix?

$$S = + \text{"connected graph"} + \text{"connected graph"} + \text{"connected graph"} + \text{"connected graph"} + \cdot \cdot \cdot$$

$$\mathbf{S} = + \underbrace{\text{"connected graph"}}_{\text{graph"}} + \underbrace{\frac{1}{2!} \left(\underbrace{\text{"connected graph"}}_{\text{graph"}} + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}$$

$$\mathbf{S} = 1 + i\mathbf{T}_{\rm c} + \frac{i^2}{2!}\mathbf{T}_{\rm c}^2 + \frac{i^3}{3!}\mathbf{T}_{\rm c}^3 + ... = e^{i\mathbf{T}_{\rm c}} \quad \text{(evokes } Z[J] = e^{iW[J]} \text{)}$$
 (See also holomorphic cutting rules: Hannesdottir, Mizera [arXiv:2204.02988])

Cluster Decomposition

Can we express the role of connectedness at the operator level? Define the connected transition matrix

 $ra{lpha|\mathbf{T}_{\mathrm{c}}|eta} \supset lpha \left\{egin{array}{c} \mathsf{connected} \ \mathsf{graph} \end{array}
ight\}eta$

S-matrix

The connected transition matrix is not unitary (expected). What is the relationship with S-matrix?

$$\mathbf{S} = + \underbrace{\text{"connected graph"}}_{\text{graph"}} + \underbrace{\frac{1}{2!} \left(\underbrace{\text{"connected graph"}}_{\text{graph"}} + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{graph"}} + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{graph"}} + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{graph"}} + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{graph"}} + \underbrace{\frac{1}{3!} \left(\underbrace{\text{$$

$$\mathbf{S} = 1 + i\mathbf{T}_{c} + \frac{i^{2}}{2!}\mathbf{T}_{c}^{2} + \frac{i^{3}}{3!}\mathbf{T}_{c}^{3} + \dots = e^{i\mathbf{T}_{c}}$$
 (evokes $Z[J] = e^{iW[J]}$)

(See also holomorphic cutting rules: Hannesdottir, Mizera [arXiv:2204.02988])

"Unitarity"

In order to establish this relation, we need the following formula

Cluster Decomposition

Can we express the role of connectedness at the operator level? Define the connected transition matrix

S-matrix

The connected transition matrix is not unitary (expected). What is the relationship with S-matrix?

$$\mathbf{S} = + \underbrace{\text{"connected graph"}}_{\text{graph"}} + \underbrace{\frac{1}{2!} \left(\underbrace{\text{"connected graph"}}_{\text{graph"}} + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}} + \dots \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}}_{\text{"connected graph"}$$

$$\mathbf{S} = 1 + i\mathbf{T}_{c} + \frac{i^{2}}{2!}\mathbf{T}_{c}^{2} + \frac{i^{3}}{3!}\mathbf{T}_{c}^{3} + \dots = e^{i\mathbf{T}_{c}}$$
 (evokes $Z[J] = e^{iW[J]}$)

(See also holomorphic cutting rules: Hannesdottir, Mizera [arXiv:2204.02988])

"Unitarity"

In order to establish this relation, we need the following formula

$$\underbrace{i\left\langle\boldsymbol{\alpha}\right|\mathbf{T}_{c}\left|\boldsymbol{\beta}\right\rangle-i\left\langle\boldsymbol{\alpha}\right|\mathbf{T}_{c}^{\dagger}\left|\boldsymbol{\beta}\right\rangle=\left\langle\boldsymbol{\alpha}\right|\mathbf{T}_{c}\mathbf{T}_{c}^{\dagger}\left|\boldsymbol{\beta}\right\rangle}_{\text{usual unitarity}}-\sum_{\substack{\boldsymbol{\alpha}'\subset\boldsymbol{\alpha}\\\boldsymbol{\beta}'\subset\boldsymbol{\beta}}}\left\langle\boldsymbol{\alpha}'\right|\mathbf{T}_{c}\left|\boldsymbol{\beta}'\right\rangle\left\langle\boldsymbol{\alpha}\setminus\boldsymbol{\alpha}'\right|\mathbf{T}_{c}^{\dagger}\left|\boldsymbol{\beta}\setminus\boldsymbol{\beta}'\right\rangle}_{\text{usual unitarity}}$$

Cluster Decomposition

Can we express the role of connectedness at the operator level? Define the connected transition matrix

