

D-Module Techniques for Solving Differential Equations in the Context of Feynman Integrals

Johannes Henn, Elizabeth Pratt, Anna-Laura Sattelberger, Simone Zoia [arXiv:2303.11105](https://arxiv.org/abs/2303.11105)

> Amplitudes 2023 August 07, 2023

[www.alsattelberger.de/talks/](https://alsattelberger.de/talks/)

Aim: exploit algebraic geometry behind Feynman integrals

- \diamond extraction of **properties** of Feynman integrals from their PDEs
- \Diamond algorithmic computation of series solutions of PDEs by algebraic methods
- ⋄ evaluation of Feynman integrals
- \diamond providing a **dictionary** between algebraic analysis and high energy physics

Aim: exploit algebraic geometry behind Feynman integrals

- \diamond extraction of **properties** of Feynman integrals from their PDEs
- \Diamond algorithmic computation of series solutions of PDEs by algebraic methods
- ⋄ evaluation of Feynman integrals
- \diamond providing a **dictionary** between algebraic analysis and high energy physics

Outline

- **1** Algebraic analysis $D = \mathbb{C}[x_1, \ldots, x_n] \langle \partial_1, \ldots, \partial_n \rangle$
- \bullet Algebraic computation of solutions $^A\cdot\sum_{p,\,b}$ suitable c_{pb} \times^p $\log(x)^b$
- ³ Merging D-module and physics methods

Definition

The Weyl algebra is obtained from the free algebra over $\mathbb C$

$$
D\,:=\, {\mathbb C}[x_1,\ldots,x_n]\langle \partial_1,\ldots,\partial_n\rangle
$$

by imposing the following relations:

$$
[\partial_i, x_j] = \partial_i x_j - x_j \partial_i = \delta_{ij} \quad \text{for } i, j = 1, \ldots, n.
$$

Definition

The Weyl algebra is obtained from the free algebra over C

$$
D\,:=\, \mathbb{C}[x_1,\ldots,x_n]\langle \partial_1,\ldots,\partial_n\rangle
$$

by imposing the following relations:

$$
[\partial_i,x_j]=\partial_ix_j-x_j\partial_i=\delta_{ij} \text{ for } i,j=1,\ldots,n.
$$

From PDEs to D-ideals and vice versa

 \Diamond D gathers linear differential operators with polynomial coefficients

$$
P = \sum_{\alpha,\beta \in \mathbb{N}^n} c_{\alpha,\beta} x^{\alpha} \partial^{\beta}, \ c_{\alpha,\beta} \in \mathbb{C} \quad \rightsquigarrow \text{PDE: } \boxed{P \bullet f(x_1,\ldots,x_n) = 0}
$$

Example: $P = \partial^2 - x \in D$ encodes Airy's equation $f''(x) - x \cdot f(x) = 0$.

 \Diamond left D -ideals encode systems of linear PDEs operations with D-ideals: integral transforms, restrictions, push forward, . . .

One variable

A function $f(x)$ is **holonomic** if there exists $P \in D$ that annihilates f, i.e., $P \cdot f = 0$. Multivariate case: $f(x_1,...,x_n)$ is holonomic if $Ann_D(f)$ is a "holonomic" D-ideal. Examples: Feynman integrals, hypergeometric, periods, Airy, polylogarithms, . . .

A.-L. S. and B. Sturmfels. D-Modules and Holonomic Functions. Preprint [arXiv:1910.01395,](https://arxiv.org/abs/1910.01395) 2019. To appear in the volume Varieties, polyhedra, computation of EMS Series of Congress Reports. $4/14$

Holonomic functions

One variable

A function $f(x)$ is **holonomic** if there exists $P \in D$ that annihilates f, i.e., $P \cdot f = 0$. Multivariate case: $f(x_1,...,x_n)$ is holonomic if $Ann_D(f)$ is a "holonomic" D-ideal. Examples: Feynman integrals, hypergeometric, periods, Airy, polylogarithms, . . .

Denote by $R_n = \mathbb{C}(x_1, \ldots, x_n) \langle \partial_1, \ldots, \partial_n \rangle$ the rational Weyl algebra.

Theorem (Cauchy–Kovalevskaya–Kashiwara)

Let I be a holonomic D-ideal. The C-vector space of holomorphic solutions to I on a simply connected domain in \mathbb{C}^n outside the singular locus of I has finite dimension

$$
\mathrm{rank}(I) = \dim_{\mathbb{C}(x_1,\ldots,x_n)}(R_n/R_nI).
$$

 \Rightarrow A holonomic function is encoded by finite data!

