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First part: Cross-Free Families

- Sketch the derivation of the representation
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- Highlight role of connectedness by comparison with Time-Ordered Perturbation Theory
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We start with an arbitrary diagram integrated over loop energies only
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We start with an arbitrary diagram integrated over loop energies only
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qo = pe + Z Seiky G, undirected graph
1=1

Fe = \/WGP + m?2

£ set of edges of graph

Performing the integrals using residue theorem is a matter of correctly addressing energy
conservation (depending on how, get TOPT, LTD, CFF). For CFF (zC [arXiv:2211.09653]):
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Acyclic graphs and edge contraction

We start with an arbitrary diagram integrated over loop energies only

2 / {ﬁ dk@} N ({0 ecs) qe = p2 + 2; seik? Gy undirected graph
11 =

i=1 2m eES(qg)Q'__ZEg

E. = /|q.|? +m?2 £ set of edges of graph

Performing the integrals using residue theorem is a matter of correctly addressing energy
conservation (depending on how, get TOPT, LTD, CFF). For CFF (zC [arXiv:2211.09653]):
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Acyclic graphs and edge contraction

We start with an arbitrary diagram integrated over loop energies only

2 / {ﬁ dk@} N ({0 ecs) qe = p2 + 2; seik? Gy undirected graph
11 =

I 02 _ F2
i=1 cce(de) ¢ E. = /|q.|> + m2 & set of edges of graph

Performing the integrals using residue theorem is a matter of correctly addressing energy
conservation (depending on how, get TOPT, LTD, CFF). For CFF (zC [arXiv:2211.09653]):
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After insertion of this identity, loop energy integrations are trivial (dependence is only in exponents)
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Acyclic graphs and edge contraction

We start with an arbitrary diagram integrated over loop energies only

a1 dk? | N({@Q)eee)
G ‘/ [H %} [Les(a0)? — E2

1=1

= po + Z Seiky G, undirected graph

E. = /|q.|? +m?2 £ set of edges of graph

Performing the integrals using residue theorem is a matter of correctly addressing energy
conservation (depending on how, get TOPT, LTD, CFF). For CFF (zC [arXiv:2211.09653]):
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After insertion of this identity, loop energy integrations are trivial (dependence is only in exponents)
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( L is empty if graph not acyclic)
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Acyclic graphs and edge contraction

We start with an arbitrary diagram integrated over loop energies only
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E. = /|q.|? +m?2 £ set of edges of graph

Performing the integrals using residue theorem is a matter of correctly addressing energy
conservation (depending on how, get TOPT, LTD, CFF). For CFF (zC [arXiv:2211.09653]):
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After insertion of this identity, loop energy integrations are trivial (dependence is only in exponents)
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( L is empty if graph not acyclic)
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Acyclic graphs and edge contraction

We start with an arbitrary diagram integrated over loop energies only
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Acyclic graphs and edge contraction

We start with an arbitrary diagram integrated over loop energies only

a1 dk? | N({@Q)eee)
G _/ {H QW} Heeg(qg>2 — BZ

1=1

= po + Z Seiky G, undirected graph

E. = /|q.|? +m?2 £ set of edges of graph

Performing the integrals using residue theorem is a matter of correctly addressing energy
conservation (depending on how, get TOPT, LTD, CFF). For CFF (zC [arXiv:2211.09653]):
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After insertion of this identity, loop energy integrations are trivial (dependence is only in exponents)

. H / [H dr ¢ime (P pe)] with Ke = {(Te)eeg ceREN Y sGr. =0, i= 1,...,L}
665 Ka

acyclic ec& ec&
graph G

( L is empty if graph not acyclic)
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Position space: Fourier duality maps acyclic graphs to strongly-connected graphs
(Borinsky, ZC, Laenen, Salas-Bernardez [arXiv:2210.05532])
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S s } Triangulation introduces spurious
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How do we perform the remaining integrations (one for each edge)”? Edge-contraction
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B €3 €2
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€4 €4
€2 €2
(
T 0 0 V134 vy 4+ U1 V3
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€1 €3
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E\+Es—p9 |Es+Es+pQEy+Ey—p0—pY ' E1+FE3—p% —pQ Ey + B3 +p§ | 99