S-matrix

The connected transition matrix is not unitary (expected). What is the relationship with S-matrix?

$$\mathbf{S} = + \underbrace{\text{"connected graph"}} + \underbrace{\frac{1}{2!} \left(\underbrace{\text{"connected graph"}} + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}} \right)}_{\text{"connected graph"}} \right) + \underbrace{\frac{1}{3!} \left(\underbrace{\text{"connected graph"}} \right)}_{\text{"connected graph"}} + \dots$$

$$\mathbf{S} = 1 + i\mathbf{T}_{c} + \frac{i^{2}}{2!}\mathbf{T}_{c}^{2} + \frac{i^{3}}{3!}\mathbf{T}_{c}^{3} + \dots = e^{i\mathbf{T}_{c}}$$
 (evokes $Z[J] = e^{iW[J]}$)

(See also holomorphic cutting rules: Hannesdottir, Mizera [arXiv:2204.02988])

"Unitarity"

In order to establish this relation, we need the following formula

cluster decomposition term

$$\underbrace{i\left\langle \alpha\right|\mathbf{T}_{c}\left|\beta\right\rangle - i\left\langle \alpha\right|\mathbf{T}_{c}^{\dagger}\left|\beta\right\rangle = \left\langle \alpha\right|\mathbf{T}_{c}\mathbf{T}_{c}^{\dagger}\left|\beta\right\rangle}_{\text{usual unitarity}} - \underbrace{\sum_{\substack{\alpha'\subset\alpha\\\beta'\subset\beta}}\left\langle \alpha'\right|\mathbf{T}_{c}\left|\beta'\right\rangle\left\langle \alpha\setminus\alpha'\right|\mathbf{T}_{c}^{\dagger}\left|\beta\setminus\beta'\right\rangle}_{\text{usual unitarity}} \underbrace{\alpha'\left\{\begin{array}{c}\text{connected}\\\text{graph}\end{array}\right\}\beta'}_{\alpha\setminus\alpha'}$$

Cluster Decomposition

Can we express the role of connectedness at the operator level? Define the connected transition matrix

S-matrix

The connected transition matrix is not unitary (expected). What is the relationship with S-matrix?

$$\mathbf{S} = \mathbf{I} + \mathbf{I} +$$

$$\mathbf{S} = 1 + i\mathbf{T}_{\mathrm{c}} + \frac{i^2}{2!}\mathbf{T}_{\mathrm{c}}^2 + \frac{i^3}{3!}\mathbf{T}_{\mathrm{c}}^3 + ... = e^{i\mathbf{T}_{\mathrm{c}}} \quad \text{(evokes } Z[J] = e^{iW[J]} \text{)}$$
(See also holomorphic cutting rules: Hannesdottir, Mizera [arXiv:2204.02988])