A.-L. S. and B. Sturmfels. D-Modules and Holonomic Functions. Preprint [arXiv:1910.01395,](https://arxiv.org/abs/1910.01395) 2019. To appear in the volume Varieties, polyhedra, computation of EMS Series of Congress Reports. $4/14$

Holonomic functions

One variable

A function $f(x)$ is **holonomic** if there exists $P \in D$ that annihilates f, i.e., $P \bullet f = 0$. Multivariate case: $f(x_1,...,x_n)$ is holonomic if $Ann_D(f)$ is a "holonomic" D-ideal. Examples: Feynman integrals, hypergeometric, periods, Airy, polylogarithms, . . .

Denote by $R_n = \mathbb{C}(x_1, \ldots, x_n) \langle \partial_1, \ldots, \partial_n \rangle$ the rational Weyl algebra.

Theorem (Cauchy–Kovalevskaya–Kashiwara)

Let I be a holonomic D -ideal. The C -vector space of holomorphic solutions to I on a simply connected domain in \mathbb{C}^n outside the singular locus of I has finite dimension

$$
\mathrm{rank}(I) = \dim_{\mathbb{C}(x_1,\ldots,x_n)}(R_n/R_nI).
$$

 \Rightarrow A holonomic function is encoded by finite data!

Singularities

D-ideals can be regular singular or irregular singular.

Univariate case: read from growth behavior of general solution near singular points **Example:** \diamond log(x) moderate growth at $x = 0$ \diamond exp(1/x) essential singularity at $x = 0$

A.-L. S. and B. Sturmfels. D-Modules and Holonomic Functions. Preprint [arXiv:1910.01395,](https://arxiv.org/abs/1910.01395) 2019. To appear in the volume Varieties, polyhedra, computation of EMS Series of Congress Reports. $4/14$

Variables:
$$
x_1 = |p_1|^2
$$
, $x_2 = |p_2|^2$, $x_3 = |p_1 + p_2|^2$.

The *D*-ideal $I_3(c_0, c_1, c_2, c_3)$

Consider $I_3(c_0, c_1, c_2, c_3) = \langle P_1, P_2, P_3 \rangle \subset D_3$ arising from **conformal invariance**. $dilatations + conformal$ boosts

$$
\begin{aligned}\nP_1 &= 4(x_1\partial_1^2 - x_3\partial_3^2) + 2(2 + c_0 - 2c_1)\partial_1 - 2(2 + c_0 - 2c_3)\partial_3, \\
P_2 &= 4(x_2\partial_2^2 - x_3\partial_3^2) + 2(2 + c_0 - 2c_2)\partial_2 - 2(2 + c_0 - 2c_3)\partial_3, \\
P_3 &= (2c_0 - c_1 - c_2 - c_3) + 2(x_3\partial_3 + x_2\partial_2 + x_1\partial_1).\n\end{aligned}
$$

Parameters: $c_0 = d$ spacetime dimension c_1, c_2, c_3 conformal weights **Choice:** $I_3 := I_3(4, 2, 2, 2) \implies$ conformal ϕ^4 -theory in 4 spacetime dimensions I_3 is regular singular, rank $(I_3) = 4$

Variables:
$$
x_1 = |p_1|^2
$$
, $x_2 = |p_2|^2$, $x_3 = |p_1 + p_2|^2$.

The D-ideal $I_3(c_0, c_1, c_2, c_3)$

Consider $I_3(c_0, c_1, c_2, c_3) = \langle P_1, P_2, P_3 \rangle \subset D_3$ arising from **conformal invariance**. $dilatations + conformal$ boosts

$$
\begin{aligned}\nP_1 &= 4(x_1\partial_1^2 - x_3\partial_3^2) + 2(2 + c_0 - 2c_1)\partial_1 - 2(2 + c_0 - 2c_3)\partial_3, \\
P_2 &= 4(x_2\partial_2^2 - x_3\partial_3^2) + 2(2 + c_0 - 2c_2)\partial_2 - 2(2 + c_0 - 2c_3)\partial_3, \\
P_3 &= (2c_0 - c_1 - c_2 - c_3) + 2(x_3\partial_3 + x_2\partial_2 + x_1\partial_1).\n\end{aligned}
$$

Parameters: $c_0 = d$ spacetime dimension c_1, c_2, c_3 conformal weights **Choice:** $I_3 := I_3(4, 2, 2, 2) \implies$ conformal ϕ^4 -theory in 4 spacetime dimensions I_3 is regular singular, rank $(I_3) = 4$

Remark: The D-ideal I_3 is the restriction of a GKZ system.

L. de la Cruz. Feynman integrals as A-hypergeometric functions. J. High Energy Phys., 123(2019), 2019. 5/14

Solutions to I_3

The solution space of I_3 ...

