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First part: Cross-Free Families

- Sketch the derivation of the representation
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- Highlight role of connectedness by comparison with Time-Ordered Perturbation Theory
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(spurious singularities in TOPT)
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Acyclic graphs and edge contraction

We start with an arbitrary diagram integrated over loop energies only
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1=1

= po + Z Seiky G, undirected graph

E. = /|q.|? +m?2 £ set of edges of graph

Performing the integrals using residue theorem is a matter of correctly addressing energy
conservation (depending on how, get TOPT, LTD, CFF). For CFF (zC [arXiv:2211.09653]):
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After insertion of this identity, loop energy integrations are trivial (dependence is only in exponents)
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( L is empty if graph not acyclic)
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Position space: Fourier duality maps acyclic graphs to strongly-connected graphs
(Borinsky, ZC, Laenen, Salas-Bernardez [arXiv:2210.05532])
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The cone is non-simplicial

K =3 (Te)ece € RY!
Needs triangulation! ¢ {<T)€5 +

S s } Triangulation introduces spurious

ppeye singularities or spurious intersections

How do we perform the remaining integrations (one for each edge)”? Edge-contraction
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4. Throw out non-acyclic
- graphs
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All time integrations are performed diagrammatically!



Cross-Free Families

—®

Collecting the chosen vertices and collecting them

according to order of choice, we get a decision tree,
whose root is the first chosen vertex

——
__

Tracing the route from the leaves to the root gives sets of vertices

Fy = {{v1},{vs},{v1,v2}} Fo = {{v1},{v1,va}, {v1,v2,04}}
e
2 3
= Ey+ Ey—p?} Ex + Es +p3 Ey + E4 — p§ — p§ E1+ Ey—p} Bx+ B3 — p§ — pd B2 + E3 +pj
eq V4
. 7
Boundary operator | Boundary operator provides nexus  e.g. 0({vi,v2}) = {ez2,ea} — BN
Eo + Ey — P1 — Do
. - " " . A Britt | |
Cross-Free Families|| We notice some regularities. .. these families of Cuts satisfy  “bayisot0.01068 (2014 arxiv-1512.01708 (5012)
Arkani-Hamed, Benincasa, Postnikov
Sel” = 5 V\JS are connected arXiv:1709.02813 (2017)
Benincasa, MclLeod, Vergu
51,5 € F = S CSyorS, CSiorSinNSy=1»0 arXiv:2009.03047 (2020)
: . : Capatti, Hirschi, Pelloni, Ruiil,
- Se ' = S cannot be written as union of other sets in F A Dnen o0t

arXiv:2010.01068 (2020)




Forbidden

configurations 1 ; L EZ;E g g

crossing connectedness obstruction

General formula Repeating the same edge—contraction procedure for all acyclic graphs
3d __
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grap

Repeatlng the same edge-contraction procedure for all acyclic graphs. For our example, we had
€2

U3

@: €1 €3 @: {Fl,FQ} b = Fy =

Each element of a cross-free family corresponds to a threshold

Fi = {forh fes} Qo oo} o b = (o) B1%0ed = Y mem

ve{vy,va}

And the cross-free family corresponds to a product of thresholds
3
B 0 0 0
By +Eys—pY By + B3 +p} By + Eq — p§ — pf
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Discontinuities

We can Compute discontinuities (Bourjaily, Hannesdottir, McLeod, Schwartz, Vergu [arXiv:2007.13747])
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Why use the CFF rep. and not TOPT? Focus on the TOPT term ordering {v1,v3,v2,v4}
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Looking at the second cut

v1 \ a/,’vz ”1\ /02 Divides the graph in four connected
L components, but the CFF representation tells us
yd \. A N this is not possible! It is a spurious threshold
U3 E, Vg U3 U4

5(E1 +E2—|-E3—|-E4—p(1)—pg)
How do we see that it is spurious”?
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Factorisation We can see that in general from a diagram-level factorisation formula

formula

63 A:E2+E4_p?_p2_>0 elDeg
Ej A= Bt Byt Byt By = pi—pi =0 ell:leg:o(l)

Spectators What do we really mean by “connected graph”?

