The ABJM Amplituhedron

Chia-Kai Kuo (NTU)

Amplitudes 2023, CERN

Based on 2306.00951 (n-pt) S. He, Y.-t. Huang

and related work 2204.08297 (4-pt) S. He, Z. Li, Y.-Q. Zhang

August 7, 2023

Planar N=4 SYM amplitudes correspond to positive geometry, the amplituhedron. In this talk, I would extend amplituhedron to another theory — **ABJM** theory.

Amplituhedron pictures for ABJM just emerges these years:

Group of Yutin, Song, Congkao, Tomasz, Johannes ...

Today's talk

2021 yr	Last year	This year
Tree:	Loop:	Tree + Loop :
Orthogonal/ ABJM	ABJM amplituhedron	
momentum amplituhedron [Huang et al (2021); He et al. (2021)]	4-pt —	→ n -pt
	Define in 3d momentum twistor variables	

Note: Loop geometry in momentum space see Stalknecht's poster. [Lukowski et al (2023)]

Outline

- Review ABJM amplitude
- Amplituhedron definition

 Image: Loop
 - 1. Why it is right?
 - 2. Loop as fibration of tree \Rightarrow *Chamber*
- Negative geometry: bipartite structure

Review ABJM amplitude

In ABJM theory, the physical d.o.f. are encoded in the bi-fundamental matter fields, which can be arranged into supermultiplets:

$$\Phi = X_4 + \eta_A \psi^A - \frac{1}{2} \epsilon^{ABC} \eta_A \eta_B X_C - \eta_1 \eta_2 \eta_3 \psi^4,$$

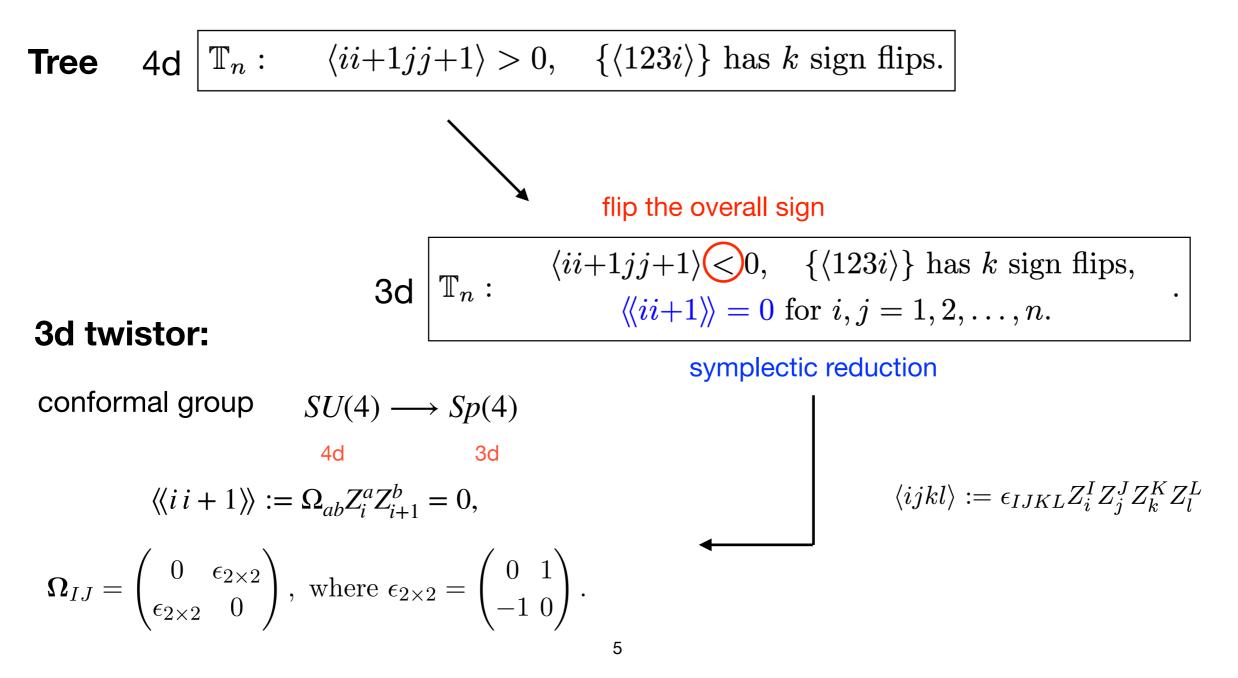
$$\bar{\Psi} = \bar{\psi}_4 + \eta_A \bar{X}^A - \frac{1}{2} \epsilon^{ABC} \eta_A \eta_B \bar{\psi}_C - \eta_1 \eta_2 \eta_3 \bar{X}^4.$$

The scattering of different field configuration is glued into a super-amplitude:

- 1. only even-pt
- 2. Grassmanian degree = 3(k + 2) with k = n/2 2

Definition of tree geometry

The ABJM amplituhedron is defined as reducing the original amplituhedron's external twistors to 3d and flipping the overall positive conditions to negative conditions.