. . . is spanned by the triangle integral

$$
\textit{J}^{\text{triangle}}_{d; \nu_1, \nu_2, \nu_3} = \textit{J}_{\mathbb{R}^d} \, \tfrac{\mathrm{d}^d k}{\mathrm{i} \pi^{\frac{d}{2}}} \, \tfrac{1}{(-|k|^2)^{\nu_1} \, (-|k + \rho_1|^2)^{\nu_2} \, (-|k + \rho_1 + \rho_2|^2)^{\nu_3}} \,
$$

and its analytic continuations. rank $(I_3) = 4$

One-loop triangle Feynman diagram with massless propagators and massive external particles.

Solutions to I_3

The solution space of I_3 ...

. . . is spanned by the triangle integral

$$
\textit{J}^{\text{triangle}}_{d; \nu_1, \nu_2, \nu_3} = \textit{J}_{\mathbb{R}^d} \, \tfrac{\mathrm{d}^d k}{\mathrm{i} \pi^{\frac{d}{2}}} \, \tfrac{1}{(-|k|^2)^{\nu_1} \, (-|k + \rho_1|^2)^{\nu_2} \, (-|k + \rho_1 + \rho_2|^2)^{\nu_3}} \,
$$

and its analytic continuations. rank $(I_3) = 4$

One-loop triangle Feynman diagram with massless propagators and massive external particles.

Unitary exponents $\nu_1 = \nu_2 = \nu_3 = 1$, $d = 4$:

$$
\begin{aligned}\nf_1(x_1, x_2, x_3) &= J_{4;1,1,1}^{\text{triangle}}(x_1, x_2, x_3), \\
f_2(x_1, x_2, x_3) &= \frac{1}{\sqrt{\lambda}} \log \left(\frac{x_1 - x_2 - x_3 - \sqrt{\lambda}}{x_1 - x_2 - x_3 + \sqrt{\lambda}} \right), \\
f_3(x_1, x_2, x_3) &= \frac{1}{\sqrt{\lambda}} \log \left(\frac{x_2 - x_1 - x_3 - \sqrt{\lambda}}{x_2 - x_1 - x_3 + \sqrt{\lambda}} \right), \\
f_4(x_1, x_2, x_3) &= \frac{1}{\sqrt{\lambda}},\n\end{aligned}
$$

where $\lambda = x_1^2 + x_2^2 + x_3^2 - 2(x_1x_2 + x_1x_3 + x_2x_3)$ is the **Källén** function.

Principal symbol $(n = 1)$

 $\mathsf{in}_{(0,1)} (\mathrm{\mathsf{x}} \partial - \mathrm{\mathsf{x}}^2) = \mathrm{\mathsf{x}} \xi$ is the part of maximal $(0,1)$ -weight $\quad \partial \rightsquigarrow \xi$

Several variables: $in_{(0,1)}(x_1\partial_1 + x_2\partial_2 + 1) = x_1\xi_1 + x_2\xi_2$ in general, not a monomial

Principal symbol $(n = 1)$

 $\mathsf{in}_{(0,1)} (\mathrm{\mathsf{x}} \partial - \mathrm{\mathsf{x}}^2) = \mathrm{\mathsf{x}} \xi$ is the part of maximal $(0,1)$ -weight $\quad \partial \rightsquigarrow \xi$

Several variables: $in_{(0,1)}(x_1\partial_1 + x_2\partial_2 + 1) = x_1\xi_1 + x_2\xi_2$ in general, not a monomial Algebraically

 \Diamond The characteristic ideal of a D-ideal I is

$$
\text{in}_{(0,1)}(I) = \langle \text{in}_{(0,1)}(P) | P \in I \rangle \subset \mathbb{C}[x_1,\ldots,x_n][\xi_1,\ldots,\xi_n].
$$

 \Diamond The characteristic variety of *l* is

Char(I) = $V(\text{in}_{(0,1)}(I)) = \{(x,\xi) | p(x,\xi) = 0 \text{ for all } p \in \text{in}_{(0,1)}(I) \} \subset \mathbb{C}^{2n}$.