All time integrations are performed diagrammatically!
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Cross-Free Families

—

Collecting the chosen vertices and collecting them
according to order of choice, we get a decision tree,
whose root is the first chosen vertex

Tracing the route from the leaves to the root gives sets of vertices

F = {{Ul}a {US}a {?)1, 02}}

€2

E1+ Ey—p) Es+ Es+p3 Es + Ey — pY — pY

€3

€4 Vg

Boundary operator

Cross-Free Families
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Collecting the chosen vertices and collecting them
according to order of choice, we get a decision tree,
whose root is the first chosen vertex

Cross-Free Families ——

Tracing the route from the leaves to the root gives sets of vertices

Fy = {{v1},{vs}, {v1,v2}} Fy = {{vi}, {vi,va},{v1,v2,v4}}
€9 3
6;3E1—|—E4—p(l)E2+E3+ng2+E4—p(1’—p8 E1+Es—p? B1+ E3 — p} — pd E2 + FEs3 + p§
eq V4

Boundary operator

Cross-Free Families

5 /14



Boundary operator

Cross-Free Families

5 /14

—®

Collecting the chosen vertices and collecting them
according to order of choice, we get a decision tree,
whose root is the first chosen vertex

Cross-Free Families ——

Tracing the route from the leaves to the root gives sets of vertices

Fy = {{v1},{vs}, {vi,v2}} Fy = {{v1},{v1,v4},{v1, 2,04} }
€9 3
6;3El—|—E4—p(l)E2+E3+ng2+E4—p(1)—p8 E1+ Ey—p} Bx+ B3 — p§ — pd B2 + E3 +pj
€4 (2!
0
Boundary operator provides nexus  e.g. 0({vi,v2}) = {e2,ea} —>

Es + Ey — p? — pd



Cross-Free Families

—®

Collecting the chosen vertices and collecting them

according to order of choice, we get a decision tree,
whose root is the first chosen vertex

——
__

Tracing the route from the leaves to the root gives sets of vertices

Fy = {{v1},{vs},{v1,v2}} Fo = {{v1},{v1,va}, {v1,v2,04}}
e
2 3
= Ey+ Ey—p?} Ex + Es +p3 Ey + E4 — p§ — p§ E1+ Ey—p} Bx+ B3 — p§ — pd B2 + E3 +pj
eq V4
. 7
Boundary operator | Boundary operator provides nexus  e.g. 0({vi,v2}) = {ez2,ea} — BN
Eo + Ey — P1 — Do
. - " " . A Britt | |
Cross-Free Families|| We notice some regularities. .. these families of Cuts satisfy  “bayisot0.01068 (2014 arxiv-1512.01708 (5012)
Arkani-Hamed, Benincasa, Postnikov
Sel” = 5 V\JS are connected arXiv:1709.02813 (2017)
Benincasa, MclLeod, Vergu
51,5 € F = S CSyorS, CSiorSinNSy=1»0 arXiv:2009.03047 (2020)
: . : Capatti, Hirschi, Pelloni, Ruiil,
- Se ' = S cannot be written as union of other sets in F A Dnen o0t

arXiv:2010.01068 (2020)




Forbidden
configurations

General formula

6 /14




Forbidden

configurations z ; L Ei;f ;[ E

crossing connectedness obstruction

General formula

6 /14



Forbidden

configurations z ; L EC;E ;l E

crossing connectedness obstruction

General formula Repeating the same edge-contraction procedure for all acyclic graphs