Tree geometry

1. With an overall sign flip, symplectic reduction kills all the oddmultiplicity:

 $\mathbb{T}_{n}: \qquad \langle ii+1jj+1\rangle < 0, \quad \{\langle 123i\rangle\} \text{ has } k \text{ sign flips,} \\ \langle \langle ii+1\rangle\rangle = 0 \text{ for } i, j = 1, 2, \dots, n. \end{cases}$ $\langle abcd\rangle = -\langle \langle ab\rangle \rangle \langle \langle cd\rangle \rangle + \langle \langle bc\rangle \rangle \langle \langle da\rangle \rangle - \langle \langle ac\rangle \rangle \langle \langle db\rangle \rangle \qquad \text{ex} \qquad \langle 1234\rangle = \langle \langle 13\rangle \rangle \langle \langle 24\rangle \rangle \\ (-)^{n-3} \\ \langle (-)^{n-3} \\ (-)^{n-3} \\ \prod_{i=2}^{n-3} \langle ii+1i+2i+3\rangle \\ \prod_{i=2}^{n-3} \langle \langle ii+2\rangle \rangle^2 \end{pmatrix} .$ 2. Only allows the $k = \frac{n}{2} - 2.$

Tree geometry is only nontrivial for ABJM kinematic

Definition of loop geometry

We can do the same reduction on the loop twistors $(AB)_a$ and flip the overall positive condition to negative. The reduced space defines the geometry for ABJM integrands.

$$\langle\!\langle A_a B_a \rangle\!\rangle = \Omega_{IJ} A_a^I B_a^J = 0 \qquad \langle (AB)_a ij \rangle := \epsilon_{IJKL} A_a^I B_a^J Z_i^K Z_j^L$$

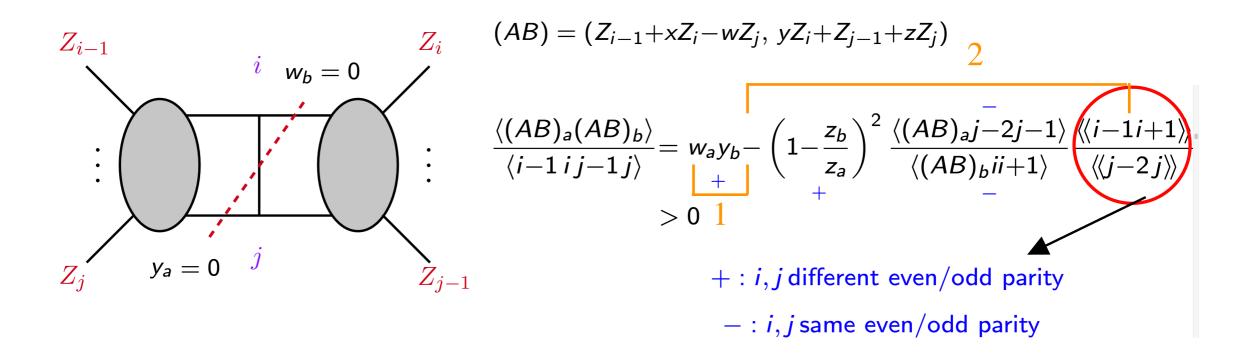
Loop geometry

Loop geometries manifest many properties of ABJM integrands:

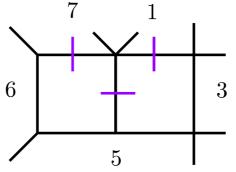
- 1. Soft cut: Z_{i+1} Z_j j+1 $A_n^{\ell-\mathrm{loop}}$ $= (-1)^i A_n^{(\ell-1)-\text{loop}}$ L-1-loop $\operatorname{cut}_{i-1,\,i,\,i+1}$ i-1 Z_{i-1} Z_{i-2} 2. Double cut: Z_{i-1} $\mathcal{A}_{n}^{L\text{-loop}}\Big|_{i,j} = \sum_{\text{state}} \mathcal{A}_{n_{1}}^{L_{1}\text{-loop}} \times \mathcal{A}_{n_{2}}^{L_{2}\text{-loop}}$ $L = L_1 + L_2 + 1$ $n = n_1 + n_2 - 4$ $k = k_1 + k_2$ Z_i
- 3. Vanishing cut: factorized into odd-pt amplitudes.