 \Diamond The singular locus $Sing(I)$ of I is the vanishing set of the ideal

 $\big(\, \mathsf{in}_{(0,1)}(I) : \langle \xi_1, \ldots, \xi_n \rangle^{(\infty)} \big) \, \cap \, \mathbb{C}[x_1, \ldots, x_n] \,. \quad$ saturation + elimination

Principal symbol $(n = 1)$

 $\mathsf{in}_{(0,1)} (\mathrm{\mathsf{x}} \partial - \mathrm{\mathsf{x}}^2) = \mathrm{\mathsf{x}} \xi$ is the part of maximal $(0,1)$ -weight $\quad \partial \rightsquigarrow \xi$

Several variables: $in_{(0,1)}(x_1\partial_1 + x_2\partial_2 + 1) = x_1\xi_1 + x_2\xi_2$ in general, not a monomial Algebraically

 \Diamond The characteristic ideal of a D-ideal I is

$$
\text{in}_{(0,1)}(I) = \langle \text{in}_{(0,1)}(P) | P \in I \rangle \subset \mathbb{C}[x_1,\ldots,x_n][\xi_1,\ldots,\xi_n].
$$

 \Diamond The characteristic variety of *l* is

Char(I) = $V(\text{in}_{(0,1)}(I)) = \{(x,\xi) | p(x,\xi) = 0 \text{ for all } p \in \text{in}_{(0,1)}(I) \} \subset \mathbb{C}^{2n}$.

 \circ The singular locus Sing(*I*) of *I* is the vanishing set of the ideal

$$
\big(\operatorname{\mathsf{in}}_{(0,1)}(I):\langle \xi_1,\ldots,\xi_n\rangle^{(\infty)}\big)\,\cap\,\mathbb{C}[x_1,\ldots,x_n]\,.
$$
 saturation + elimination

Examples

• For
$$
I = \langle x^2 \partial + 1 \rangle \subset D
$$
, $in_{(0,1)}(I) = \langle x^2 \xi \rangle$ and $Sing(I) = V(x) = \{0\}$. $\mathbb{C} \cdot \exp(1/x)$

Principal symbol $(n = 1)$

 $\mathsf{in}_{(0,1)} (\mathrm{\mathsf{x}} \partial - \mathrm{\mathsf{x}}^2) = \mathrm{\mathsf{x}} \xi$ is the part of maximal $(0,1)$ -weight $\quad \partial \rightsquigarrow \xi$

Several variables: $in_{(0,1)}(x_1\partial_1 + x_2\partial_2 + 1) = x_1\xi_1 + x_2\xi_2$ in general, not a monomial Algebraically

 \Diamond The characteristic ideal of a D-ideal I is

$$
\text{in}_{(0,1)}(I) = \langle \text{in}_{(0,1)}(P) | P \in I \rangle \subset \mathbb{C}[x_1,\ldots,x_n][\xi_1,\ldots,\xi_n].
$$

 \diamond The characteristic variety of *l* is

Char(I) = $V(\text{in}_{(0,1)}(I)) = \{(x,\xi) | p(x,\xi) = 0 \text{ for all } p \in \text{in}_{(0,1)}(I) \} \subset \mathbb{C}^{2n}$.

 \Diamond The singular locus $Sing(I)$ of I is the vanishing set of the ideal

$$
\big(\operatorname{\mathsf{in}}_{(0,1)}(I):\langle \xi_1,\ldots,\xi_n\rangle^{(\infty)}\big)\,\cap\,\mathbb{C}[x_1,\ldots,x_n]\,.
$$
 saturation + elimination

Examples

• For
$$
I = \langle x^2 \partial + 1 \rangle \subset D
$$
, $in_{(0,1)}(I) = \langle x^2 \xi \rangle$ and $Sing(I) = V(x) = \{0\}$. $\mathbb{C} \cdot \exp(1/x)$

2 The characteristic ideal of $I = \langle x_1 \partial_2, x_2 \partial_1 \rangle$ ⊂ D_2 is the $\mathbb{C}[x_1, x_2, \xi_1, \xi_2]$ -ideal $\langle x_1\xi_2, x_2\xi_1, x_1\xi_1 - x_2\xi_2, x_2\xi_2^2, x_2^2\xi_2 \rangle$ and $\text{Sing}(I) = V(x_1, x_2) \subset \mathbb{C}^2$. $\mathbb{C} \cdot 1$

Gröbner deformations

Weights of the form $(-w, w)$, $w = (w_1, \ldots, w_n) \in \mathbb{R}^n$

- \diamond The **w-weight** of $c_{\alpha,\beta}x^{\alpha}\partial^{\beta}$ is $-w\cdot\alpha+w\cdot\beta$.
- \diamond The **initial form** of $\mathit{P}=\sum\limits_{}^{}c_{\alpha,\beta}x^{\alpha}\partial^{\beta}$ is the subsum of all terms of maximal w-weight.