; / Connected up to
=X - +o(1) spectator particles!
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Second part: cluster decomposition and infrared finiteness

- Highlight role of connectedness at the operator level

(a| T |8) D ay

Reconstruct unitarity, cluster decomposition principle and infrared finiteness
from the diagrammatic analysis

- Use Local Unitarity methods to take advantage of this analysis to numerically
evaluate cross-sections
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Connected Cluster Decomposition
transition matrix Can we express the role of connectedness at the operator level? Define the connected
transition matrix

S-matrix The connected transition matrix is not unitary (expected). What is the relationship with S-matrix?

-2 -3
S=1+iTc+ T2+ -T2 +...=¢Te (evokes 2] = ")

! !
2! 3! (See also holomorphic cutting rules: Hannesdottir, Mizera [arXiv:2204.02988])

i (o] Te|8) —i (| TL(8) = (a| T.TL8) -| 3 (/| T.|8) (a\ /| T} |8\ 8) {
S —— a'Ca
a\ a’{

usual unitarity eh

10/14 Factorisation formula expressed at the operator level!
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This S-matrix also trivially satisfies the cluster-decomposition principle. Indeed
T.(la) ®[8)) = (Tc|oy) ® [B) + |a) @ (T [8)) — P = P,Pg

for states with large space-like separations.

Using it, we can compute transition probabilities

= P =
P =Tr[pSPS" p= 3 rala)ial P=3 Pslo)(o
Sum over massless particles requires decoherence

The decoherence is due to the way we sum contributions with different number of massless
particles in the initial and final state

\\\\ \

P=> f dIl,,|A(pp = EW + mp)|?

And also the reason why we can write interference diagrams in the first place!

n-+m

Finally: P=Ti[pSPS| =Y " Tr[pT! P(T})"]
TV ~ -

n,m T~
Infrared finite if density matrix and projector

sum over degenerate massless radiation

Infrared-finiteness follows from the unitarity relation we showed in the previous slide. But we
can also look at it at a diagrammatic level.



Final-state sum
example
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How do we show it?

This relation allows to collect locally interference diagrams

Example: consider massless scalar corrections to the decay of a massive scalar p = [¢*) (¢*|

o(6" - njets,) — {@g:>+{@@+1®03 +{<:22 = ii}/dmﬁ

Locally finite

(Capatti, Hirschi, Ruijl, Pelloni [arXiv:2010.01068])



In the preceding example, we fixed a massive initial-state. What if we want to have massless initial

states? A
i We need to write forward-scattering diagrams as residues of something!

How do we extend to initial-state sums”? In other words what are forward-scattering diagrams

residues of ATmlz]
Egﬁi?ndg%ph " ., ACutkosky cut is a minimal set of edges
C\ {0} o[z] whose deletion makes the graph contractible X
) — 2 \
We can construct a three-dimensional representation for embeddings
de )
dg?
6 = / [H qq; ] 0(q1 + 42 —p)d(q1 + g2 — p)d(q2 + g3 — g6 — P)(g5 + g6 — P)9(q2 + ¢4 + 46 — )
=1
q1
Embeddings have thresholds associated with their Cutkosky cuts
de ' 1
= ] B+ Ey —p’ =
o lim B+ 2= ) { L
d1 ° °

13/14 This observation allows to extend the Local Unitarity representation to initial states!
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Conclusion

Energy conservation implies a rigid diagrammatic structure for threshold singularities
e (Connectedness
e Absence of crossing

e (bstruction-freedom

These principles are manifest in a novel 3D-representation that holds for any theory
(independent of numerator) and at any loop

Implemented in
Mathematica package

> https://githulb.com/apelloni/cLTD

The presence of connectedness suggests that, in order to understand IR-finiteness, one
should decompose cross-sections according to the degree of connectedness

3D representations can be used to express interference diagrams as local residues of
forward-scattering diagrams, and forward-scattering diagrams as local residues of
vacuum embeddings

In turn, these local residues can e used to write cross-sections in a way that manifests
the KLN cancellation mechanism at the local level (Local Unitarity)

Local Unitarity can be used to numerically evaluate cross-sections



