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Object of interest:

Four-point amplitude in planar
N=4 SYM theory



MOTIVATION

Planar N=4 SYM: playground for new ideas in scattering amplitudes

Four-point amplitudes: restricted kinematics, powerful symmetries

Bern-Dixon-Smirnov (BDS) ansatz

M,=1+ Z aX MD) (€) = exp [Z a’ (f(l)(e)M,,(Ll)(le) OV E,,(f)(e))] for n=4,5
L=1 I=1

kinematical part fully fixed, leading IR divergence predicted by integrability

The complexity of loop integrand grows fast with the loop order
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MOTIVATION

Why is the integrand so complicated while the final amplitude
is so simple?

The integrand must be complicated because it contains a lot
of “data”, infinite number of cuts that must be satisfied

Are these data lost after integration (how do they transform into numbers)?

Can we extract some IR finite object from the integrand?

Amplituhedron: new geometric definition for the all-loop integrand

Can we use it to calculate the integrand to all loops?
If yes, can we integrate, resum and explore strong coupling?




THIS TALK

Using the Amplituhedron we define a new geometric
expansion “loops of loops” for the integrand

At the leading “tree approximation” calculate integrand to
all loops, integration, resummation, strong coupling

Calculate the integrand at the sub-leading
“one-loop” to all loops, systematize the expansion

Integrate and resum sub-leading order,
towards higher (or all) orders

Published paper
with Nima and

Johannes
from 2022

Paper to appear
> with Taro, Umut
and Shruti

> Future work




INTRODUCTION



EARLY RESULTS

One-loop amplitude calculated in 1982, (full) two-loop in 1997

Two-Loop Four-Gluon Amplitudes in N=4 Super-Yang-Mills

CALT-68-880
DoE RESEARCH AND
DEVELOPMENT REPORT

Z. Bern, J.S. Rozowsky and B. Yan

Department of Physics
University of California at Los Angeles
Los Angeles, CA 90095-1547

N=4 Yang-Mills and N=8 Supergravity as Limits of
String Theories

MICHAEL B. GREEN' and JOHN H. SCHWARZ T . | —
California fnstitute of Technology, Pasadena, California 91125 Lars Brink
. 1943-2022

Institute of Theoretical Physics, Géteborg, Sweden
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In 2003 Anastasiou, Bern, Dixon and Kosower:
planar sector (large N limit) of the amplitude

Planar Amplitudes in Maximally Supersymmetric Yang-Mills Theory

C. Anastasiou
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

[

Department of Physics and Astron%;nf eanLA, Los Angeles, CA 90095-1547
| e (a) Observed relation between two-loop and
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309
. E one-loop in dimensional regularization
Service de Physique, Centre d’Etudes de Saclay, F-91191 Gif-sur-Yvette cedex, France

(Dated: September, 2003)
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BDS ANSATZ

In 2005, Bern, Dixon and Smirnov calculated 3-loop amplitude

. . . 1 pe "
Iteration of Planar Amplitudes in Mf) (€) = _§St (,32 ]/§3) (s,t) + 2s [1£3)b(t, s) + t2 153) (t,s)+ 2t [f)b(s, t))
Maximally Supersymmetric Yang-Mills Theory 5 3 5 3
2 3 .
at Three Loops and Beyond _ 5t st(li+1L)? SLt(l+1)? mtegrand
_ 8 i SR - IR already given
Zvi Bern 1 4 i . . . i1 1997
Department of Physics and Astronomy, UCLA 2 3 3 i n paper
2 3 3
Los Angeles, CA 90095-1547, USA
08 nge €s 4 s t3 . s t2(11+ 12)2 - stz(ll+ lz)z 12
Lance J. Dixon E 8 I 8
1 4 15 4

Stanford Linear Accelerator Center { 4
Stanford University

e e e The integrand obtained using unitarity methods, after

integration they found the same iterative structure

Vladimir A. Smirnov
Nuclear Physics Institute of Moscow State University
Moscow 119992, Russia

(Dated: May, 2005) ]. 3
MP(e) = —3[MP(©)] + M () MP (9 + FD () M Be) + CD +O(9

Conjecture: | M, =1+ ZaLM“‘) (€) = exp [Z {(FOOMP (e + CO +E(‘)(6))]