Initial and indicial ideal (with respect to w)

- \Diamond The **initial ideal** of *l* is the *D*-ideal $\lim_{w} (I) = \langle \, \text{in}_{(-w,w)}(P) | P \in I \, \rangle \subset D$.
- \Diamond The **indicial ideal** of *l* is the $\mathbb{C}[\theta_1,\ldots,\theta_n]$ -ideal $ind_w(I) = R_n \cdot in_{(-w,w)}(I) \cap \mathbb{C}[\theta_1,\ldots,\theta_n]$. $\theta_i = x_i \partial_i$ the *i*-th Euler operator

Small Gröbner fan of $I_3 \subset D$, Sinan Grobier ran or $n_3 \subset D$,
here drawn in $\mathbb{R}^3_w / \mathbb{R}(1,1,1)$.

Gröbner deformations

Weights of the form $(-w, w)$, $w = (w_1, \ldots, w_n) \in \mathbb{R}^n$

- \diamond The **w-weight** of $c_{\alpha,\beta}x^{\alpha}\partial^{\beta}$ is $-w\cdot\alpha+w\cdot\beta$.
- \diamond The **initial form** of $\mathit{P}=\sum\limits_{}^{}c_{\alpha,\beta}x^{\alpha}\partial^{\beta}$ is the subsum of all terms of maximal w-weight.

Initial and indicial ideal (with respect to w)

- \Diamond The **initial ideal** of *l* is the *D*-ideal $\lim_{w} (I) = \langle \, \text{in}_{(-w,w)}(P) | P \in I \, \rangle \subset D$.
- \Diamond The **indicial ideal** of *l* is the $\mathbb{C}[\theta_1,\ldots,\theta_n]$ -ideal $ind_w(I) = R_n \cdot in_{(-w,w)}(I) \cap \mathbb{C}[\theta_1,\ldots,\theta_n]$. $\theta_i = x_i \partial_i$ the *i*-th Euler operator

The zeroes of $\text{ind}_{w}(I)$ in \mathbb{C}^{n} are the exponents of *I*. The starting monomials of solutions to I will be of the form $x^A \log(x)^B$ with $A \in V(\mathrm{ind}_w(I))$.

Gröbner deformations

Weights of the form $(-w, w)$, $w = (w_1, \ldots, w_n) \in \mathbb{R}^n$

- \diamond The **w-weight** of $c_{\alpha,\beta}x^{\alpha}\partial^{\beta}$ is $-w\cdot\alpha+w\cdot\beta$.
- \diamond The **initial form** of $\mathit{P}=\sum\limits_{}^{}c_{\alpha,\beta}x^{\alpha}\partial^{\beta}$ is the subsum of all terms of maximal w-weight.

Initial and indicial ideal (with respect to w)

 \Diamond The **initial ideal** of *l* is the *D*-ideal $\lim_{w} (I) = \langle \, \text{in}_{(-w,w)}(P) | P \in I \, \rangle \subset D$.

The zeroes of $\text{ind}_{w}(I)$ in \mathbb{C}^{n} are the exponents of *I*. The starting monomials of solutions to I will be of the form $x^A \log(x)^B$ with $A \in V(\mathrm{ind}_w(I))$.

Pipeline: from *I* to starting terms of series solutions

 D_n -ideal w∈R n $\text{in}_{(-w,w)}(I) \rightarrow \text{ind}_w(I) \subset \mathbb{C}[\theta_1,\ldots,\theta_n]$ $V(\mathsf{ind}_W(I))$

Small Gröbner fan of $I_3 \subset D$, Sinan Grobier ran or $n_3 \subset D$,
here drawn in $\mathbb{R}^3_w / \mathbb{R}(1,1,1)$.

 $A \log(x)$ B **Aim:** Solutions to *I* of the form $F_k(x) = x^A \cdot \sum_{0 \le p \cdot w \le k, p \in C_{\mathbb{Z}}^*,} c_{p b} x^p \log(x)^b$. $0 \leq b_i <$ rank (I)

Initial series

The **w-weight** of a monomial $x^A\log(x)^B$ is the real part of $w \cdot A$. The **initial series** in $_w(f)$ of a function $f = \sum_{A,B} c_{AB} x^A \log(x)^B$ is the subsum of all terms of minimal w-weight.

Aim: Solutions to *I* of the form $F_k(x) = x^A \cdot \sum_{0 \le p \cdot w \le k, p \in C_{\mathbb{Z}}^*,} c_{p b} x^p \log(x)^b$. $0 \leq b_i \leq$ rank (I)

Initial series

The **w-weight** of a monomial $x^A\log(x)^B$ is the real part of $w \cdot A$. The **initial series** in $_w(f)$ of a function $f = \sum_{A,B} c_{AB} x^A \log(x)^B$ is the subsum of all terms of minimal w-weight.

