Tropical Feynman integration in Minkowski space

Amplitudes 2023 - CERN

arXiv:2008.12310 MB

arXiv:2204.06414 MB-Sattelberger-Sturmfels-Telen

arXiv:2302.08955 MB-Munch-Tellander

Michael Borinsky - ETH Zürich, Institute for Theoretical Studies

Feynman Integrals

$$I_G = \int \frac{d^D k_1 \cdots d^D k_L}{\prod_e D_e}$$

$$D_e = q_e^2 - m_e^2 + i\varepsilon$$

Integrate over L copies of D dimensional Minkowski space

Momentum flowing through edge e

Motivating questions

- 1. What is an effective way to compute Feynman integrals?
- 2. What is the computational complexity of Feynman integration?

We look for <u>efficient</u> algorithms to compute I_{G}

What's the problem?

$$I_G = \int \frac{d^D k_1 \cdots d^D k_L}{\prod_e D_e}$$

Problem 0: Can be infinite → renormalization, subtraction, etc (different topic)

Here we assume I_G to be finite!

$$I_G = \int \frac{d^D k_1 \cdots d^D k_L}{\prod_e D_e}$$

Problem 1: non-bounded (and also non-standard if $D \notin \mathbb{N}$) integration domain

$$I_G = \int_{\mathbb{P}_{>0}^E} \frac{1}{U^{D/2}} \left(\frac{U}{F + i\varepsilon} \right)^{\omega} \Omega$$

- $\mathbb{P}_{>0}^E$: projective simplex (**positive** part of (|E|-1)-dim. projective space)
- Ω : canonical volume form on $\mathbb{P}^E_{>0}$
- ω : superficial degree of divergence of G.
- U, F: Symanzik polynomials that depend on G and kinematics.

$$I_G = \int_{\mathbb{P}_{>0}^E} \frac{1}{U^{D/2}} \left(\frac{U}{F + i\varepsilon}\right)^{\omega} \Omega$$

⇒ Bounded integration domain and dimension is parameter in the integrand

$$I_G = \int_{\mathbb{P}_{>0}^E} \frac{1}{U^{D/2}} \left(\frac{U}{F + i\varepsilon} \right)^{\omega} \Omega$$

Problem 2: Integrand has poles in the integration domain

$$I_G = \int_{\mathbb{P}_{>0}^E} \frac{1}{U^{D/2}} \left(\frac{U}{F + i\varepsilon} \right)^{\omega} \Omega$$

Problem 2: Integrand has poles in the integration domain

E.g.
$$F = -Q^2 x_1 x_2 + m^2 (x_1 + x_2)^2 = 0$$
 if $\frac{x_1 x_2}{(x_1 + x_2)^2} = \frac{m^2}{Q^2}$

$$I_G = \int_{\mathbb{P}_{>0}^E} \frac{1}{U^{D/2}} \left(\frac{U}{F + i\varepsilon} \right)^{\omega} \Omega$$

Problem 2: Integrand has poles in the integration domain

E.g.
$$F = -Q^2 x_1 x_2 + m^2 (x_1 + x_2)^2 = 0$$
 if $\frac{x_1 x_2}{(x_1 + x_2)^2} = \frac{m^2}{Q^2}$

These poles are 'regulated' by the causal $i \varepsilon$ prescription.

(Strictly speaking the integrand is just a distribution and no function)

NIntegrate
$$\left[\int_{\mathbb{P}_{>0}^E} \frac{1}{U^{D/2}} \left(\frac{U}{F + i\varepsilon} \right)^\omega \Omega \right] ?$$

NIntegrate

```
NIntegrate [f, \{x, x_{min}, x_{max}\}] gives a numerical approximation to the integral \int_{x_{min}}^{x_{max}} f \, dx.

NIntegrate [f, \{x, x_{min}, x_{max}\}, \{y, y_{min}, y_{max}\}, \ldots] gives a numerical approximation to the multiple integral \int_{x_{min}}^{x_{max}} dx \int_{y_{min}}^{y_{max}} dy \ldots f.

NIntegrate [f, \{x, y, \ldots\} \in reg] integrates over the geometric region reg.
```

→ Details and Options

- Multiple integrals use a variant of the standard iterator notation. The first variable given corresponds to the outermost integral and is done last.
- NIntegrate by default tests for singularities at the boundaries of the integration region and at the boundaries of regions specified by settings for the Exclusions option.
- NIntegrate $[f, \{x, x_0, x_1, ..., x_k\}]$ tests for singularities in a one-dimensional integral at each of the intermediate points x_i . If there are no singularities, the result is equivalent to an integral from x_0 to x_k . You can use complex numbers x_i to specify an integration contour in the complex plane.
- The following options can be given:

AccuracyGoal ≽	Infinity	digits of absolute accuracy sought
EvaluationMonitor ⊗	None	expression to evaluate whenever <i>expr</i> is evaluated
Exclusions 💝	None	parts of the integration region to exclude

No option for $i\varepsilon$

Explicit, $i\varepsilon$ -free representation is needed

$$I_G = \int_{\mathbb{P}_{>0}^E} \frac{1}{U^{D/2}} \left(\frac{U}{F + i\varepsilon}\right)^{\omega} \Omega$$

Plan:

Deform integration domain, such that $i\varepsilon$ is respected automatically.

$$I_G = \int_{\mathbb{P}_{>0}^E} \frac{1}{U^{D/2}} \left(\frac{U}{F + i\varepsilon} \right)^{\omega} \Omega$$

Important requirement: Retain projective invariance

$$I_{G} = \int_{\mathbb{P}_{>0}^{E}} \frac{1}{U^{D/2}} \left(\frac{U}{F + i\varepsilon} \right)^{\omega} \Omega$$

Important requirement: Retain projective invariance

$$\iota: \mathbb{P}_{>0}^E \to \mathbb{PC}^{|E|} \qquad x_e \mapsto x_e \exp\left(i\lambda \frac{\partial V}{\partial x_e}\right)$$

where
$$V = \frac{F}{U}$$
 and $\lambda > 0$

$i\varepsilon$ -free projective parametric representation

MB-Munch-Tellander 2023

$$I_G = \int_{\mathbb{P}_{\geq 0}} \frac{J_{\lambda}}{\tilde{U}^{D/2}\tilde{V}^{\omega}} \Omega$$

- Where J_{λ} is an **efficiently computable** rational function in $x_1, \ldots, x_{|E|}$
- . \tilde{U}, \tilde{V} are the deformed versions of U and $V = \frac{r}{U}$

NIntegrate
$$\int_{\mathbb{P}^E_{>0}} rac{J_{\lambda}}{ ilde{U}^{D/2} ilde{V}^{\omega}} \Omega$$
 ?

Computer still says no...

$$I_G = \int_{\mathbb{P}_{>0}} \frac{J_{\lambda}}{\tilde{U}^{D/2}\tilde{V}^{\omega}} \Omega$$

Problem 3: Integrand has poles on the boundary of the integration domain

E.g.
$$\frac{1}{\tilde{U}} \sim \frac{1}{U} = \frac{1}{x_1 x_2 + x_1 x_3 + x_2 x_3} \to \infty \text{ if } x_1, x_2 \to 0$$

Traditional solution:

Just look at all possible poles and perform a blowup (i.e. a local change of coordinates that removes the singularity):

Sector Decomposition

Binoth-Heinrich 2004

(Also gives an alternative solution to the $i\varepsilon$ problem)

Traditional solution:

Just look at all possible poles and perform a blowup (i.e. a local change of coordinates that removes the singularity):

Sector Decomposition

Binoth-Heinrich 2004

(Also gives an alternative solution to the $i\varepsilon$ problem)

Caveat: Computationally challenging / brute force

Alternative: Tropical sampling

Tropical approximation

$$p(\mathbf{x}) = \sum_{\ell \in J} a_{\ell} \prod_{k=1}^{n} x_{k}^{\ell_{k}} \to p^{tr}(\mathbf{x}) = \max_{\ell \in J} \prod_{k=1}^{n} x_{k}^{\ell_{k}}$$

Tropical approximation

$$p(\mathbf{x}) = \sum_{\ell \in J} a_{\ell} \prod_{k=1}^{n} x_{k}^{\ell_{k}} \to p^{tr}(\mathbf{x}) = \max_{\ell \in J} \prod_{k=1}^{n} x_{k}^{\ell_{k}}$$

Theorem: MB 2020

Both $p(x)/p^{tr}(x)$ and $p^{tr}(x)/p(x)$ stay bounded on $\mathbb{P}^n_{>0}$.

(If p(x) is completely non-vanishing on $\mathbb{P}^n_{>0}$.)

Tropical approximation

$$p(\mathbf{x}) = \sum_{\ell \in J} a_{\ell} \prod_{k=1}^{n} x_{k}^{\ell_{k}} \to p^{tr}(\mathbf{x}) = \max_{\ell \in J} \prod_{k=1}^{n} x_{k}^{\ell_{k}}$$

Theorem: MB 2020

Both $p(x)/p^{tr}(x)$ and $p^{tr}(x)/p(x)$ stay bounded on $\mathbb{P}^n_{>0}$.