In order to establish this relation, we need the following formula

cluster decomposition term

$$\underbrace{i\left\langle \boldsymbol{\alpha}\right|\mathbf{T}_{c}\left|\boldsymbol{\beta}\right\rangle - i\left\langle \boldsymbol{\alpha}\right|\mathbf{T}_{c}^{\dagger}\left|\boldsymbol{\beta}\right\rangle = \left\langle \boldsymbol{\alpha}\right|\mathbf{T}_{c}\mathbf{T}_{c}^{\dagger}\left|\boldsymbol{\beta}\right\rangle}_{\text{usual unitarity}} - \underbrace{\sum_{\substack{\boldsymbol{\alpha}' \subset \boldsymbol{\alpha} \\ \boldsymbol{\beta}' \subset \boldsymbol{\beta}}} \left\langle \boldsymbol{\alpha}'\right|\mathbf{T}_{c}\left|\boldsymbol{\beta}'\right\rangle \left\langle \boldsymbol{\alpha} \setminus \boldsymbol{\alpha}'\right|\mathbf{T}_{c}^{\dagger}\left|\boldsymbol{\beta} \setminus \boldsymbol{\beta}'\right\rangle}_{\boldsymbol{\alpha} \setminus \boldsymbol{\alpha}'} \underbrace{\left\{ \begin{array}{c} \text{connected} \\ \text{graph} \end{array} \right\} \boldsymbol{\beta}'}_{\boldsymbol{\alpha} \setminus \boldsymbol{\alpha}'} \underbrace{\left\{ \begin{array}{c} \boldsymbol{\alpha} \setminus \boldsymbol{\alpha} \setminus \boldsymbol{\alpha} \setminus \boldsymbol{\alpha}' \\ \boldsymbol{\beta}' \in \boldsymbol{\beta}' \end{array} \right\} \boldsymbol{\beta} \setminus \boldsymbol{\beta}'}_{\boldsymbol{\alpha} \setminus \boldsymbol{\alpha}'} \underbrace{\left\{ \begin{array}{c} \boldsymbol{\alpha} \setminus \boldsymbol{\alpha} \setminus \boldsymbol{\alpha} \setminus \boldsymbol{\alpha}' \\ \boldsymbol{\beta}' \in \boldsymbol{\beta}' \end{array} \right\} \boldsymbol{\beta} \setminus \boldsymbol{\beta}'}_{\boldsymbol{\alpha} \setminus \boldsymbol{\alpha}'} \underbrace{\left\{ \begin{array}{c} \boldsymbol{\alpha} \setminus \boldsymbol{\alpha} \setminus \boldsymbol{\alpha}' \\ \boldsymbol{\beta}' \in \boldsymbol{\beta}' \end{array} \right\} \boldsymbol{\beta}'}_{\boldsymbol{\alpha} \setminus \boldsymbol{\alpha}'} \underbrace{\left\{ \begin{array}{c} \boldsymbol{\alpha} \setminus \boldsymbol{\alpha} \setminus \boldsymbol{\alpha}' \\ \boldsymbol{\alpha} \setminus \boldsymbol{\alpha}' \\ \boldsymbol{\alpha} \setminus \boldsymbol{\alpha}' \end{array} \right\} \boldsymbol{\beta}'}_{\boldsymbol{\alpha} \setminus \boldsymbol{\alpha}'} \underbrace{\left\{ \begin{array}{c} \boldsymbol{\alpha} \setminus \boldsymbol{\alpha} \setminus \boldsymbol{\alpha} \setminus \boldsymbol{\alpha}' \\ \boldsymbol{\alpha} \setminus \boldsymbol{\alpha} \setminus \boldsymbol{\alpha}' \\ \boldsymbol{\alpha} \setminus \boldsymbol{\alpha} \setminus \boldsymbol{\alpha}' \\ \boldsymbol{\alpha} \setminus \boldsymbol{\alpha}' \\ \boldsymbol{\alpha} \setminus \boldsymbol{\alpha} \setminus \boldsymbol{\alpha}' \\ \boldsymbol{\alpha} \setminus \boldsymbol{\alpha} \\ \boldsymbol{\alpha} \setminus \boldsymbol{\alpha} \setminus \boldsymbol{\alpha}' \\ \boldsymbol{\alpha} \setminus \boldsymbol{\alpha$$

Factorisation formula expressed at the operator level!

Transition probabilities

Clusters and infrared finiteness

Cluster
decomposition
principle

This S-matrix also trivially satisfies the cluster-decomposition principle. Indeed

$$\mathbf{T}_{\mathrm{c}}(\ket{oldsymbol{lpha}}\otimes\ket{oldsymbol{eta}}) = (\mathbf{T}_{\mathrm{c}}\ket{oldsymbol{lpha}})\otimes\ket{oldsymbol{eta}}+\ket{oldsymbol{lpha}}\otimes(\mathbf{T}_{\mathrm{c}}\ket{oldsymbol{eta}})$$

 $P = P_A P_B$

for states with large space-like separations.

Transition probabilities

Clusters and infrared finiteness

Cluster
decomposition
principle

Transition probabilities

Clusters and infrared finiteness

This S-matrix also trivially satisfies the cluster-decomposition principle. Indeed

$$\mathbf{T}_{\mathrm{c}}(\ket{oldsymbol{lpha}}\otimes\ket{oldsymbol{eta}})=(\mathbf{T}_{\mathrm{c}}\ket{oldsymbol{lpha}})\otimes\ket{oldsymbol{eta}}+\ket{oldsymbol{lpha}}\otimes(\mathbf{T}_{\mathrm{c}}\ket{oldsymbol{eta}})$$

 \Rightarrow

$$P = P_A P_B$$

for states with large space-like separations.