L=1 =1

cusp-anomalous dimension calculated in 2006 by FO(e) . +ef® 4 2fO
Beisert, Eden and Staudacher from integrability




FOUR AND FIVE-LOOPS

In next two years, 4-loop and 5-loop integrands were constructed

(Bern, Czakon, Dixon, Kosower, Smirnov, 2006) (Bern, Carrasco, Johansson, Kosower, 2007)
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+ analytic results not known, leading IR divergence verified at 4-loops numerically

+ numerators can be chosen to be invariant under dual conformal symmetry
(Drummond, Henn, Korchemsky, Sokatchev, 2008)



LOOP INTEGRAND

In 2010, we took the planar integrand seriously and formulated recursion
relations for N=4 SYM in momentum twistor space coages, 2009)

+ the integrand is a unique rational function The All-Loop Integrand For Scattering
Amplitudes in Planar N’ =4 SYM

N. Arkani-Hamed?, J. Bourjaily®?, F. Cachazo®¢, S. Caron-Huot?, J. Trnka%®

—lo op @ School of Natural Sciences, Institute for Advanced Study, Pri
) y, Princeton, NJ 08540, USA
Zn k (ABl 3 AB2 g o o oy ABg 3 Zl 3 22 g o o ey Zn) b Department of Physics, Princeton University, Princeton, NJ 08544, USA

¢ Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2J W29, CA

+ various ways how to expand it

/-
_1 2—loop __ :
‘s B/ -AMva—
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nr, 1\[ [[ j

(Arkani-Hamed, Bourjaily, Cachazo, Trnka, 2010) (Bourjaily, Trnka, 2015)
(Bourjaily, Brown, Patatoukos, JT, in progress)

Properties of the loop integrand %
A
+ symmetric function of all loop lines AB; ) —
+ the only poles for MHV are (AB;jj+1) or (AB;AB;) 7 Zs

+ cuts in momentum twistor space: localizing AB; - intersection with other lines



AMPLITUDE LOGARITHM

As we learnt from BDS ansatz logarithm of the amplitude is a special
function with mild IR divergence

= cus 1
M, =3 at fO (M (le) + CO + EP () = L2 4 0 ()
=1

€ €

[t makes sense to construct the integrand for the logarithm from
products of amplitudes, which makes this property manifest

two-loop 4pt example: 7\ (AB;, Z,) = I\ (AB,CD) — I\" (AB) x 7\ (CD)

2 3
n 1 : not a planar object!

1 4 4 3

=) _ (1234)3((AB13)(CD24) + (AB24)(CD13))
! 2 1 2 * 7 (AB12)(AB23)(AB34)(ABA1)(ABCD)(CD12)(CD23)(CD34)(CDA41)

(Arkani-Hamed, Bourjaily, Cachazo, Trnka, 2010) (Drummond, Henn, 2010)

4 3 4 3

IR property: vanishing in collinear regions 2z, — Z,, Zp — 7 + aZs

in fact, only non-zero residue when we move all loop lines in the collinear region
(Arkani-Hamed, Bourjaily, Cachazo, JT, 2010) (Arkani-Hamed, Trnka, 2013)



AMPLITUDES UP TO 10 LOOPS

The 6-loop and 7-loop integrand was constructed using soft-collinear
bootstrap method applying this IR property on the logarithm ‘

(Bourjaily, DiRe, Skaikh, Spradlin, Volovich, 2011) (Bourjaily, Heslop, Tran, 2015)

+ new ideas needed at 8-loops: terms which vanish in the collinear regions

The integrand up to 10 loops using the four-point stress correlator

R number of  number of graphs number of decorated number of planar
(BOUPJ a’l]'y ’ HeS]'Op7 Tfan, 2016) ¢ plane graphs admitting decoration plane graphs (f-graphs) DCI integrands
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+ hidden properties of “f-graphs”, extraction
of the amplitude in the light-like limit
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For IR finite objects at higher points (remainder and ratio functions)

Powerful non-integrand methods: hexagon and heptagon bootstraps

(Dixon, McLeod, von Hippel, Caron-Huot, Drummond, Henn, Dulat, Papathanasiou, Gurdogan, Wilhelm, Goncharov, Spradlin, Vergu, Volovich,.....