Example: vanishing cut

 $\langle (AB)_a j - 1j \rangle = \langle (AB)_b i - 1i \rangle = 0$ when i, j are both even or odd \Rightarrow odd-pt amplitude

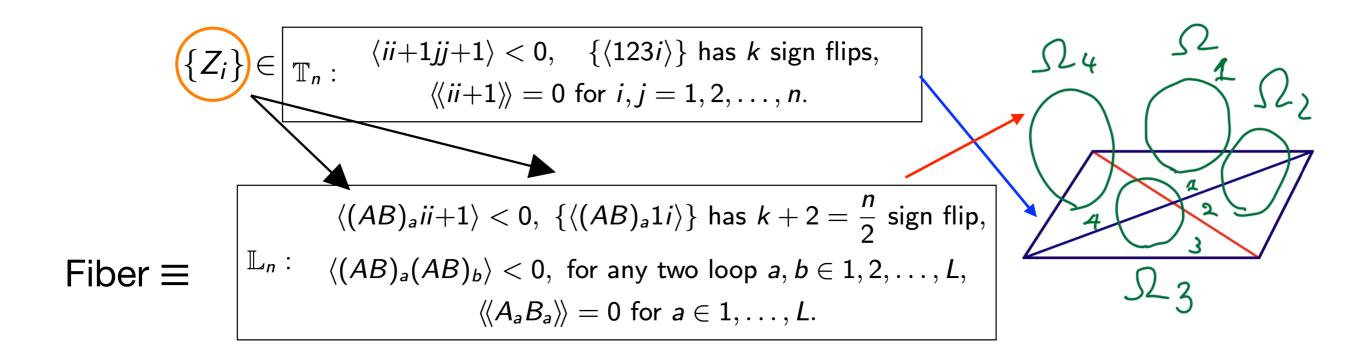


The vanishing of odd-pt cut is an amazing identity from the point of view of local integrands:



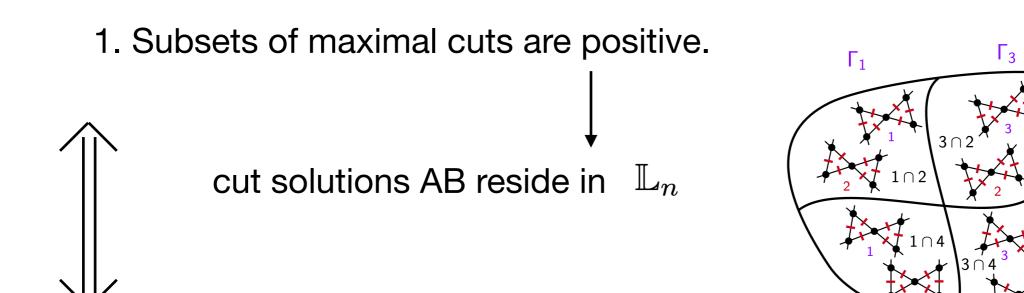
cancels with contributions from 21 other double-box and many double triangles.

Loops as a "fibration" of Trees



- Q: 1. Is loop geometry the "same" when {Z_i} varies in the tree region?
 2. If not, then how does loop fibration triangulate tree geometry?
- A: \mathbb{T}_n has natural triangulation in terms of Chambers, where in each chamber, the loop form is the same.

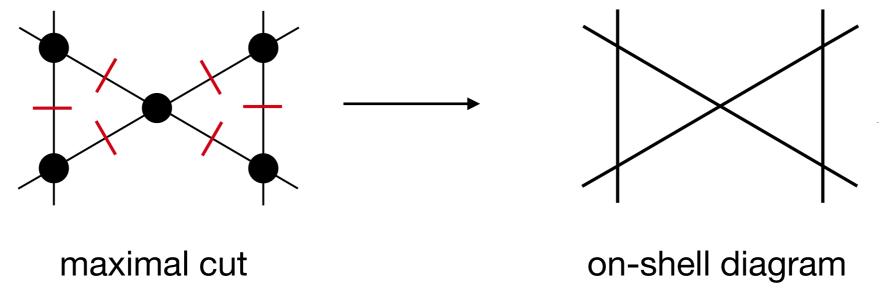
Chambers are subregions of \mathbb{T}_n , identified by