Proposition

If I is regular holonomic and w a generic weight for I, there exist rank(I) many canonical series solutions of I which lie in the **Nilsson ring** $N_w(I)$ of I with respect to w,

$$
N_w(I) := \mathbb{C}[\![C_w(I)^*_{\mathbb{Z}}]\!][x^{e^1},\ldots,x^{e^r},\log(x_1),\ldots,\log(x_n)]\,.
$$

 $\Diamond \;\; C_w(I)^*$ the dual cone of the Gröbner cone of $w \qquad \Diamond \;\; C_w(I)^*_{\mathbb{Z}} = C_w(I)^* \cap \mathbb{Z}^n$ $\diamond\ \{e^1,\ldots,e^r\}$ the exponents of I

Monomial ordering \prec_w refining w-weight: The number of solutions to I with starting monomial of the form $x^A \log(x)^\beta$ is the multiplicity of A as zero of $\operatorname{ind}_w(I).$

M. Saito, B. Sturmfels, and N. Takayama. Gröbner Deformations of Hypergeometric Differential Equations, volume 6 of Algorithms and Computation in Mathematics. Springer, 2000.

Theorem (Saito–Sturmfels–Takayama)

Let I be a regular holonomic $\mathbb{Q}[x_1,\ldots,x_n]\langle\partial_1,\ldots,\partial_n\rangle$ -ideal and $w\in\mathbb{R}^n$ generic for I . Let I be given by a Gröbner basis for w . There exists an algorithm which computes all terms up to specified w-weight in the canonical series solutions to I with respect to \prec_w .

Procedure

Input: A regular holonomic D_n -ideal *I*, its small Gröbner fan Σ in \mathbb{R}^n , a weight vector $w \in \mathbb{R}^n$ that is generic for *I*, and the desired order $k \in \mathbb{N}$.

 \dots for each starting monomial $x^A\log(x)^B$: solving linear system modulo desired w-weight for vector spaces of monomials of same w-weight. recurrence relations

Output: The canonical series solutions of *I* with respect to w, truncated at w-weight k .

M. Saito, B. Sturmfels, and N. Takayama. Gröbner Deformations of Hypergeometric Differential Equations, volume 6 of Algorithms and Computation in Mathematics. Springer, 2000.

Starting monomials for I_3

The singular locus of I_3 is

 $\textsf{Sing}(I_3) = V(x_1x_2x_3 \cdot \lambda) \subset \mathbb{C}^3$.

Vanishing locus of the Källén polynomial $\lambda = x_1^2 + x_2^2 + x_3^2 - 2(x_1x_2 + x_1x_3 + x_2x_3)$ + coordinate hyperplanes $\{x_i = 0\}$

Starting monomials for I_3

The singular locus of I_3 is

 $\textsf{Sing}(I_3) = V(x_1x_2x_3 \cdot \lambda) \subset \mathbb{C}^3$.

Vanishing locus of the Källén polynomial $\lambda = x_1^2 + x_2^2 + x_3^2 - 2(x_1x_2 + x_1x_3 + x_2x_3)$ + coordinate hyperplanes $\{x_i = 0\}$

Initial and indicial ideal for $w = (-1, 0, 1) \in C_1$

 \Diamond in_(-w,w)(I_3) = $\langle x_1 \partial_1 + x_2 \partial_2 + x_3 \partial_3 + 1, x_2 \partial_2^2 + \partial_2, x_3 \partial_3^2 + \partial_3 \rangle \subset D_3$ $\Diamond \text{ind}_{w}(I_3) = R_3 \cdot \text{in}_{(-w,w)}(I) \cap \mathbb{C}[\theta_1, \theta_2, \theta_3] = \langle \theta_1 + \theta_2 + \theta_3 + 1, \theta_2^2, \theta_3^2 \rangle \subset \mathbb{C}[\theta_1, \theta_2, \theta_3]$

Exponents of $I: V(\text{ind}_w(I_3)) = {(-1, 0, 0)}.$ $\hat{=} x_1^{-1}x_2^0x_3^0 = 1/x_1$

Change of variables: $y_1 = x_1$, $y_2 = x_2/x_1$, $y_3 = x_3/x_1$.

Starting monomials of solutions read from primary decomposition of $ind_w(I)$ ◇ $1/y_1$ ◇ $1/y_1 \log(y_2)$ ◇ $1/y_1 \log(y_3)$ ◇ $1/y_1 \log(y_2) \log(y_3)$

Lifting the starting monomials here displayed for f_1 , f_2 , f_3 for w-weight 0 to 4

$$
\tilde{f}_1(y_2, y_3) = 1 + y_2 + y_3 + y_2^2 + 4y_2y_3 + y_3^2 + y_2^3 + 9y_2^2y_3 + y_2^4 + \cdots,
$$