Using it, we can compute transition probabilities

$$P = \text{Tr}[\boldsymbol{\rho} \mathbf{S} \boldsymbol{P} \mathbf{S}^{\dagger}]$$

Transition probabilities

infrared finiteness

Clusters and

This S-matrix also trivially satisfies the cluster-decomposition principle. Indeed

$$\mathbf{T}_{\mathrm{c}}(|oldsymbol{lpha}
angle\otimes|oldsymbol{eta}
angle)=(\mathbf{T}_{\mathrm{c}}\,|oldsymbol{lpha}
angle)\otimes|oldsymbol{eta}
angle+|oldsymbol{lpha}
angle\otimes(\mathbf{T}_{\mathrm{c}}\,|oldsymbol{eta}
angle)$$

 \Rightarrow

$$P = P_A P_B$$

for states with large space-like separations.

Using it, we can compute transition probabilities

$$P = \text{Tr}[\boldsymbol{\rho} \mathbf{S} \boldsymbol{P} \mathbf{S}^{\dagger}]$$

$$\underline{\rho} = \underbrace{f_{\alpha}}_{\alpha} \rho_{\alpha} |\alpha\rangle \langle \alpha| \quad P = \underbrace{f_{\beta}}_{\beta} \mathcal{P}_{\beta} |\beta\rangle \langle \beta|$$

Sum over massless particles requires decoherence

Transition probabilities

This S-matrix also trivially satisfies the cluster-decomposition principle. Indeed

$$\mathbf{T}_{\mathrm{c}}(\ket{oldsymbol{lpha}}\otimes\ket{oldsymbol{eta}})=(\mathbf{T}_{\mathrm{c}}\ket{oldsymbol{lpha}})\otimes\ket{oldsymbol{eta}}+\ket{oldsymbol{lpha}}\otimes(\mathbf{T}_{\mathrm{c}}\ket{oldsymbol{eta}})$$

for states with large space-like separations.

Using it, we can compute transition probabilities

$$P = \text{Tr}[\boldsymbol{\rho} \mathbf{S} \boldsymbol{P} \mathbf{S}^{\dagger}] \qquad \underbrace{\boldsymbol{\rho} = \oint_{\alpha} \rho_{\alpha} |\alpha\rangle \langle \alpha| \quad \boldsymbol{P} = \oint_{\beta} \mathcal{P}_{\beta} |\beta\rangle \langle \beta|}_{\boldsymbol{\beta}}$$

Sum over massless particles requires decoherence

 $P = P_A P_B$

The decoherence is due to the way we sum contributions with different number of massless particles in the initial and final state

Clusters and infrared finiteness

Transition probabilities

This S-matrix also trivially satisfies the cluster-decomposition principle. Indeed

$$\mathbf{T}_{\mathrm{c}}(\ket{oldsymbol{lpha}}\otimes\ket{oldsymbol{eta}}) = (\mathbf{T}_{\mathrm{c}}\ket{oldsymbol{lpha}})\otimes\ket{oldsymbol{eta}}+\ket{oldsymbol{lpha}}\otimes(\mathbf{T}_{\mathrm{c}}\ket{oldsymbol{eta}})$$

 \Rightarrow

$$P = P_A P_B$$

for states with large space-like separations.

Using it, we can compute transition probabilities

$$P = \text{Tr}[\boldsymbol{\rho} \mathbf{S} \boldsymbol{P} \mathbf{S}^{\dagger}]$$

$$\underline{\rho} = \underbrace{\int_{\alpha} \rho_{\alpha} |\alpha\rangle \langle \alpha|} \quad P = \underbrace{\int_{\beta} P_{\beta} |\beta\rangle \langle \beta|}_{\beta}$$

Sum over massless particles requires decoherence

The decoherence is due to the way we sum contributions with different number of massless particles in the initial and final state

$$P = \sum_{m} \int d\Pi_{m} |\mathcal{A}(pp \to EW + mp)|^{2}$$

Clusters and infrared finiteness

Transition probabilities This S-matrix also trivially satisfies the cluster-decomposition principle. Indeed

$$\mathbf{T}_{\mathrm{c}}(|oldsymbol{lpha}
angle\otimes|oldsymbol{eta}
angle)=(\mathbf{T}_{\mathrm{c}}\,|oldsymbol{lpha}
angle)\otimes|oldsymbol{eta}
angle+|oldsymbol{lpha}
angle\otimes(\mathbf{T}_{\mathrm{c}}\,|oldsymbol{eta}
angle)$$

$$P = P_A P_B$$

for states with large space-like separations.