2. Collection of (n-3) dim cells whose the image in Tn overlapped.

 Γ_2

Γ₄



n=6: only single BCFW cell #chamber = 1

n=8: 4 (n-3) dim cells
$$\sum_{\text{sol.}} \Gamma_1 + \Gamma_3 = \sum_{\text{sol.}} \Gamma_2 + \Gamma_4 = A_8^{\text{tree}}$$

 \Rightarrow #chamber = 4
$$\int_{1 \cap 4}^{\Gamma_1} \int_{3 \cap 4}^{\Gamma_3} \int_{\Gamma_2}^{\Gamma_3} \int_{\Gamma_4}^{\Gamma_4}$$

n=10: 25 (n-3) dim cells \Rightarrow #chamber = 50

degenerate at one-loop only 25 distinct region

dependency break at two-loop

$$1 \cap 2: \sum_{i=1}^{8} (-1)^{i} I_{box}(i-1, i, i+1) + I_{tri}(1, 3, 5) + I_{box}(1, 3, 5) + I_{tri}(5, 7, 1) + I_{box}(5, 7, 1) + I_{tri}(2, 4, 6) - I_{box}(2, 4, 6) + I_{tri}(6, 8, 2) - I_{box}(6, 8, 2).$$

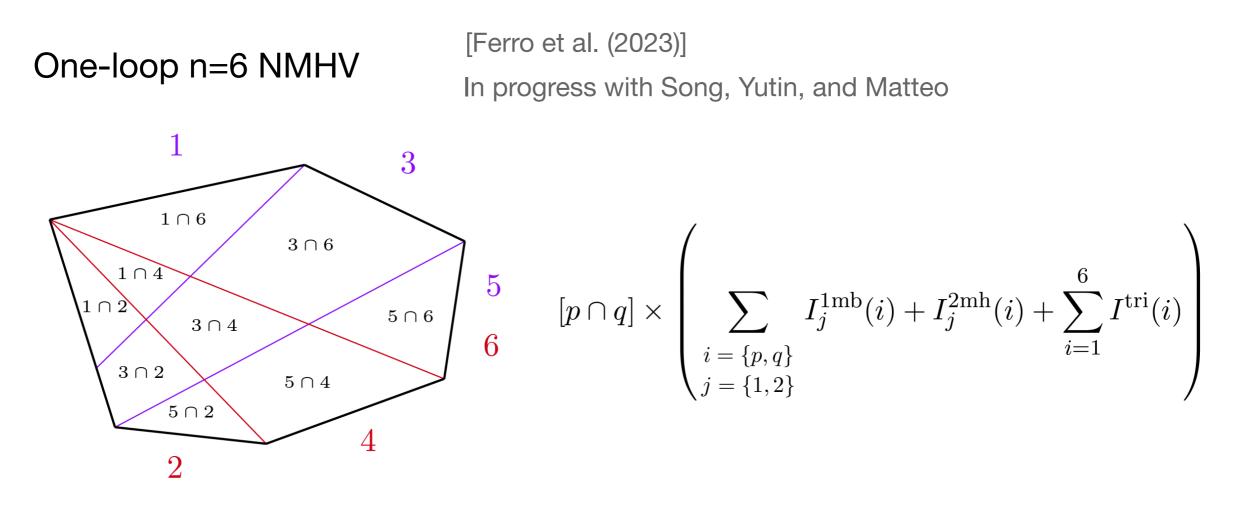
$$2$$

$$[1 \cap 2]_{+} \times \left(I_{8}^{L=1}(0) + I_{8}^{L=1}(1) + I_{8}^{L=1}(2)\right) + \left(I_{8}^{L=1}(0) + I_{8}^{L=1}(3) + I_{8}^{L=1}(2)\right)$$

$$LS_{2} \times \left(I_{8}^{L=1}(0) + I_{8}^{L=1}(2)\right)$$

$$I_{1} \cap I_{1} \cap I$$

In N=4 SYM, it also can use chambers to calculate its loop integrand:



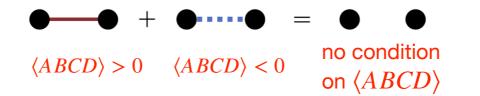
Canonical form of chamber $1 \cap 2$:

 $\frac{\langle 23456\rangle^2 \langle 34561\rangle^2}{\langle Y1345\rangle \langle Y1356\rangle \langle Y2346\rangle \langle Y2456\rangle \langle Y3456\rangle} \langle Yd^4Y\rangle$

Arkani-Hamed et al (2022)]

Also see Jaroslav's talk.

