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Feynman Integrals
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Motivating questions

1. What is an effective way to compute Feynman integrals®?

2. What is the computational complexity of Feynman integration?

We look for efficient algorithms to compute /;




What’s the problem?
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Problem 0: Can be infinite — renormalization, subtraction, etc (different topic)

Here we assume /; to be finite!
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Problem 1: non-bounded (and also non-standard if D & N) integration domain
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[ Eo : projective simplex (positive part of (| E£'| — 1)-dim. projective space)
€2: canonical volume form on [ EO

@ : superficial degree of divergence of G.

U, I': Symanzik polynomials that depend on G and kinematics.
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= Bounded integration domain and
dimension is parameter in the integrand
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Problem 2: Integrand has poles in the integration domain
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Problem 2: Integrand has poles in the integration domain
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Problem 2: Integrand has poles in the integration domain

2
XX, m

E.g. F=— Q%% +m*(x; + x,)* = 0 if ———— = —
i L (rp +x)* O3

These poles are ‘regulated’ by the causal i¢ prescription.

(Strictly speaking the integrand is just a distribution and no function)
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Nintegrate

Nintegrate [/, {x, Xmin> Xmax}]
gives a numerical approximation to the integral L:’"“" fdx,

in

Nintegrate [f, {x, Xmin» Xmax}, {¥Vs Ymin» Ymax}, ---]

gives a numerical approximation to the multiple integral ],:n'?fdx "dy ... f.

min

Nintegrate[f, {x, y, ...} ereg]
integrates over the geometric region reg.

No option for i¢
v Details and Options
Multiple integrals use a variant of the standard iterator notation. The first variable given corresponds to the outermost integral and is done last.

Nintegrate by default tests for singularities at the boundaries of the integration region and at the boundaries of regions specified by settings for the

Exclusions option.

Nintegrate [/, {x, xo, X1, ..., Xz} ] tests for singularities in a one-dimensional integral at each of the intermediate points x;. If there are no
singularities, the result is equivalent to an integral from xg to x;. You can use complex numbers x; to specify an integration contour in the complex

plane.

The following options can be given:

AccuracyGoal Infinity digits of absolute accuracy sought
EvaluationMonitor None expression to evaluate whenever expr is evaluated

Exclusions None parts of the integration region to exclude



Explicit, 1e-free representation is needed



I, = : U \'g
7 Jpe UP2 \F+ic

Plan:

Deform integration domain, such that i¢ is respected automatically.

ldea and setup go back to
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Important requirement: Retain projective invariance
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Important requirement: Retain projective invariance
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1e-free projective parametric representation
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« Where J, is an efficiently computable rational function in x;, s XE)

~ F
. U, V are the deformed versions of U and V = —

U
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Computer still says no...
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Problem 3: Integrand has poles on the boundary of the integration domain
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Traditional solution:

Just look at all possible poles and perform a blowup
(i.e. a local change of coordinates that removes the singularity):

Sector Decomposition

(Also gives an alternative solution to the i problem)



Traditional solution:

Just look at all possible poles and perform a blowup
(i.e. a local change of coordinates that removes the singularity):

Sector Decomposition

(Also gives an alternative solution to the i problem)

Caveat: Computationally challenging / brute force



Alternative: Tropical sampling




Tropical approximation
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Tropical approximation
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Theorem:

Both p(X)/ptr(X) and ptr(x)/p(X) stay bounded on P

>0 °

(If p(x) is completely non-vanishing on P, .)



Tropical approximation

n

p(x) = Z afo]f £ — p(x) = max x]f K

el k=1 el 5

Theorem:

Both p(X)/ptr(X) and ptr(x)/p(X) stay bounded on P

>0 °

(If p(x) is completely non-vanishing on P, .)

Interesting mathematical applications
e.g. to statistics:
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Theorem

For ‘tame’ kinematics, there is a fast algorithm to
sample from the probability distribution 1"
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We get an algorithm that evaluates /- up to 0 accuracy in runtime

O(n2" + n’62%)

where n = | E|.
“Exponential wall” starts at around n = 30 edges
= Exponential term is negligible for loop order < 10



Under the hood

« Algorithm makes heavy use of algebraic and convex geometry of U, F
 Works thanks to well-understood analytic structure in the UV

» Key structure: generalised permutahedra (related to Lorentzian polynomials)
 Problems due to failure of this structure with IR divergences.

* Findings of helpful to resolve this partially.

 |mplementation: https://github.com/michibo/feyntrop



Conclusion

« Tropical sampling + new i€ free projective parametric representation

= Fast method to integrate Feynman integrals: Code, feyntrop on github

* Exceptional kinematics are problematic (IR singularities)

= More information on pole structure of integrands needed
* Extensions necessary: Numerators of Feynman integrals and divergences
* Question: Is there are polynomial time algorithm for Feynman integration?

* Question: Is there an algorithm for amplitudes faster than the naive one?



Outlook: Amplitudes on moduli spaces

H /\\
Sum over graphs with L loops of Feynman Integral for each graph
shape determined by the QFT weighted by symmetry factor




Outlook: Amplitudes on moduli spaces
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Integral over moduli space of graphs /G,






QFT is very useful to study this
moduli space
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« Related to result by on the moduli space of curves g

« The moduli space of graphs %?g IS a tropicalization of ﬂg.

» Feynman type integrals on ./ G , certify classes in /.,

* Long story...



— Use Integrals over the moduli
space to study/evaluate amplitudes
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