N 1

3d __ G

o acy;ic He 2Ee F;G HSEF [E - 19(5) — Z’UES pg]
graph G

6 /14



Forbidden

configurations 1 ; L EC;E ;l E

crossing connectedness obstruction

General formula Repeating the same edge-contraction procedure for all acyclic graphs

Na 1

3d __

o acygic He 2Ee F;G HSEF [E - 19(5) — Z’UES pg]
graph G

Repeating the same edge-contraction procedure for all acyclic graphs. For our example, we had

6 /14



Forbidden

configurations 1 ; L EZ;E ;l E

crossing connectedness obstruction

General formula Repeating the same edge-contraction procedure for all acyclic graphs

Na 1

3d __

o acygic He 2Ee F;G HSGF [E - 19(5) — Z’UES pg]
graph G

Repeating the same edge-contraction procedure for all acyclic graphs. For our example, we had

6 /14



Forbidden

configurations 1 ; L EC;E ;l g

crossing connectedness obstruction

General formula Repeating the same edge-contraction procedure for all acyclic graphs

“ : II@QEQZFEJQ;IISEF[lg.]ﬁKS)__EZUESl%]

acyc
grap

Repeating the same edge-contraction procedure for all acyclic graphs. For our example, we had

6 /14



Forbidden

configurations 1 ; L EZ;E ;l E

crossing connectedness obstruction
General formula Repeating the same edge -contraction procedure for all acyclic graphs
= Y [oE 2 o B P -r ]
SeF UESZM

acyc
grap

Repeating the same edge-contraction procedure for all acyclic graphs. For our example, we had

@: e1 €3 Fa = {1, Fy}

6 /14



Forbidden

configurations 1 ; L EC;E ;l E

crossing connectedness obstruction
General formula Repeating the same edge -contraction procedure for all acyclic graphs
= Y [oE 2 o B P -r ]
SeF UESZM

acyc
grap

Repeating the same edge-contraction procedure for all acyclic graphs. For our example, we had
€2

@: €1 €3 FG:{Fl,FQ} F

||
o
|

6 /14



Forbidden

configurations 1 ; L EC;E ;l g

crossing connectedness obstruction

General formula Repeating the same edge—contraction procedure for all acyclic graphs
3d __

Gy —
acyc H 2E %HSEF E 18(8) _Z’UESp’U]

grap

Repeatrng the same edge-contraction procedure for all acyclic graphs. For our example, we had
€2

6 /14



Forbidden

configurations 1 ; L EZ;E g g

crossing connectedness obstruction

General formula Repeating the same edge—contraction procedure for all acyclic graphs

3d __
Gy —
acyc H 2E %HSGF 18(5) o Z’UES pv]

grap

Repeatlng the same edge-contraction procedure for all acyclic graphs. For our example, we had
€2

U3

@: €1 €3 @: {Fl,FQ} b = Fy =

Each element of a cross-free family corresponds to a threshold

By = {{v1},{vs}, {v1,v2}}

6 /14



Forbidden

configurations 1 ; L EZ;E ;l g

crossing connectedness obstruction

General formula Repeating the same edge—contraction procedure for all acyclic graphs
3d __

G acyc H 2E %l@ 18(5) o ZUESp”U]

grap

Repeatlng the same edge-contraction procedure for all acyclic graphs. For our example, we had
€2

U3

@: €1 €3 @: {Fl,FQ} b = Fy =

Each element of a cross-free family corresponds to a threshold

Fi = {{or}. (v} o, v2))

6 /14



Forbidden

configurations 1 ; L EZ;E g g

crossing connectedness obstruction

General formula Repeating the same edge—contraction procedure for all acyclic graphs
3d __

G acyc H 2E %l@ E 18(5) _Z’UESp’U]

grap
Repeating the same edge-contraction procedure for all acyclic graphs. For our example, we had