We can also consider negative geometry of ABJM amplituhedron

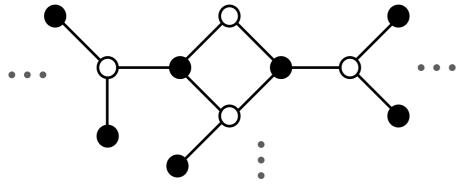


Express all positive links using negative and empty

Negative geometry

$$\Omega(\mathcal{A}_L) = \bullet = \sum_{\text{all } G} (-1)^{E(G)} \bullet$$

The negative geometry of ABJM is much simpler than N=4 SYM. Connected graphs only could be bipartite graphs:

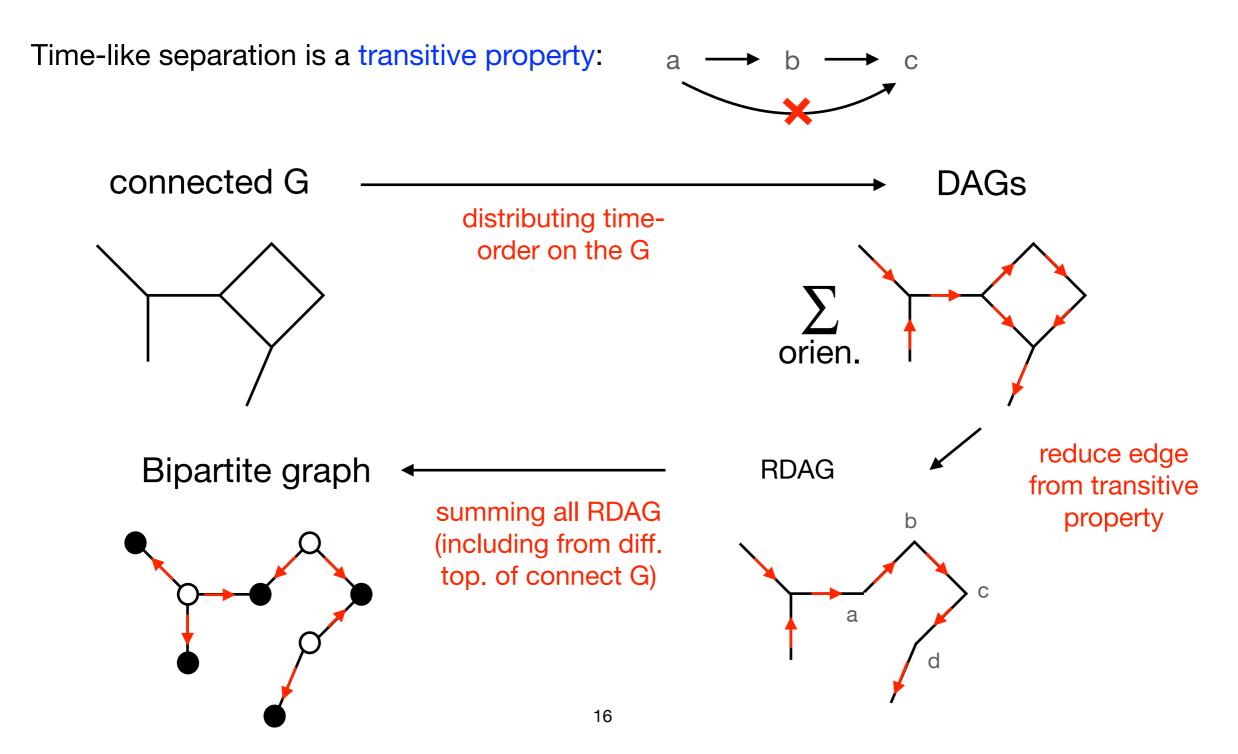


only focus connected graphs enough

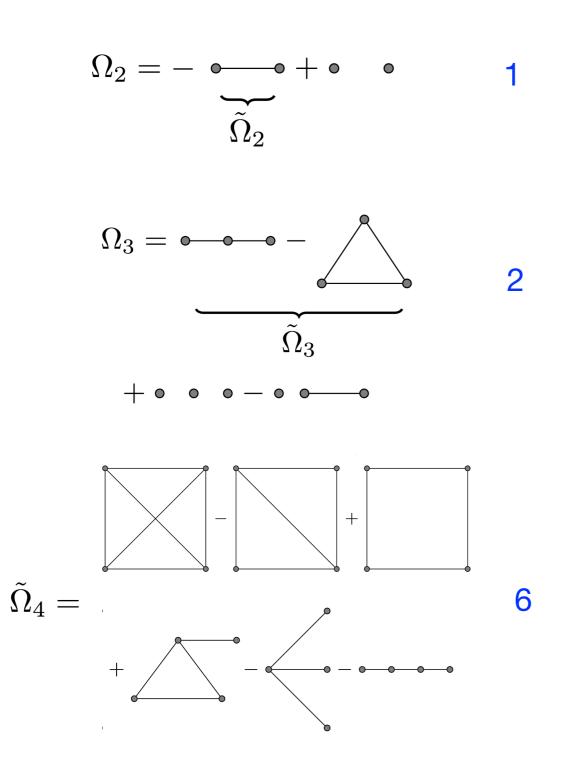
The emergence of bipartite graphs [He et al. (2022)]