Using it, we can compute transition probabilities

$$P = \text{Tr}[\boldsymbol{\rho} \mathbf{S} \boldsymbol{P} \mathbf{S}^{\dagger}]$$

$$\underline{\rho} = \iint_{\alpha} \rho_{\alpha} |\alpha\rangle \langle \alpha| \quad P = \iint_{\beta} \mathcal{P}_{\beta} |\beta\rangle \langle \beta|$$

Sum over massless particles requires decoherence

The decoherence is due to the way we sum contributions with different number of massless particles in the initial and final state

$$P = \sum_{m} \int d\Pi_{m} |\mathcal{A}(pp \to EW + mp)|^{2}$$

And also the reason why we can write interference diagrams in the first place!

Clusters and infrared finiteness

Transition probabilities

Clusters and infrared finiteness

This S-matrix also trivially satisfies the cluster-decomposition principle. Indeed

$$\mathbf{T}_{\mathrm{c}}(\ket{oldsymbol{lpha}}\otimes\ket{oldsymbol{eta}})=(\mathbf{T}_{\mathrm{c}}\ket{oldsymbol{lpha}})\otimes\ket{oldsymbol{eta}}+\ket{oldsymbol{lpha}}\otimes(\mathbf{T}_{\mathrm{c}}\ket{oldsymbol{eta}})$$

 $P = P_A P_B$

for states with large space-like separations.

Using it, we can compute transition probabilities

$$P = \text{Tr}[\boldsymbol{\rho} \mathbf{S} \boldsymbol{P} \mathbf{S}^{\dagger}]$$

$$\underline{\rho} = \underbrace{\int_{\alpha} \rho_{\alpha} |\alpha\rangle \langle \alpha|} \quad P = \underbrace{\int_{\beta} P_{\beta} |\beta\rangle \langle \beta|}_{\beta}$$

Sum over massless particles requires decoherence

The decoherence is due to the way we sum contributions with different number of massless particles in the initial and final state

$$P = \sum_{m} \int d\Pi_{m} |\mathcal{A}(pp \to EW + mp)|^{2}$$

And also the reason why we can write interference diagrams in the first place!

$$P = \text{Tr}[\boldsymbol{\rho} \mathbf{S} \boldsymbol{P} \mathbf{S}] = \sum_{n,m} \frac{i^{n+m}}{n!m!} \text{Tr}[\boldsymbol{\rho} \mathbf{T}_{c}^{n} \boldsymbol{P} (\mathbf{T}_{c}^{\dagger})^{m}]$$

Transition probabilities

Clusters and infrared finiteness

This S-matrix also trivially satisfies the cluster-decomposition principle. Indeed

$$\mathbf{T}_{\mathrm{c}}(|\boldsymbol{\alpha}\rangle\otimes|\boldsymbol{\beta}\rangle) = (\mathbf{T}_{\mathrm{c}}|\boldsymbol{\alpha}\rangle)\otimes|\boldsymbol{\beta}\rangle + |\boldsymbol{\alpha}\rangle\otimes(\mathbf{T}_{\mathrm{c}}|\boldsymbol{\beta}\rangle) \qquad \Rightarrow \qquad P = P_{A}P_{B}$$

for states with large space-like separations.

Using it, we can compute transition probabilities

$$P = \text{Tr}[\boldsymbol{\rho} \mathbf{S} \boldsymbol{P} \mathbf{S}^{\dagger}] \qquad \underbrace{\boldsymbol{\rho} = \oint_{\alpha} \rho_{\alpha} |\alpha\rangle \langle \alpha| \quad \boldsymbol{P} = \oint_{\beta} \mathcal{P}_{\beta} |\beta\rangle \langle \beta|}_{\boldsymbol{\beta}}$$

Sum over massless particles requires decoherence

The decoherence is due to the way we sum contributions with different number of massless particles in the initial and final state

$$P = \sum_{m} \int d\Pi_{m} |\mathcal{A}(pp \to EW + mp)|^{2}$$

And also the reason why we can write interference diagrams in the first place!