\n
$$
\tilde{f}_2(y_2, y_3) = \log(y_2) + \log(y_2)y_2 + (2 + \log(y_2))y_3 + \log(y_2)y_2^2 + (4 + 4\log(y_2))y_2y_3
$$
\n
$$
+ (3 + \log(y_2))y_3^2 + (\log(y_2))y_2^3 + (6 + 9\log(y_2))y_2^2y_3 + \log(y_2)y_2^4 + \cdots,
$$

\n
$$
\tilde{f}_3(y_2, y_3) = \log(y_3) + (2 + \log(y_3))y_2 + \log(y_3)y_3 + (3 + \log(y_3))y_2^2
$$
\n
$$
+ (4 + 4\log(y_3))y_2y_3 + \log(y_3)y_3^2 + \left(\frac{11}{3} + \log(y_3)\right)y_2^3
$$
\n
$$
+ (15 + 9\log(y_3))y_2^2y_3 + \left(\frac{25}{6} + \log(y_3)\right)y_2^4 + \cdots.
$$

Then $f_i(x_1, x_2, x_3) = 1/x_1 \cdot \tilde{f}_i(y_2, y_3)$ are canonical series solutions to I_3 . (truncated)

Implementation in Sage for the bivariate case

Available at:<https://mathrepo.mis.mpg.de/DModulesFeynman/>

Truncation with respect to w-weight

 $f(x_1, \ldots, x_n)$ general solution of a regular holonomic D-ideal I Capturing the weight vector via an auxiliary variable Choose a generic weight $w \in \mathbb{R}^n$ for *I*. Set

$$
f_w(t,x_1,\ldots,x_n) := f(t^{w_1}x_1,\ldots,t^{w_n}x_n).
$$

Truncation with respect to w-weight

 $f(x_1, \ldots, x_n)$ general solution of a regular holonomic D-ideal I Capturing the weight vector via an auxiliary variable Choose a generic weight $w \in \mathbb{R}^n$ for *I*. Set

$$
f_w(t,x_1,\ldots,x_n) := f(t^{w_1}x_1,\ldots,t^{w_n}x_n).
$$

Merging with canonical series solutions

- **1** From *I*, derive a **Fuchsian system** for $f_w(t, x_1, \ldots, x_n)$.
- **②** Solve the system via the path-ordered exponential formalism.
- **3** Compute the asymptotic expansion of $f_w(t, x)$ around $t = 0$:

$$
f_{w}(t,x) = \sum_{k \geq 0} \sum_{m=0}^{m_{\text{max}}} c_{k,m}(x) t^{k} \log(t)^{m}.
$$

By construction, $c_{k,m}(x)$ has w-weight k.

 \bullet Truncate the expansion at t^k and evaluate at $t=1$. Nota bene: $f_w|_{t=1}\equiv f$.

^{1.} F. Brown. Iterated Integrals in Quantum Field Theory. In 6th Summer School on Geometric and Topological Methods for Quantum Field Theory, pages 188–240, 2013.

^{2.} W. Wasow. Asymptotic expansions for ordinary differential equations. Pure and Applied Mathematics, Vol. XIV. Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1965. 13/ 14

In a nutshell

- \bullet D-ideals encode crucial properties of their solution functions e.g. Feynman integrals, arbitrary loop order, irrespective of whether polylogarithmic, etc.
- 2 algorithmic computation of truncated series solutions by algebraic methods no gauge transform required
- \bullet evaluation of solution functions to desired w-weight freedom in choosing weight vector w
- **4** dictionary algebra–physics computing series solutions, Pfaffian system vs. Laporta's algorithm

Thank you for your attention!

J. Henn, E. Pratt, A.-L. S., and S. Zoia. D-Module Techniques for Solving Differential Equations in the Context of Feynman Integrals. Preprint [arXiv:2303.11105,](https://arxiv.org/abs/2303.11105) 2023. $14/14$

The conformal group

 $z = (z^0, z^1, \ldots, z^{d-1})^{\top}$

 $z_1 \cdot z_2 := z_1^{\top}$

vector of d-dimensional spacetime coordinates $g = diag(1, -1, \ldots, -1)$ the metric tensor p_1, \ldots, p_n momentum vectors

Poincaré group symmetry group of Einstein's theory of special relativity conformal group $Poincaré + dilatations + conformal boosts$ Poincaré + dilatations + conformal boosts

Invariance under

- \diamond translations implies momentum conservation
- \diamond Lorentz transformation implies dependency on Mandelstam invariants $p_k \cdot p_\ell$ only

Generators in position space to momentum space via Fourier transform

- ◇ dilatations: $\sum_{k=1}^n (z_k \cdot \partial_{z_k} + c_k)$
- ◇ conformal boosts: $\mathfrak{K}_n = \mathrm{i} \sum_{k=1}^n \left[|z_k|^2 \partial_{z_k} 2 z_k (z_k \cdot \partial_{z_k}) 2 c_k z_k \right]$