Mutual negativity link implies two loop variables are time-like separated in $R^{1,2}$:

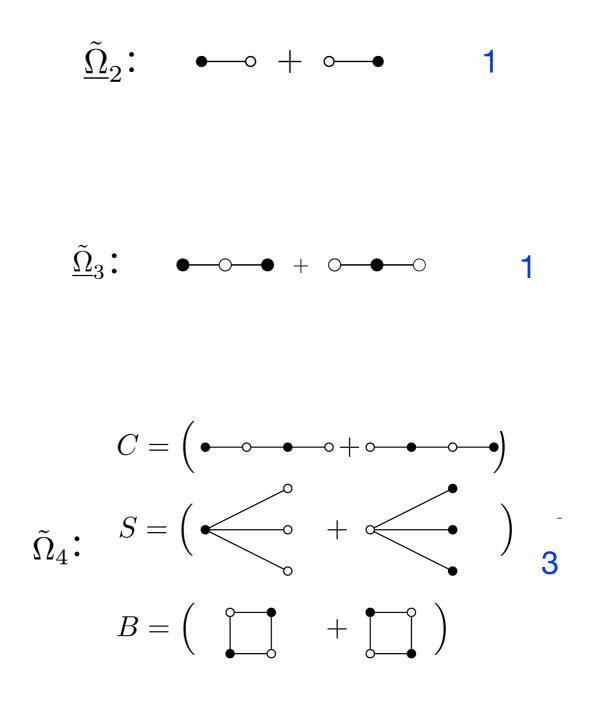
 $\langle (AB)_a (AB)_b \rangle > 0$



Connected graph



Bipartite graph



Connected graph Bipartite graph

L	top. of G	top. of g
2	1	1
3	2	1
4	6	3
5	21	5
6	112	17
7	853	44

Example: two-loop 6-pt integrand and its bipartite representation

Form of **positive geometry**

$$\sum_{i=1}^{6} -\frac{1}{2} I^{\text{critter}}(i) + I^{\text{crab}}(i) + I^{2\text{mh}}_{+}(i) - \sum_{i=1,3,5} I^{bt}_{1}(i) + \sum_{i=2,4,6} I^{bt}_{2}(i)$$

Form of negative geometry $\hat{\Omega}_{2} = \Omega_{2} - \frac{1}{2}\Omega_{1}^{2}$

$$\begin{split} & \textit{I}_a(135,246) + [\textit{I}_b(135,24) + (24 \rightarrow 46,26) + \textit{I}_b(13,246) + (13 \rightarrow 35,15)] \\ & + [\textit{I}_c(13,24) + (24 \rightarrow 26) + (13 \rightarrow 35;24 \rightarrow 24,46) + (13 \rightarrow 15;24 \rightarrow 26,46) \\ & + \textit{I}_c(13,46) + (13 \rightarrow 35,15;46 \rightarrow 26,24)] + (\ell_1 \leftrightarrow \ell_2) \,, \end{split}$$

with numerators

$$\begin{array}{c} \bullet & \bigcirc \\ & & & \\ 1,3,5 & & 2,4,6 \end{array} := N_a(135,246) = \epsilon(\ell_1,1,3,5,\ {}^{\mu})\epsilon(\ell_2,2,4,6,\ {}_{\mu}) - (\ell_1 \cdot \ell_2)\sqrt{(1 \cdot 3 \cdot 5)}\sqrt{(2 \cdot 4 \cdot 6)} \\ & & & -\epsilon(\ell_1,1,3,5,\ell_2)\sqrt{(2 \cdot 4 \cdot 6)} - \epsilon(\ell_1,2,4,6,\ell_2)\sqrt{(1 \cdot 3 \cdot 5)}, \end{array} \\ \\ \bullet & & \bigcirc \\ & & & \\ 1,3,5 & & 2,4 \end{array} := N_b(135,24) = (\ell_1 \cdot y_{4,(23)}\cap(145))(1 \cdot 3) - \frac{\epsilon(\ell_1,2,3,4,5)\sqrt{(1 \cdot 3 \cdot 5)}}{(3 \cdot 5)}, \\ \\ \bullet & & \bigcirc \\ & & & \\ 1,3 & & 2,4,6 \end{array} := N_b(13,246) = (\ell_2 \cdot y_{3,(12)}\cap(634))(2 \cdot 6) - \frac{\epsilon(\ell_2,6,1,2,3)\sqrt{(2 \cdot 4 \cdot 6)}}{(2 \cdot 6)}, \\ \\ \bullet & & & \bigcirc \\ & & & \\ 1,3 & & & 2,4 \end{array} := N_c(13,24) = -\frac{(1 \cdot 3)(2 \cdot 4)}{2}, \\ \\ \bullet & & & \bigcirc \\ & & & \\ 1,3 & & & 2,4 \end{array} := N_c(13,46) = \frac{(1 \cdot 3)(4 \cdot 6)}{2 \quad 19}. \end{array}$$