Each element of a cross-free family corresponds to a threshold

Fi = {forh fes} Qo oo} o b = (o) B1%0ed = Y mem

ve{vy,va}

6 /14



Forbidden

configurations 1 ; L EZ;E g g

crossing connectedness obstruction

General formula Repeating the same edge—contraction procedure for all acyclic graphs
3d __

e acyc H 2E %l@ 18(5) B ZUESp”U]

grap

Repeatlng the same edge-contraction procedure for all acyclic graphs. For our example, we had
€2

U3

@: €1 €3 @: {Fl,FQ} b = Fy =

Each element of a cross-free family corresponds to a threshold
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Factorisation We can see that in general from a diagram-level factorisation formula
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Second part: cluster decomposition and infrared finiteness

- Highlight role of connectedness at the operator level

(a| T |8) D ay

Reconstruct unitarity, cluster decomposition principle and infrared finiteness
from the diagrammatic analysis

- Use Local Unitarity methods to take advantage of this analysis to numerically
evaluate cross-sections

9 /14
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transition matrix Can we express the role of connectedness at the operator level? Define the connected
transition matrix

S-matrix The connected transition matrix is not unitary (expected). What is the relationship with S-matrix?
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Connected Cluster Decomposition
transition matrix Can we express the role of connectedness at the operator level? Define the connected
transition matrix

S-matrix The connected transition matrix is not unitary (expected). What is the relationship with S-matrix?

-2 -3
S=1+iTc+ T2+ -T2 +...=¢Te (evokes 2] = ")

! !
2! 3! (See also holomorphic cutting rules: Hannesdottir, Mizera [arXiv:2204.02988])

i (o] Te|8) —i (| TL(8) = (a| T.TL8) -| 3 (/| T.|8) (a\ /| T} |8\ 8) {
S —— a'Ca
a\ a’{

usual unitarity eh

10/14 Factorisation formula expressed at the operator level!
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This S-matrix also trivially satisfies the cluster-decomposition principle. Indeed
T.(la) ®[8)) = (Tc|oy) ® [B) + |a) @ (T [8)) — P = P,Pg

for states with large space-like separations.

Using it, we can compute transition probabilities

= P =
P =Tr[pSPS" p= 3 rala)ial P=3 Pslo)(o
Sum over massless particles requires decoherence

The decoherence is due to the way we sum contributions with different number of massless
particles in the initial and final state

\\\\ \

P=> f dIl,,|A(pp = EW + mp)|?

And also the reason why we can write interference diagrams in the first place!

n-+m

Finally: P=Ti[pSPS| =Y " Tr[pT! P(T})"]
TV ~ -

n,m T~
Infrared finite if density matrix and projector

sum over degenerate massless radiation

Infrared-finiteness follows from the unitarity relation we showed in the previous slide. But we
can also look at it at a diagrammatic level.
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How do we show it?

This relation allows to collect locally interference diagrams

Example: consider massless scalar corrections to the decay of a massive scalar p = [¢*) (¢*|

o(6" - njets,) — {@g:>+{@@+1®03 +{<:22 = ii}/dmﬁ

Locally finite

(Capatti, Hirschi, Ruijl, Pelloni [arXiv:2010.01068])
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13/14 This observation allows to extend the Local Unitarity representation to initial states!
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Conclusion

Energy conservation implies a rigid diagrammatic structure for threshold singularities
e (Connectedness
e Absence of crossing

e (bstruction-freedom

These principles are manifest in a novel 3D-representation that holds for any theory
(independent of numerator) and at any loop

Implemented in
Mathematica package

> https://githulb.com/apelloni/cLTD

The presence of connectedness suggests that, in order to understand IR-finiteness, one
should decompose cross-sections according to the degree of connectedness

3D representations can be used to express interference diagrams as local residues of
forward-scattering diagrams, and forward-scattering diagrams as local residues of
vacuum embeddings

In turn, these local residues can e used to write cross-sections in a way that manifests
the KLN cancellation mechanism at the local level (Local Unitarity)

Local Unitarity can be used to numerically evaluate cross-sections



