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Motivation

Aim: exploit algebraic geometry behind Feynman integrals

⋄ extraction of properties of Feynman integrals from their PDEs

⋄ algorithmic computation of series solutions of PDEs by algebraic methods

⋄ evaluation of Feynman integrals

⋄ providing a dictionary between algebraic analysis and high energy physics

Outline

1 Algebraic analysis D = C[x1, . . . , xn]⟨∂1, . . . , ∂n⟩

2 Algebraic computation of solutions Fk (x) = xA ·
∑

p,b suitable cpb x
p log(x)b

3 Merging D-module and physics methods
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Linear PDEs through an algebraic lens

Definition

The Weyl algebra is obtained from the free algebra over C

D := C[x1, . . . , xn]⟨∂1, . . . , ∂n⟩

by imposing the following relations:

[∂i , xj ] = ∂ixj − xj∂i = δij for i , j = 1, . . . , n.

From PDEs to D-ideals and vice versa

⋄ D gathers linear differential operators with polynomial coefficients

P =
∑

α,β ∈Nn

cα,βx
α∂β , cα,β ∈ C ⇝ PDE: P • f (x1, . . . , xn) = 0

Example: P = ∂2 − x ∈ D encodes Airy’s equation f ′′(x)− x · f (x) = 0 .

⋄ left D-ideals encode systems of linear PDEs
operations with D-ideals: integral transforms, restrictions, push forward, . . .
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Holonomic functions

One variable
A function f (x) is holonomic if there exists P ∈ D that annihilates f , i.e., P • f = 0.
Multivariate case: f (x1, . . . , xn) is holonomic if AnnD(f ) is a “holonomic” D-ideal.

Examples: Feynman integrals, hypergeometric, periods, Airy, polylogarithms, . . .

A.-L. S. and B. Sturmfels. D-Modules and Holonomic Functions. Preprint arXiv:1910.01395, 2019. To appear in
the volume Varieties, polyhedra, computation of EMS Series of Congress Reports. 4/ 14
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Examples: Feynman integrals, hypergeometric, periods, Airy, polylogarithms, . . .

Denote by Rn = C(x1, . . . , xn)⟨∂1, . . . , ∂n⟩ the rational Weyl algebra.

Theorem (Cauchy–Kovalevskaya–Kashiwara)

Let I be a holonomic D-ideal. The C-vector space of holomorphic solutions to I on a
simply connected domain in Cn outside the singular locus of I has finite dimension

rank(I ) = dimC(x1,...,xn) (Rn/RnI ) .

⇒ A holonomic function is encoded by finite data!
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simply connected domain in Cn outside the singular locus of I has finite dimension

rank(I ) = dimC(x1,...,xn) (Rn/RnI ) .

⇒ A holonomic function is encoded by finite data!

Singularities

D-ideals can be regular singular or irregular singular .

Univariate case: read from growth behavior of general solution near singular points

Example: ⋄ log(x) moderate growth at x = 0 ⋄ exp(1/x) essential singularity at x = 0

A.-L. S. and B. Sturmfels. D-Modules and Holonomic Functions. Preprint arXiv:1910.01395, 2019. To appear in
the volume Varieties, polyhedra, computation of EMS Series of Congress Reports. 4/ 14
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Running example

Variables: x1 = |p1|2 , x2 = |p2|2 , x3 = |p1 + p2|2.

The D-ideal I3(c0, c1, c2, c3)

Consider I3(c0, c1, c2, c3) = ⟨P1,P2,P3⟩ ⊂ D3 arising from conformal invariance.
dilatations + conformal boosts

P1 = 4(x1∂
2
1 − x3∂

2
3) + 2(2 + c0 − 2c1)∂1 − 2(2 + c0 − 2c3)∂3 ,

P2 = 4(x2∂
2
2 − x3∂

2
3) + 2(2 + c0 − 2c2)∂2 − 2(2 + c0 − 2c3)∂3 ,

P3 = (2c0 − c1 − c2 − c3) + 2(x3∂3 + x2∂2 + x1∂1) .