Example: two-loop 8-pt integrand and its bipartite representation

2211.01792 with S. H., Y.-t. Huang, Z.-Li.

Containing sYM BDS.
 The BDS piece has an integrand representation.
 Parity-even letters: reduced from D=4.

$$A_8^{2-\text{loop}} = A_8^{\text{tree}} \times \left[\text{BDS}_8 + \pi^2 + R_8^{\text{even}}\right] + \sum_{i=1}^8 (-1)^i \left[\mathcal{D}_{i,i+2,i+4} + \mathcal{R}_{i,i+2}^{\text{even}}\right] + \sum_{i=1}^8 \bar{\mathcal{D}}_{i,i+2,i+4} + \mathcal{R}_{i,i+2}^{\text{even}}\right] + \sum_{i=1}^8 \bar{\mathcal{D}}_{i,i+2,i+4} + \mathcal{R}_{i,i+2}^{\text{even}}\right]$$

$$Very \text{ interesting parity-odd letters!}$$
Elliptic integral appear:
$$\int \frac{dc}{4\pi\sqrt{c}} \frac{w - v}{(1+c)\sqrt{-4vw + (v+w - (1+c)vw)^2}} \times \left(\log(z\bar{z})\log(1+z) - \log(z\bar{z})\log(1+\bar{z}) + 2\text{Li}_2(-z) - 2\text{Li}_2(-\bar{z})\right)$$

Cancelled out finally!

Form of **positive geometry** of chamber $[1 \cap 2]$

$$1 \cap 2: \sum_{i=1}^{8} -I_{A}^{db}(i) + I_{B}^{db}(i) + \frac{1}{2} I_{C}^{db}(i) + \sum_{i=2,6} I_{\overline{D},+}^{db}(i) + I_{\overline{E},+}^{db}(i) + \sum_{i=4,8} I_{\underline{D},+}^{db}(i) + I_{\underline{E},+}^{db}(i) + \sum_{i=3,7} -I_{F,+,+}^{db}(i) + \frac{1}{2} I_{G,+,+}^{db}(i) - \sum_{i=1,5} I_{\overline{A}}^{bt}(i) + I_{\underline{A}}^{bt}(i) - \sum_{i=3,7} I_{B}^{bt}(i) + \sum_{i=3,7} I_{\overline{D},+}^{db}(i) + I_{\overline{E},+}^{db}(i) + \sum_{i=4,8} I_{B}^{db}(i) + \sum_{i=4,8} I_{B}^{bt}(i) + \sum_{i=4,8} I_{B}$$

its bipartite representation

В

$$B = \{1, 3, 5\} \text{ or } \{1, 5, 7\}$$

$$W = \{2, 4, 6\} \text{ or } \{2, 6, 8\}$$

$$I(135, 246) = I_a(135, 246) + [I_b(135, 24) + I_b[135, 46] + I_b(13, 246) + I_b(35, 246)] + [I_c(13, 24) + (13 \rightarrow 35) + (24 \rightarrow 46) + (13 \rightarrow 35; 24 \rightarrow 46)],$$

$$I(135, 246) = I(135, 246) \Big|_{(135, 246) \rightarrow (571, 682)}$$

$$I(135, 268) = I_a(135, 268) + [I_b(135, 28) + I_b(135, 68) + I_b(13, 268) + I_b(35, 268)] + [I_c(13, 28) + I_c(35, 68)],$$

Integrating all but one loop variable, the resulting function is infrared-finite.

extract cusp anomaly dimension

For n=4 : [He et al. (2023)] n=6, in progress [Henn et al. (2023)]