(If p(x) is completely non-vanishing on $\mathbb{P}^n_{>0}$.)

Interesting mathematical applications e.g. to statistics:

MB-Sattelberger-Sturmfels-Telen 2022

$$I_G = \int_{\mathbb{P}_{>0}} \frac{J_{\lambda}(x)}{\tilde{U}(x)^{D/2} \tilde{V}(x)^{\omega}} \Omega$$

$$I_G = \int_{\mathbb{P}_{>0}^E} \frac{J_{\lambda}(x)}{\tilde{U}(x)^{D/2} \tilde{V}(x)^{\omega}} \Omega$$

$$= \int_{\mathbb{P}_{>0}^{E}} \frac{\Omega}{U^{tr}(x)^{D/2} V^{tr}(x)^{\omega}} \cdot J_{\lambda}(x) \frac{U^{tr}(x)^{D/2} V^{tr}(x)^{\omega}}{\tilde{U}(x)^{D/2} \tilde{V}(x)^{\omega}}$$

$$I_G = \int_{\mathbb{P}_{>0}} \frac{J_{\lambda}(x)}{\tilde{U}(x)^{D/2} \tilde{V}(x)^{\omega}} \Omega$$

$$= \int_{\mathbb{P}_{>0}^{E}} \frac{\Omega}{U^{tr}(x)^{D/2}V^{tr}(x)^{\omega}} \cdot J_{\lambda}(x) \frac{U^{tr}(x)^{D/2}V^{tr}(x)^{\omega}}{\tilde{U}(x)^{D/2}\tilde{V}(x)^{\omega}}$$

TROPICAL VERSION
OF TG

BOUNDED

$$I_G = \int_{\mathbb{P}_{>0}} \frac{J_{\lambda}(x)}{\tilde{U}(x)^{D/2} \tilde{V}(x)^{\omega}} \Omega$$

$$= \int_{\mathbb{P}_{>0}^{E}} \frac{\Omega}{U^{tr}(x)^{D/2}V^{tr}(x)^{\omega}} \cdot J_{\lambda}(x) \frac{U^{tr}(x)^{D/2}V^{tr}(x)^{\omega}}{\tilde{U}(x)^{D/2}\tilde{V}(x)^{\omega}}$$

$$= Z \int_{\mathbb{P}_{>0}^E} \mu^{tr} \cdot J_{\lambda}(x) \frac{U^{tr}(x)^{D/2} V^{tr}(x)^{\omega}}{\tilde{U}(x)^{D/2} \tilde{V}(x)^{\omega}}$$

$$\mu^{tr} = \frac{1}{Z} \frac{\Omega}{U^{tr}(x)^{D/2} V^{tr}(x)^{\omega}}$$
 s.t. $1 = \int_{\mathbb{P}_{>0}^E} \mu^{tr}$

Theorem MB 2020:

For 'tame' kinematics, there is a fast algorithm to sample from the probability distribution μ^{tr} .

$$I_G = Z \int_{\mathbb{P}_{\geq 0}^E} \mu^{tr} \cdot J_{\lambda}(x) \frac{U^{tr}(x)^{D/2} V^{tr}(x)^{\omega}}{\tilde{U}(x)^{D/2} \tilde{V}(x)^{\omega}}$$

We get an algorithm that evaluates I_G up to δ accuracy in runtime

$$O(n2^n + n^3 \delta^{-2})$$

where n = |E|.

"Exponential wall" starts at around n = 30 edges \Rightarrow Exponential term is negligible for loop order ≤ 10