Parameters: c0 = d spacetime dimension c1, c2, c3 conformal weights

Choice: I3 := I3(4, 2, 2, 2) =̂ conformal ϕ4-theory in 4 spacetime dimensions

I3 is regular singular, rank(I3) = 4

Remark: The D-ideal I3 is the restriction of a GKZ system.

L. de la Cruz. Feynman integrals as A-hypergeometric functions. J. High Energy Phys., 123(2019), 2019.

5/ 14



Running example

Variables: x1 = |p1|2 , x2 = |p2|2 , x3 = |p1 + p2|2.

The D-ideal I3(c0, c1, c2, c3)

Consider I3(c0, c1, c2, c3) = ⟨P1,P2,P3⟩ ⊂ D3 arising from conformal invariance.
dilatations + conformal boosts

P1 = 4(x1∂
2
1 − x3∂

2
3) + 2(2 + c0 − 2c1)∂1 − 2(2 + c0 − 2c3)∂3 ,

P2 = 4(x2∂
2
2 − x3∂

2
3) + 2(2 + c0 − 2c2)∂2 − 2(2 + c0 − 2c3)∂3 ,

P3 = (2c0 − c1 − c2 − c3) + 2(x3∂3 + x2∂2 + x1∂1) .

Parameters: c0 = d spacetime dimension c1, c2, c3 conformal weights

Choice: I3 := I3(4, 2, 2, 2) =̂ conformal ϕ4-theory in 4 spacetime dimensions

I3 is regular singular, rank(I3) = 4

Remark: The D-ideal I3 is the restriction of a GKZ system.

L. de la Cruz. Feynman integrals as A-hypergeometric functions. J. High Energy Phys., 123(2019), 2019. 5/ 14



Solutions to I3

The solution space of I3. . .

. . . is spanned by the triangle integral

J triangle
d ;ν1,ν2,ν3

=
∫
Rd

dd k

iπ
d
2

1
(−|k|2)ν1 (−|k+p1|2)ν2 (−|k+p1+p2|2)ν3

and its analytic continuations. rank(I3) = 4

ν2, k + p1 ν3, k + p1 + p2

ν1, k
p1

p2

p3

One-loop triangle Feynman diagram
with massless propagators and
massive external particles.

Unitary exponents ν1 = ν2 = ν3 = 1, d = 4:

f1(x1, x2, x3) = Jtriangle4;1,1,1 (x1, x2, x3) ,

f2(x1, x2, x3) =
1
√
λ
log

(
x1 − x2 − x3 −

√
λ

x1 − x2 − x3 +
√
λ

)
,

f3(x1, x2, x3) =
1
√
λ
log

(
x2 − x1 − x3 −

√
λ

x2 − x1 − x3 +
√
λ

)
,

f4(x1, x2, x3) =
1
√
λ
,

where λ = x2
1 + x2

2 + x2
3 − 2(x1x2 + x1x3 + x2x3) is the Källén function.
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Initial forms

Principal symbol (n = 1)

in(0,1)(x∂ − x2) = xξ is the part of maximal (0, 1)-weight ∂ ⇝ ξ

Several variables: in(0,1)(x1∂1 + x2∂2 + 1) = x1ξ1 + x2ξ2 in general, not a monomial

Algebraically

⋄ The characteristic ideal of a D-ideal I is

in(0,1)(I ) = ⟨ in(0,1)(P)|P ∈ I ⟩ ⊂ C[x1, . . . , xn][ξ1, . . . , ξn] .

⋄ The characteristic variety of I is

Char(I ) = V (in(0,1)(I )) =
{
(x , ξ) | p(x , ξ) = 0 for all p ∈ in(0,1)(I )

}
⊂ C2n .