Flux tube S-matrix approach, OPE, Y-system, strong coupling, S-matrix bootstrap

(Basso, Sever, Vieira, Tumanov, Wilhelm, Alday, Maldacena, Correia, Zhiboedov,....)



LOQOPS OF LOOPS IN THE
AMPLITUHEDRON



AMPLITUHEDRON

In 2013 together with Nima we found a new geometric construction
for planar integrands in N=4 SYM

(Arkani-Hamed, JT, 2013) (Arkani-Hamed, Thomas, JT, 2017) (Ferro, Lukowski, 2022)

This is a generalization of our earlier work on the on-shell diagrams
and positive Grassmannian and Hodges” polytopes

(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT, 2012) (Hodges 2009) (Arkani-Hamed, Bourjaily, Cachazo, Hodges, JT, 2010)

General Amplituhedron is

AE—IOOP 0 curvy: complicated
Tree-level amplitudes _-¥ , boundary structure
and loop integrands (Franco, Galloni, Mariotti, JT, 2014)
(Lukowski, Moerman, 2020)
: (Dian, Heslop, Stewart, 2022)
“Volume”: differential form \
with logarithmic singularities Amplituhedron defined

?
on the boundaries of the space by a set of inequalities How to calculate ()

in the kinematical space



AMPLITUHEDRON

In 2013 together with Nima we found a new geometric construction
for planar integrands in N=4 SYM

(Arkani-Hamed, JT, 2013) (Arkani-Hamed, Thomas, JT, 2017) (Ferro, Lukowski, 2022)

This is a generalization of our earlier work on the on-shell diagrams
and positive Grassmannian and Hodges” polytopes

(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT, 2012) (Hodges 2009) (Arkani-Hamed, Bourjaily, Cachazo, Hodges, JT, 2010)

‘”

Triangulation in terms of “simplices”: difficult to do in general




FOUR-POINT AMPLITUHEDRON

(Arkani-Hamed, JT, 2013)

Definition of the space to all loops: mathematical problem

+ Each loop described by a constrained line in momentum twistor space
(AB;12), (AB;23), (AB;34), (AB;14) > 0, (AB;13),(AB;24) < 0 (IJKL) = det|Z, 2,2 Z|

+ Mutual positive condition for any K3
pair of lines (AB;ABj) >0 q‘# loop line in one-loop
The L-loop integrand: s ‘:.': . ‘,"." s amplituhedron
volume form on this space POREN mutual positivity (AB;AB;) > 0

Loop integrand for the logarithm: collection of geometries

(Arkani-Hamed, JT, 2013) (Arkani-Hamed, Henn, JT, 2021)

loop line in one-loop

Qp, = Z(_l)E(G) « amplituhedron
G

sum over connected /AV mutual negativity
graphs with L vertices (AB;ABj) <0



LOOPS OF LOOPS

General Amplituhedron geometry

Reminder: the number
B du - Ng of spacetime loops
o ® o [1; Di - [l (AB: AB;) = number of vertices

tree __
05" =

Natural hierarchy of geometries: more “loops” = more complicated

Lowest examples:

0s — 0—o 25 = e e e
ﬁgree
Q;’—loop Qtéree
: E E IS ) D ) I:+ Z
4 —
QB loop 2 loop 7 ~ = T ~



TREE-LEVEL

(Arkani-Hamed, Henn, JT, 2021)

Tree-level approximation: only keep geometries with tree graphs
We found a closed form for the numerator of any tree graph!