Finally:
$$P = \text{Tr}[\boldsymbol{\rho} \mathbf{S} \boldsymbol{P} \mathbf{S}] = \sum_{n,m} \frac{i^{n+m}}{n!m!} \text{Tr}[\boldsymbol{\rho} \mathbf{T}_{\mathrm{c}}^{n} \boldsymbol{P} (\mathbf{T}_{\mathrm{c}}^{\dagger})^{m}]$$

Infrared finite if density matrix and projector sum over degenerate massless radiation

Transition probabilities

Clusters and infrared finiteness

This S-matrix also trivially satisfies the cluster-decomposition principle. Indeed

$$\mathbf{T}_{\mathrm{c}}(\ket{oldsymbol{lpha}}\otimes\ket{oldsymbol{eta}})=(\mathbf{T}_{\mathrm{c}}\ket{oldsymbol{lpha}})\otimes\ket{oldsymbol{eta}}+\ket{oldsymbol{lpha}}\otimes(\mathbf{T}_{\mathrm{c}}\ket{oldsymbol{eta}})$$

 $P = P_A P_B$

for states with large space-like separations.

Using it, we can compute transition probabilities

$$P = \text{Tr}[\boldsymbol{\rho} \mathbf{S} \boldsymbol{P} \mathbf{S}^{\dagger}]$$

$$\underline{\rho} = \iint_{\alpha} \rho_{\alpha} |\alpha\rangle \langle \alpha| \quad P = \iint_{\beta} \mathcal{P}_{\beta} |\beta\rangle \langle \beta|$$

Sum over massless particles requires decoherence

The decoherence is due to the way we sum contributions with different number of massless particles in the initial and final state

$$P = \sum_{m} \int d\Pi_{m} |\mathcal{A}(pp \to EW + mp)|^{2}$$

And also the reason why we can write interference diagrams in the first place!

Finally:

$$P = \text{Tr}[\boldsymbol{\rho} \mathbf{S} \boldsymbol{P} \mathbf{S}] = \sum_{n,m} \frac{i^{n+m}}{n!m!} \text{Tr}[\boldsymbol{\rho} \mathbf{T}_{c}^{n} \boldsymbol{P} (\mathbf{T}_{c}^{\dagger})^{m}]$$

Infrared finite if density matrix and projector sum over degenerate massless radiation

Infrared-finiteness follows from the unitarity relation we showed in the previous slide. But we can also look at it at a diagrammatic level.

Final-state sum example

Final-state sum example

Final-state sum example

Final-state sum example

Using the CFF representation we can show that

Final-state sum example

Using the CFF representation we can show that

Final-state sum example

Using the CFF representation we can show that

Final-state sum example

Using the CFF representation we can show that

This relation allows to collect locally interference diagrams

Final-state sum example

Using the CFF representation we can show that

This relation allows to collect locally interference diagrams

Final-state sum example

Using the CFF representation we can show that

This relation allows to collect locally interference diagrams

$$\sigma(\phi^* \to n \, \text{jets}_{\phi}) =$$

Final-state sum example

Using the CFF representation we can show that

This relation allows to collect locally interference diagrams

Final-state sum example

Using the CFF representation we can show that

This relation allows to collect locally interference diagrams

$$\sigma(\phi^{\star} \to n \, \mathrm{jets}_{\phi}) = - \begin{array}{c} & & & \\ &$$

Final-state sum example

Using the CFF representation we can show that

This relation allows to collect locally interference diagrams

Example: consider massless scalar corrections to the decay of a massive scalar $\rho = |\phi^*\rangle \langle \phi^*|$

$$= \int d\Pi \sum_{i=1}^{4} g_i$$

(Capatti, Hirschi, Ruijl, Pelloni [arXiv:2010.01068])

How do we show it?

Final-state sum example

Using the CFF representation we can show that

This relation allows to collect locally interference diagrams

Example: consider massless scalar corrections to the decay of a massive scalar $\rho = |\phi^*\rangle \langle \phi^*|$

How do we show it?

Final-state sum example

Using the CFF representation we can show that

This relation allows to collect locally interference diagrams

Example: consider massless scalar corrections to the decay of a massive scalar $\rho = |\phi^*\rangle \langle \phi^*|$

How do we show it?

Final-state sum example

Using the CFF representation we can show that

This relation allows to collect locally interference diagrams

Example: consider massless scalar corrections to the decay of a massive scalar $\rho = |\phi^*\rangle \langle \phi^*|$

Extension to initialstate sums

Extension to initialstate sums In the preceding example, we fixed a massive initial-state. What if we want to have massless initial states?

We need to write forward-scattering diagrams as residues of something!

"connected graph"

We need to write forward-scattering diagrams as residues of something!

How do we extend to initial-state sums? In other words what are forward-scattering diagrams residues of

"connected graph"

We need to write forward-scattering diagrams as residues of something!