⋄ The singular locus Sing(I ) of I is the vanishing set of the ideal(
in(0,1)(I ) : ⟨ξ1, . . . , ξn⟩(∞)

)
∩ C[x1, . . . , xn] . saturation + elimination

Examples

1 For I = ⟨x2∂ + 1⟩ ⊂ D, in(0,1)(I ) = ⟨x2ξ⟩ and Sing(I ) = V (x) = {0}. C · exp(1/x)

2 The characteristic ideal of I = ⟨x1∂2, x2∂1⟩ ⊂ D2 is the C[x1, x2, ξ1, ξ2]-ideal
⟨x1ξ2, x2ξ1, x1ξ1 − x2ξ2, x2ξ

2
2 , x

2
2 ξ2⟩ and Sing(I ) = V (x1, x2) ⊂ C2. C · 1
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Gröbner deformations

Weights of the form (−w ,w), w = (w1, . . . ,wn) ∈ Rn

⋄ The w-weight of cα,βx
α∂β is −w · α+ w · β .

⋄ The initial form of P =
∑

cα,βx
α∂β is the

subsum of all terms of maximal w -weight.

Initial and indicial ideal (with respect to w)

⋄ The initial ideal of I is the D-ideal
inw (I ) = ⟨ in(−w,w)(P)|P ∈ I ⟩ ⊂ D .

⋄ The indicial ideal of I is the C[θ1, . . . , θn]-ideal
indw (I ) = Rn · in(−w,w)(I ) ∩ C[θ1, . . . , θn] . θi = xi∂i the i-th Euler operator

.
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v2 = (−1, 2,−1)

v1 = (1, 0,−1)

ρ1

w

ρ2 ρ3

C1

C2

C3

1

1

−1

−1

Small Gröbner fan of I3 ⊂ D,
here drawn in R3

w/R(1, 1, 1).

The zeroes of indw (I ) in Cn are the exponents of I .
The starting monomials of solutions to I will be of the form xA log(x)B with A ∈ V (indw (I )) .

Pipeline: from I to starting terms of series solutions

Dn-ideal I
w∈Rn

⇝ in(−w,w)(I ) ⇝ indw (I ) ⊂ C[θ1, . . . , θn]
V (indw (I ))
⇝ xA log(x)B
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Canonical series solutions

Aim: Solutions to I of the form Fk(x) = xA ·
∑

0≤p·w≤k, p∈C∗
Z ,

0≤bj<rank(I )

cpb x
p log(x)b .

Initial series

The w-weight of a monomial xA log(x)B is the real part of w ·A. The initial series inw (f )
of a function f =

∑
A,B cABx

A log(x)B is the subsum of all terms of minimal w -weight.

Proposition

If I is regular holonomic and w a generic weight for I , there exist rank(I ) many canonical
series solutions of I which lie in the Nilsson ring Nw (I ) of I with respect to w ,

Nw (I ) := CJCw (I )
∗
ZK[xe1 , . . . , xer , log(x1), . . . , log(xn)] .

⋄ Cw (I )∗ the dual cone of the Gröbner cone of w ⋄ Cw (I )∗Z = Cw (I )∗ ∩ Zn

⋄ {e1, . . . , er} the exponents of I

Monomial ordering ≺w refining w -weight: The number of solutions to I with starting
monomial of the form xA log(x)B is the multiplicity of A as zero of indw (I ).

M. Saito, B. Sturmfels, and N. Takayama. Gröbner Deformations of Hypergeometric Differential Equations,
volume 6 of Algorithms and Computation in Mathematics. Springer, 2000.
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volume 6 of Algorithms and Computation in Mathematics. Springer, 2000. 9/ 14



The SST algorithm

Theorem (Saito–Sturmfels–Takayama)

Let I be a regular holonomic Q[x1, . . . , xn]⟨∂1, . . . , ∂n⟩-ideal and w ∈ Rn generic for I .
Let I be given by a Gröbner basis for w . There exists an algorithm which computes all
terms up to specified w -weight in the canonical series solutions to I with respect to ≺w .