The numerator takes a factorized form
du - N
05 = = S Ng = (1230501 x TT NS
¢ .\. ® Hz D; - Hlinks <ABZABJ> ¢ < > links Y

of the 2-loop numerators
Ny = (AB13)XAB;24) + (AB;24)(AB;13)

Same formula does not hold for a loop graph

_ L+1 (—)
Ng = (1234) X H Nij V\ satisfies many consistency
links .
constraints but not all

(vanishing on double pole)

Need to find a specific correction which
does not spoil any cuts we already matched



ONE-LOOP

(Brown, Oktem, Paranjape, JT, to appear)

One-loop: we found a numerator for a general one-loop graph
+ First step: find an integrand for a graph with a closed loop

Write the numerator as
NG — H N’L(j_) + Rloop

links \

extremely constrained,

For example: for 3-cycle we have two terms write ansatz of all terms

R

loop

= c1{(AB112)(AB34)(AB512)(AB234)(AB312)(AB334)+. ..}
+ co{(AB112)(AB;34)((AB212)(AB334)+(AB312)(AB234) ) ((AB513) (AB324) +(AB313) (ABy24) ) +. . .}

Solve from the double pole cancelation: ¢; =4, ¢y = —1 Generalized to any cycle

+ Second step: add tree branches

Ne = ( H Nz’(j_) +R100p) X H Nz’(j—)

loop links other links

Solved for any one-loop graph!



HIGHER LOOPS

(in progress)

We do not know how to find the numerator for a general higher-loop graph
= as hard as solving the four-point problem completely

Usetul strategy: loop decomposition denote: @-—-e = N~
1 2 1 2 1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4 3 4 3 4
/‘ N T N _y new two-loop object
NONSONGING NG RIS < NN RO < NGNS RISV < N POy

——— ——

tree objects
one-loop (and tree) objects

Only few cases solved at the moment, new ideas needed



IR FINITE FUNCTION
AND RESUMMATION



BEYOND INTEGRAND

Why is the integrand so complicated while the amplitude takes a
simple form (with only numbers unfixed, though divergent)?

Can we extract an IR finite function from the integrand?

ﬁ L (El7 4 L) 4 rational function

\L integrate over £,

Iy, ..., 0 4 weight 2 functi
L(lry s p1) WEIGHE £ THEnEHon weight (2L-2) function

l, integrate over £7,_1 of a single cross ratio
all are v :

ar , . Fr—1(2)
IR finite T~a \L integrate over 52 (AB12)(AB34)
M—// * " (AB23)(AB14)

! integrate over {4

In M; 44— IR divergent, BDS ansatz



WILSON LOOPS

Same object appeared in the study of Wilson loops

2 3
<WF(ZE175E27CB37$4)£($0)> _ g2 <1234>2 F(g Z)
(Wg(x1,22,x3,T4)) 2 (AB12)(AB23)(AB34)({AB41)" 7
1
Lagrangian + weak coupling: expansion in g°
2 3 Insertion (Alday, Heslop, Sikorowski, 2012) (Alday, Henn, Sikorowski, 2013)
+ strong coupling: expansion in 1/g (string tension)
1 (Alday, Buchbinder, Tseytlin, 2011) (Engelund, Roiban, 2011, 2012)
! F(g,z):g(z_zl)g 2(1—2)+(z+1)logz] +--
We can extract T'.,,(g) from this function
(Alday, Henn, Sikorowski, 2013) (Henn, Korchemsky, Mistlberger, 2019) (Arkani-Hamed, Henn, JT, 2021)
gagl“cusp(g) _ 1 / do F(g,z =€) compare (or even try to derive) an
g T J—m

exact formula from integrability
(Beisert, Eden, Staudacher, 2006)



NEGATIVE GEOMETRIES

(Arkani-Hamed, Henn, JT, 2021)

Negative geometries: freezing one of the loops and integrate the rest

Fr_1(z) from Qj

Simplest two-loop (one-loop integration) result: @—e = [7* +log® 7]
Three-loop result: three different contributions

\
1 2 2 12
= —— |7+ log” 2
@< 3 | | > Tree graphs
1

X—eo—eo = — [7r +log z] [57r +10g Z] /

12
_ z 2 \
=——log z + log? z[ 2(z+1>__L12(z+1)+3]
/1 o[ . [ 1 oz m27?
+ log 2 [4L13 <z+1 —4Li3 (z+1>] —3 [le z+1) +L12( +1> — F] > One-loop graph
z

VA
8 2 |y 1 . z 2 . 1 . m
~ o2l L T 8L 8L T
3" [l2(z+1)+ 12(z+1) 6] 8Ly z+1) 8 14(z+1) 18