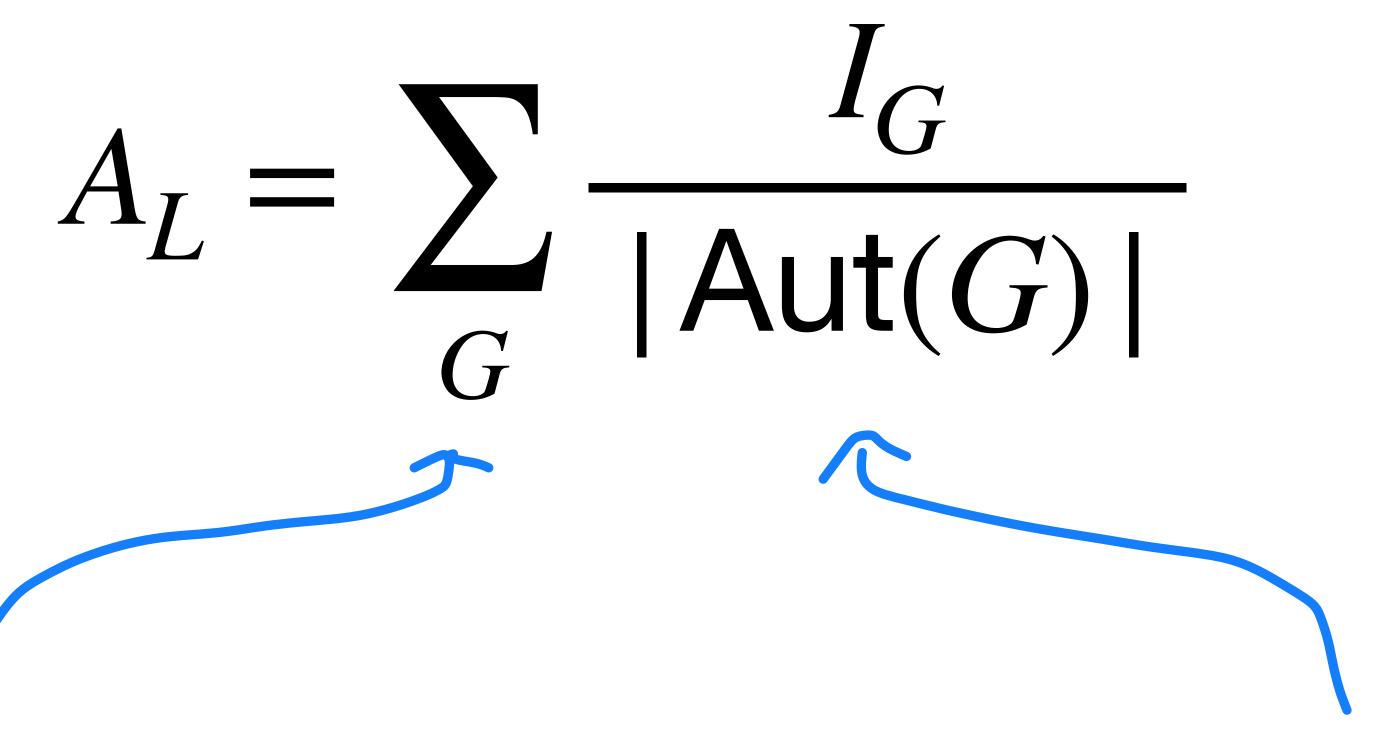
Under the hood

- ullet Algorithm makes heavy use of algebraic and convex geometry of U,F
- Works thanks to well-understood analytic structure in the UV Speer, Brown, ...
- Key structure: generalised permutahedra (related to Lorentzian polynomials)
- Problems due to failure of this structure with IR divergences.
- Findings of Arkani-Hamed, Hillman, Mizera 2022 helpful to resolve this partially.
- Implementation: https://github.com/michibo/feyntrop

Conclusion

- Tropical sampling + new $i\varepsilon$ free projective parametric representation
 - ⇒ Fast method to integrate Feynman integrals: Code, feyntrop on github
- Exceptional kinematics are problematic (IR singularities)
 - ⇒ More information on pole structure of integrands needed
- Extensions necessary: Numerators of Feynman integrals and divergences
- Question: Is there are polynomial time algorithm for Feynman integration?
- Question: Is there an algorithm for amplitudes faster than the naive one?