Procedure

Input: A regular holonomic Dn-ideal I , its small Gröbner fan Σ in Rn, a weight vector
w ∈ Rn that is generic for I , and the desired order k ∈ N.

. . . for each starting monomial xA log(x)B : solving linear system modulo desired w-weight
for vector spaces of monomials of same w-weight. recurrence relations

Output: The canonical series solutions of I with respect to w , truncated at w -weight k.

M. Saito, B. Sturmfels, and N. Takayama. Gröbner Deformations of Hypergeometric Differential Equations,
volume 6 of Algorithms and Computation in Mathematics. Springer, 2000. 10/ 14



Starting monomials for I3

The singular locus of I3 is

Sing (I3) = V (x1x2x3 · λ) ⊂ C3.

Vanishing locus of the Källén polynomial

λ = x2
1 + x2

2 + x2
3 − 2(x1x2 + x1x3 + x2x3)

+ coordinate hyperplanes {xi = 0}

Initial and indicial ideal for w = (−1, 0, 1) ∈ C1

⋄ in(−w,w)(I3) = ⟨x1∂1 + x2∂2 + x3∂3 + 1, x2∂
2
2 + ∂2, x3∂

2
3 + ∂3 ⟩ ⊂ D3

⋄ indw (I3) = R3 · in(−w,w)(I )∩C[θ1, θ2, θ3] = ⟨θ1 + θ2 + θ3 +1, θ22, θ
2
3⟩ ⊂ C [θ1, θ2, θ3]

Exponents of I : V (indw (I3)) = {(−1, 0, 0)} . =̂ x−1
1 x02 x

0
3 = 1/x1

Change of variables: y1 = x1 , y2 = x2/x1 , y3 = x3/x1 .

Starting monomials of solutions read from primary decomposition of indw (I )

⋄ 1/y1 ⋄ 1/y1 log(y2) ⋄ 1/y1 log(y3) ⋄ 1/y1 log(y2) log(y3)
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Canonical series solutions of I3

Lifting the starting monomials here displayed for f1, f2, f3 for w-weight 0 to 4

f̃1(y2, y3) = 1 + y2 + y3 + y2
2 + 4y2y3 + y2

3 + y3
2 + 9y2

2 y3 + y4
2 + · · · ,

f̃2(y2, y3) = log(y2) + log(y2)y2 + (2 + log(y2))y3 + log(y2)y
2
2 + (4 + 4 log(y2))y2y3

+ (3 + log(y2))y
2
3 + (log(y2))y

3
2 + (6 + 9 log(y2))y

2
2 y3 + log(y2)y

4
2 + · · · ,

f̃3(y2, y3) = log(y3) + (2 + log(y3))y2 + log(y3)y3 + (3 + log(y3))y
2
2

+ (4 + 4 log(y3))y2y3 + log(y3)y
2
3 +

(
11

3
+ log(y3)

)
y3
2

+ (15 + 9 log(y3))y
2
2 y3 +

(
25

6
+ log(y3)

)
y4
2 + · · · .

Then fi (x1, x2, x3) = 1/x1 · f̃i (y2, y3) are canonical series solutions to I3 . (truncated)

Implementation in Sage for the bivariate case

Available at: https://mathrepo.mis.mpg.de/DModulesFeynman/

12/ 14
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Truncation with respect to w -weight

f (x1, . . . , xn) general solution of a regular holonomic D-ideal I

Capturing the weight vector via an auxiliary variable

Choose a generic weight w ∈ Rn for I . Set

fw (t, x1, . . . , xn) := f (tw1x1, . . . , t
wnxn) .