Define
$$\mathcal{W}_L(\ell_1, 1, 2, 3, 4) = \int \prod_{i=2}^L d^3 \ell_i \, \underline{\tilde{\Omega}}_L,$$

Even- and odd- loop are quiet different

$$\mathcal{W}_{L} = \begin{cases} \frac{\epsilon(\ell_{1}, 1, 2, 3, 4)}{(\ell_{1} \cdot 1)(\ell_{1} \cdot 2)(\ell_{1} \cdot 3)(\ell_{1} \cdot 4)} & F_{L-1}(z), \quad L \text{ odd} \\ \frac{(1 \cdot 3)(2 \cdot 4)}{(\ell_{1} \cdot 1)(\ell_{1} \cdot 2)(\ell_{1} \cdot 3)(\ell_{1} \cdot 4)} \end{cases}^{3/4} F_{L-1}(z), \quad L \text{ even} \end{cases} \qquad z = \frac{(\ell_{1} \cdot 2)(\ell_{1} \cdot 4)(1 \cdot 3)}{(\ell_{1} \cdot 1)(\ell_{1} \cdot 3)(2 \cdot 4)}$$

T

SYM

$$F_0(z) = 1 \quad F_1(z) = -\pi (z^{1/4} + z^{-1/4}) \qquad F_2(z) = 4 \left(f(z) + f\left(\frac{1}{z}\right) + \frac{\pi^2}{2} \right)$$
$$f(x) := \frac{t-1}{t+1} \left(\frac{\pi^2}{2} + \text{Li}_2(1-t) + \log(t)\log(t-1) - \frac{1}{4}\log(t)^2 \right) \text{ with } t := \frac{\sqrt{1+x} + \sqrt{x}}{\sqrt{1+x} - \sqrt{x}}.$$

$$F^{(0)}(z) = -1 \qquad F^{(1)}(z) = \log^2 z + \pi^2$$

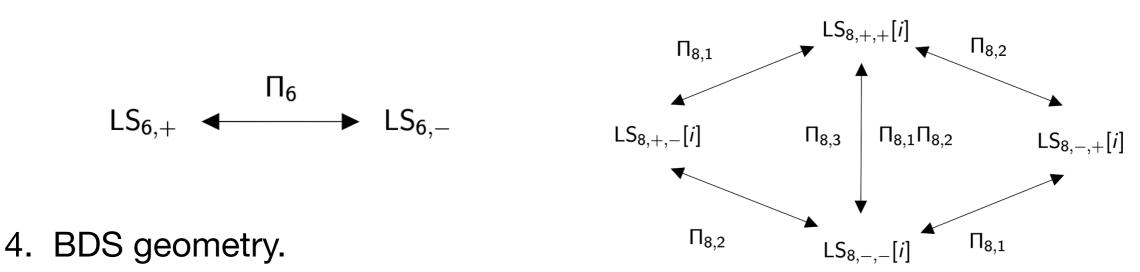
$$F^{(2)}(z) = -\frac{1}{2}\log^4 z + \log^2 z \left[\frac{2}{3}\text{Li}_2\left(\frac{1}{z+1}\right) + \frac{2}{3}\text{Li}_2\left(\frac{z}{z+1}\right) - \frac{19\pi^2}{9}\right]$$

$$+ \log z \left[4\text{Li}_3\left(\frac{1}{z+1}\right) - 4\text{Li}_3\left(\frac{z}{z+1}\right)\right] + \frac{2}{3}\left[\text{Li}_2\left(\frac{1}{z+1}\right) + \text{Li}_2\left(\frac{z}{z+1}\right) - \frac{\pi^2}{6}\right]^2$$

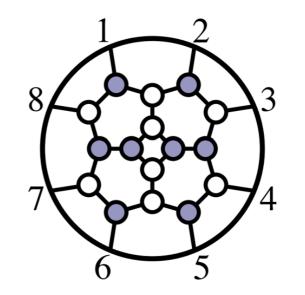
$$+ \frac{8}{3}\pi^2 \left[\text{Li}_2\left(\frac{1}{z+1}\right) + \text{Li}_2\left(\frac{z}{z+1}\right) - \frac{\pi^2}{6}\right] + 8\text{Li}_4\left(\frac{1}{z+1}\right) + 8\text{Li}_4\left(\frac{z}{z+1}\right) - \frac{23\pi^4}{18}$$

Outlook

- 1. Higher-pt (6-pt) negative geometry $F(Z_i)$.
- 2. What is Y=CZ?
- 3. What about branches? Parity at n=6,8. n>8 ???



5. What are the chambers when $\Gamma(C) > 2$? 8-pt N^2MHV SYM.



Thank you for listening!