Outlook: Amplitudes on moduli spaces



Sum over graphs with L loops of shape determined by the QFT

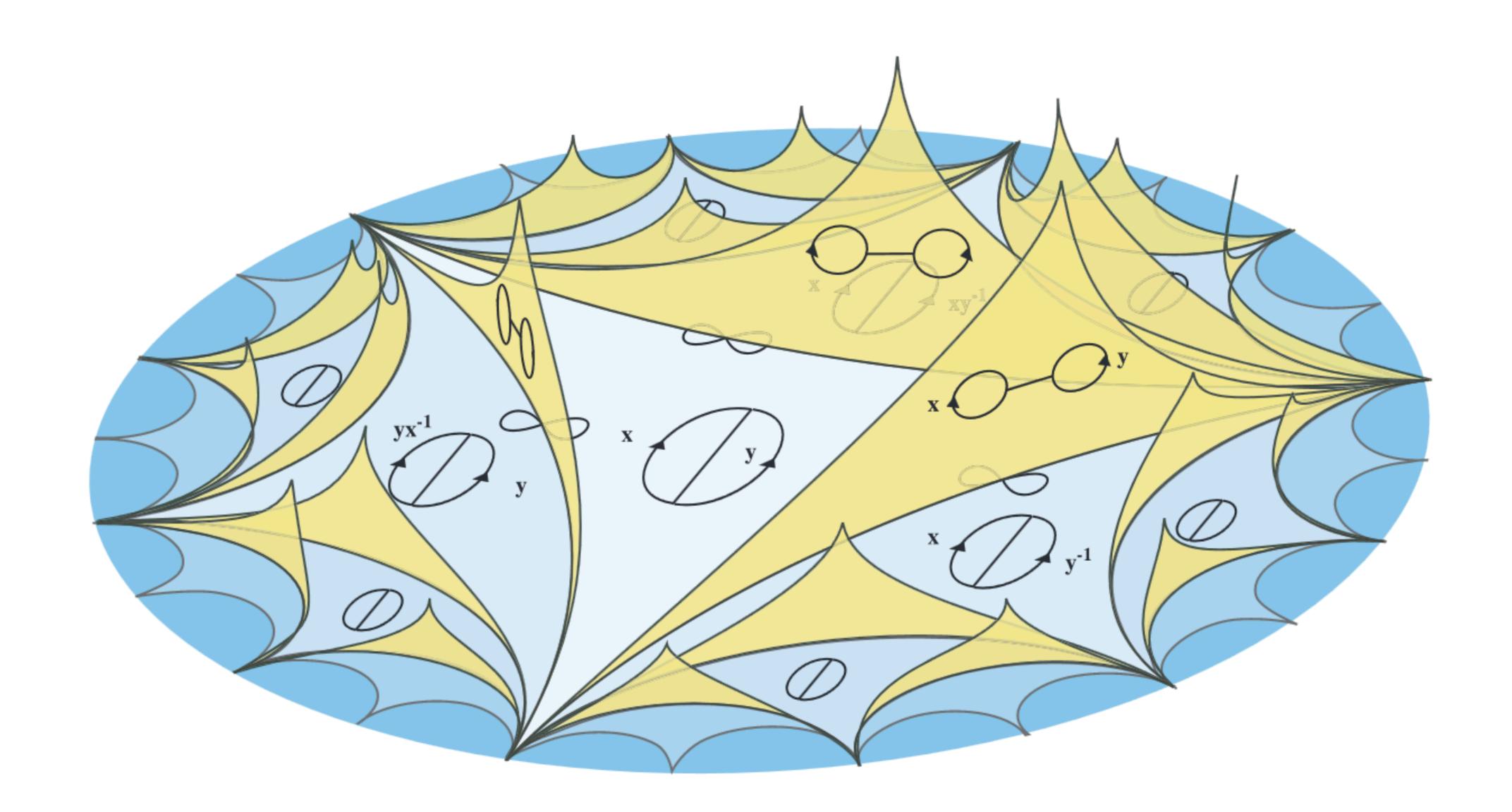
Feynman Integral for each graph weighted by symmetry factor

Outlook: Amplitudes on moduli spaces

$$A_{L} = \sum_{G} \frac{I_{G}}{|\operatorname{Aut}(G)|}$$

$$= \sum_{G} \frac{1}{|\operatorname{Aut}(G)|} \int_{\mathbb{P}_{>0}^{E}} \frac{\Omega}{U^{D/2}V^{\omega}}$$

Integral over moduli space of graphs \mathcal{MG}_g



QFT is very useful to study this moduli space

arXiv:1907.03543 MB-Vogtmann

arXiv:2202.08739 MB-Vogtmann

arXiv:2301.01121 MB-Vogtmann

Theorem MB-Vogtmann 2023

$$\chi(\mathcal{MG}_g) \sim -e^{-1/4} \left(\frac{g}{e}\right)^g / (g \log g)^2$$
 $g \to \infty$

- Related to result by Harer-Zagier 1986 on the moduli space of curves \mathcal{M}_g .
- The moduli space of graphs \mathcal{MG}_g is a tropicalization of \mathcal{M}_g .
- Feynman type integrals on $\overline{\mathcal{MG}}_g$ certify classes in \mathcal{M}_g Brown 2021
- Long story...

⇒Use integrals over the moduli space to study/evaluate amplitudes

Bloch-Kreimer, Berghoff

Conclusion

- Tropical sampling + new $i\varepsilon$ free projective parametric representation
 - ⇒ Fast method to integrate Feynman integrals: Code, feyntrop on github
- Exceptional kinematics are problematic (IR singularities)
 - ⇒ More information on pole structure of integrands needed
- Extensions necessary: Numerators of Feynman integrals and divergences
- Question: Is there are polynomial time algorithm for Feynman integration?
- Question: Is there an algorithm for amplitudes faster than the naive one?