Same loop order, tree graphs are simpler - consistent with simple integrand

/



RESUMMATION

Planar N=4 SYM is special: no non-perturbative contributions
szact _ Z g2LM£lL)
L=0

+ approximate amplitude at each loop order and resum to all loops

+ compare to strong coupling expansion (if available)

Only known (to me) example is the ladder resummation

(Broadhurst, Davydychev, 2010)

r + - . - ~U e_g fOI' g >> 1
/

P Pa
exponentially suppressed vs linear growth

We can try to resum our tree contributions (if possible to integrate all of them)



TREE-LEVEL CONTRIBUTION

(Arkani-Hamed, Henn, JT, 2021)

Let us only consider tree graphs

Firee(9,2)= ® —(5") @—o + { @<
U{O..”@( o 1ele)

Differential operator acting on the graphs (integrand)

trick to avoid integration differential equation for the generating function
T3 L3 ftree (ga Z) — three(g,Z)
1 5 2y
Uz, s - 5 m4 5(’282) Hiree(g, 2) + 9 eTtee(9:2) — ()
Zo L1 Z1

solve with boundary conditions

l A2 A
ftree(g, ) —

)= 2 (A 2
Same operator does not work for loop graphs: g* (22 +1)

search for its generalization A
where — =1

2gcos~5-




STRONG COUPLING

(Arkani-Hamed, Henn, JT, 2021)

A? 24
g% (24 +1)?

Firee(9,2) =

How good is this approximation to the exact result?

Naively, we expect it to be very bad — for infinite L vanishing part of diagrams contribute

Easy to expand at strong coupling:
Y misses the leading term

1
Jttree(gaz) — = - + O (5)

(14 2)? ™% has1 / g expansion

For I'cusp(g) we get even more surprising result:

2g — 21982 | ... —Pp exact
Ftree (g) — i
% g—1+... -y OUT tree approximation

qualitatively correct behavior at strong coupling



OPEN QUESTIONS

How does the subleading (one-loop) contribution
contribute to the F(g, z) function?

l

How do we reconstruct F(g,z) ~ g behavior at strong coupling?

And what about cusp anomalous dimension?

8
Tiree(9) = g (; + W+ 4 ) = 2g
b
~ 2.99 Is it just a small negative correction?

Do tree graphs dominate or are there massive
cancelations between various orders?



COMMENT ON LOOPS

How is the loop of loops expansion related to summing
certain classes of diagrams?

< Short answer: NO

+ Long answer: some limited correspondence via # of internal propagators
more propagators = more complicated (AB; A Bj>

Standard diagrams for four-loop integrand Negative geometries

1
1 1

/ : : + Not planar objects

¢ | ototote| 2 ¢ I::I 7 : ﬁ T + No unphysical cuts

e f \ﬁ Most complicated internal
, 1 ) graph is 1-loop (not 2-loop),

P o] one tree graph missing
44 b 2 4 B b 2 4 % 2 4 % 2
' T 10, / No direct relation




CONCLUSION



SUMMARY

New expansion of the planar N=4 SYM integrand
A
using negative geometries: goal is to determine the ___,
four-point all-loop integrand (and amplitude) 7
Hierarchy of geometries: loops of loops expansion,
all-loop integrand for tree-level and one-loop geometries

NN

IR finite function: for trees found differential equation,
integrated and resummed, interesting strong coupling behavior



OUTLOOK

Finish one-loop calculation, differential operator,
higher loop integrands — organizing principle

with Taro Brown, Umut Oktem, Shruti Paranjape,.....

Higher point integrands/integrals from negative geometry

with Dmitry Chicherin, Johannes Henn, Antonela Matijasic, Julian Miczajka,

Alternative IR finite object: deformed Amplituhedron

with Nima Arkani-Hamed, Wojciech Flieger, Johannes Henn, Anders Schreiber

poster at
this conference

( i

Amplituhedron and negative geometries for ABJM next talk
(Song He, Yutin Huang, Chia-Kai Kuo, 2023) (Lukowski, Stalknecht, 2023)



Thank you!