How do we extend to initial-state sums? In other words what are forward-scattering diagrams residues of $\prod_{z=0}^{\infty} Im[z]$

Embedding vacuum graph in $\mathbb{C}\setminus\{0\}$ $\operatorname{Re}[z]$

"connected graph"

We need to write forward-scattering diagrams as residues of something!

How do we extend to initial-state sums? In other words what are forward-scattering diagrams residues of $\prod_{z=0}^{\infty} Im[z]$

Embedding vacuum graph in $\mathbb{C}\setminus\{0\}$ $\mathbb{Re}[z]$ $x^0\to z$

"connected graph"

We need to write forward-scattering diagrams as residues of something!

How do we extend to initial-state sums? In other words what are forward-scattering diagrams residues of $\Pr[z]$

Embedding vacuum graph in $\mathbb{C} \setminus \{0\}$

$$x^0 \rightarrow z$$

states?

"connected

graph"

We need to write forward-scattering diagrams as residues of something!

How do we extend to initial-state sums? In other words what are forward-scattering diagrams $\Delta \operatorname{Im}[z]$

residues of

Embedding vacuum graph in $\mathbb{C}\setminus\{0\}$ $x^0 \to z$

A Cutkosky cut is a minimal set of edges whose deletion makes the graph contractible

"connected graph"

We need to write forward-scattering diagrams as residues of something!

How do we extend to initial-state sums? In other words what are forward-scattering diagrams $\Delta \operatorname{Im}[z]$

residues of

Embedding vacuum graph in $\mathbb{C}\setminus\{0\}$ $x^0 \to z$

A Cutkosky cut is a minimal set of edges whose deletion makes the graph contractible

"connected graph"

We need to write forward-scattering diagrams as residues of something!

How do we extend to initial-state sums? In other words what are forward-scattering diagrams $\Delta \operatorname{Im}[z]$

residues of

Embedding vacuum graph in $\mathbb{C}\setminus\{0\}$ $x^0 \to z$

A Cutkosky cut is a minimal set of edges whose deletion makes the graph contractible

We can construct a three-dimensional representation for embeddings

"connected graph"

We need to write forward-scattering diagrams as residues of something!

How do we extend to initial-state sums? In other words what are forward-scattering diagrams residues of $\mathbf{Im}[z]$

residues of

Embedding vacuum graph in $\mathbb{C}\setminus\{0\}$ $x^0\to z$

A Cutkosky cut is a minimal set of edges whose deletion makes the graph contractible

We can construct a three-dimensional representation for embeddings

$$q_{6} \underbrace{q_{5}}_{q_{3}} \underbrace{q_{4}}_{q_{2}} = \int \left[\prod_{i=1}^{6} \frac{\mathrm{d}q_{i}^{0}}{q_{i}^{2}} \right] \delta(q_{1} + q_{2} - p) \delta(q_{1} + q_{2} - p) \delta(q_{2} + q_{3} - q_{6} - p) \delta(q_{5} + q_{6} - p) \delta(q_{2} + q_{4} + q_{6} - p)$$

Embeddings have thresholds associated with their Cutkosky cuts

"connected graph" We need to write forward-scattering diagrams as residues of something!

How do we extend to initial-state sums? In other words what are forward-scattering diagrams residues of $\operatorname{Im}[z]$

residues of

 $x^0 \to z$

Embedding vacuum graph in $\mathbb{C} \setminus \{0\}$

 $\operatorname{Re}[z]$

A Cutkosky cut is a minimal set of edges whose deletion makes the graph contractible

We can construct a three-dimensional representation for embeddings

Embeddings have thresholds associated with their Cutkosky cuts

This observation allows to extend the Local Unitarity representation to initial states!

Conclusion

- Energy conservation implies a rigid diagrammatic structure for threshold singularities
 - Connectedness
 - Absence of crossing
 - Obstruction-freedom
- These principles are manifest in a novel 3D-representation that holds for any theory (independent of numerator) and at any loop

Implemented in Mathematica package

https://github.com/apelloni/cLTD

- The presence of connectedness suggests that, in order to understand IR-finiteness, one should decompose cross-sections according to the degree of connectedness
- 3D representations can be used to express interference diagrams as local residues of forward-scattering diagrams, and forward-scattering diagrams as local residues of vacuum embeddings
- In turn, these local residues can be used to write cross-sections in a way that manifests the KLN cancellation mechanism at the local level (Local Unitarity)
- Local Unitarity can be used to numerically evaluate cross-sections