Merging with canonical series solutions

1 From I , derive a Fuchsian system for fw (t, x1, . . . , xn).

2 Solve the system via the path-ordered exponential formalism.

3 Compute the asymptotic expansion of fw (t, x) around t = 0:

fw (t, x) =
∑
k≥0

mmax∑
m=0

ck,m(x) t
k log(t)m .

By construction, ck,m(x) has w -weight k .

4 Truncate the expansion at tk and evaluate at t = 1. Nota bene: fw |t=1 ≡ f .

1. F. Brown. Iterated Integrals in Quantum Field Theory. In 6th Summer School on Geometric and Topological
Methods for Quantum Field Theory, pages 188–240, 2013.
2. W. Wasow. Asymptotic expansions for ordinary differential equations. Pure and Applied Mathematics, Vol. XIV.
Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1965.
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Conclusion

In a nutshell

1 D-ideals encode crucial properties of their solution functions
e.g. Feynman integrals, arbitrary loop order, irrespective of whether polylogarithmic, etc.

2 algorithmic computation of truncated series solutions by algebraic methods
no gauge transform required

3 evaluation of solution functions to desired w -weight
freedom in choosing weight vector w

4 dictionary algebra–physics
computing series solutions, Pfaffian system vs. Laporta’s algorithm

Thank you for your attention!

J. Henn, E. Pratt, A.-L. S., and S. Zoia. D-Module Techniques for Solving Differential Equations in the Context
of Feynman Integrals. Preprint arXiv:2303.11105, 2023. 14/ 14

https://arxiv.org/abs/2303.11105


The conformal group

z =
(
z0, z1, . . . , zd−1

)⊤
vector of d-dimensional spacetime coordinates

z1 · z2 := z⊤1 · g · z2 g = diag(1,−1, . . . ,−1) the metric tensor
p1, . . . , pn momentum vectors

Translations z −→ z + ϵ, ϵ ∈ Rd

(Proper) Lorentz transformations z −→ Λ · z, Λ ∈ SO(1, d − 1)
Dilatations z −→ eω z, ω ∈ R

Conformal boosts z −→
z − |z|2 ϵ

1− 2 z · ϵ+ |z|2|ϵ|2
, ϵ ∈ Rd

Poincaré group symmetry group of Einstein’s theory of special relativity
conformal group Poincaré + dilatations + conformal boosts

Invariance under. . .
⋄ translations implies momentum conservation

⋄ Lorentz transformation implies dependency on Mandelstam invariants pk · pℓ only

Generators in position space to momentum space via Fourier transform

⋄ dilatations: Dn = −i
∑n

k=1 (zk · ∂zk + ck )

⋄ conformal boosts: Kn = i
∑n

k=1

[
|zk |2∂zk − 2 zk (zk · ∂zk )− 2 ck zk

]
Running example: n = 3, momenta p1, p2, p3, variables xi = |pi |2

⋄ P3 stems from D̂3 ⋄ P1,P2 stem from K̂3

15/ 14



Systems in matrix form

⋄ I a holonomic Dn-ideal of rank m = rank(I ), f ∈ Sol(I )
⋄ 1, s2, . . . , sm a C(x)-basis of Rn/RnI standard monomials for a Gröbner basis of I

Pfaffian system

Set F = (f , s2 • f , . . . , sm • f )⊤. There exist P1, . . . ,Pn ∈ C(x1, . . . , xn)m×m for which

∂i • F = Pi · F .

The matrices Pi fulfill PiPj − PjPi = ∂i • Pj − ∂j • Pi for all i , j . integrability

If all poles are of order at most 1, the system is Fuchsian. To arrive at a Fuchsian form,
one might need a gauge transform. Wasow’s method

Construction of a Pfaffian system IBP reduction with Laporta’s algorithm

∂a Feynman integrals

a in ∂a propagator powers

∂aQi = 0 in Rn/RnI IBP identities

C(x)-basis of Rn/RnI set of master integrals

1. V. Chestnov, F. Gasparotto, M. K. Mandal, P. Mastrolia, S.-J. Matsubara-Heo, H. J. Munch, N. Takayama.
Macaulay matrix for Feynman integrals: Linear relations and intersection numbers. J. High Energy Phys.,
187(2022), 2022.
2. W. Wasow. Asymptotic expansions for ordinary differential equations. Pure and Applied Mathematics, Vol. XIV.
Interscience Publishers John Wiley & Sons, Inc., New York-London- Sydney, 1965. 16/ 14



The SST algorithm

Input: A regular holonomic Dn-ideal I , its small Gröbner fan Σ in Rn, a weight vector w ∈ Rn

that is generic for I , and the desired order k + 1 ∈ N.

1 Determine a Gröbner basis G = {g1, . . . , gd} of I with respect to w .

2 Write each g ∈ G as xαg = f − h with α ∈ Zn such that f ∈ K[θ1, . . . , θn] and

h ∈ K[x±1
1 , . . . , x±1

n ]⟨∂1, . . . , ∂n⟩ with ord(−w,w)(h) < 0.

3 Compute the indicial ideal indw (I ) and its rank(I ) many solutions. They are the form xA log(x)B

with A ∈ V (indw (I )). For each starting of these monomials, carry out Step 4.

4 Assume the partial solution

Fk (x) = xA ·
∑

0≤p·w≤k, p∈C∗
Z

cpbx
p log(x)b .

is known. Solve the linear system

(f1, . . . , fd ) • Ek+1(x) = (h1 − f1, . . . , hd − fd ) • Fk (x) mod w -weight k + 2

for Ek+1 ∈
∑

p·w=k+1, p∈C∗
Z
L′p of w -weight k + 1. Adding Ek+1 to Fk lifts Fk to Fk+1.

L′p the subspace of Lp = xA
∑

0≤bi≤rank(I ) K·xp log(x)b spanned by monomials /∈ Start≺w (I )

Output: The canonical series solutions of I with respect to w , truncated at w -weight k + 1.

M. Saito, B. Sturmfels, and N. Takayama. Gröbner Deformations of Hypergeometric Differential Equations,
volume 6 of Algorithms and Computation in Mathematics. Springer, 2000. 17/ 14



SST algorithm: a hypergeometric example

Consider the D-ideal I generated by P = θ(θ − 3)− x(θ + a)(θ + b) .

1 I is holonomic of rank ord(0,1)(P) = 2.

2 Gröbner fan of I : two maximal cones ±R≥0.

3 For the weight w = 1, in(−w,w)(I ) = ⟨ θ(θ − 3) ⟩ = indw (I ).

4 Exponents of I : V (indw (I )) = {0, 3}. starting monomials x0 = 1 and x3

5 Choose x3 as starting monomial, Lp = C · {xp+3, xp+3 log(x)}. x3
∑

p cp,1x
p + cp,2xp log(x)

6 Write P = f − h, where f = θ(θ − 3) and h = x(θ + a)(θ + b). Action of θ on Lp :

θ • xp+3 = (p + 3)xp+3 and θ • (xp+3 log(x)) = xp+3 + (p + 3)xp+3 log(x) .

Thus, the matrix of the operator θ in the basis {xp+3, xp+3 log(x)} is[
p + 3 1
0 p + 3

]
.

7 Let cp,1 and cp,2 be the coefficients of xp+3 and xp+3 log(x) in the power series expansion.
Then we can write our operators as matrices, and our recurrence as[
p 1
0 p

] [
p + 3 1
0 p + 3

] [
cp,1
cp,2

]
=

[
p − a+ 2 1

0 p − a+ 2

] [
p − b + 2 1

0 p − b + 2

] [
cp−1,1

cp−1,2

]
with initial values c0,1 = 1, c0,2 = 0 . Solving the recurrence yields

cp,1 = 0 and cp,2 =
(a+3)p(b+3)p

(1)p(4)p
.
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