Running example: $n = 3$, momenta p_1, p_2, p_3 , variables $x_i = |p_i|^2$

 \circ P₃ stems from $\widehat{\mathfrak{D}_3}$ \circ P₁, P₂ stem from $\widehat{\mathfrak{K}_3}$

Systems in matrix form

 \circ I a holonomic D_n -ideal of rank $m = \text{rank}(I)$, $f \in \text{Sol}(I)$ \Diamond 1, s_2, \ldots, s_m a $\mathbb{C}(x)$ -basis of R_n/R_nI standard monomials for a Gröbner basis of I

Pfaffian system

Set $F=(f,s_2\bullet f,\ldots,s_m\bullet f)^\top.$ There exist $P_1,\ldots,P_n\in\mathbb{C}(\mathsf{x}_1,\ldots,\mathsf{x}_n)^{m\times m}$ for which

$$
\partial_i \bullet F = P_i \cdot F.
$$

The matrices P_i fulfill $P_iP_j - P_jP_i = \partial_i \bullet P_j - \partial_j \bullet P_i$ for all *i*, *j*. integrability

If all poles are of order at most 1, the system is Fuchsian. To arrive at a Fuchsian form, one might need a gauge transform. Wasow's method

Construction of a Pfaffian system IBP reduction with Laporta's algorithm

Эª	Feynman integrals
a in ∂^a	propagator powers
$\partial^a Q_i = 0$ in R_n/R_nI	IBP identities
$\mathbb{C}(x)$ -basis of R_n/R_nI	set of master integrals

^{1.} V. Chestnov, F. Gasparotto, M. K. Mandal, P. Mastrolia, S.-J. Matsubara-Heo, H. J. Munch, N. Takayama. Macaulay matrix for Feynman integrals: Linear relations and intersection numbers. J. High Energy Phys., 187(2022), 2022.

^{2.} W. Wasow. Asymptotic expansions for ordinary differential equations. Pure and Applied Mathematics, Vol. XIV. Interscience Publishers John Wiley & Sons, Inc., New York-London- Sydney, 1965. 16 14

The SST algorithm

Input: A regular holonomic D_n -ideal I, its small Gröbner fan Σ in \mathbb{R}^n , a weight vector $w\in\mathbb{R}^n$ that is generic for I, and the desired order $k + 1 \in \mathbb{N}$.

- **1** Determine a Gröbner basis $G = \{g_1, \ldots, g_d\}$ of *I* with respect to *w*.
- ② Write each $g \in G$ as $x^{\alpha} g = f h$ with $\alpha \in \mathbb{Z}^n$ such that $f \in \mathbb{K}[\theta_1,\ldots,\theta_n]$ and $h \in \mathbb{K}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]\langle \partial_1, \ldots, \partial_n \rangle$ with $\text{ord}_{(-w,w)}(h) < 0$.
- $\, {\bf 3} \,$ Compute the indicial ideal ind $_{\rm w}(I)$ and its rank (I) many solutions. They are the form ${\rm x}^A$ log $({\rm x})^B$ with $A \in V(\text{ind}_{w}(I))$. For each starting of these monomials, carry out Step 4.
- **4** Assume the partial solution

$$
F_k(x) = x^A \cdot \sum_{0 \le p \cdot w \le k, \, p \in C_{\mathbb{Z}}^*} c_{pb} x^p \log(x)^b.
$$

is known. Solve the linear system

 $(f_1, \ldots, f_d) \bullet E_{k+1}(x) = (h_1 - f_1, \ldots, h_d - f_d) \bullet F_k(x)$ mod w-weight $k+2$ for $E_{k+1}\in \sum_{\rho\cdot w=k+1,\, \rho\in \mathcal{C}^*_\mathbb{Z}} L'_\rho$ of w-weight $k+1.$ $\hbox{Adding }E_{k+1}$ to F_k lifts F_k to $F_{k+1}.$ L'_p the subspace of $L_p = x^A \sum_{0 \leq b_i \leq \text{rank}(I)} \mathbb{K} \cdot x^p \log(x)^b$ spanned by monomials \notin Start $\prec_w(I)$

Output: The canonical series solutions of I with respect to w, truncated at w-weight $k + 1$.

M. Saito, B. Sturmfels, and N. Takayama. Gröbner Deformations of Hypergeometric Differential Equations, volume 6 of Algorithms and Computation in Mathematics. Springer, 2000.

SST algorithm: a hypergeometric example

Consider the D-ideal I generated by $P = \theta(\theta - 3) - x(\theta + a)(\theta + b)$.

- 1 is holonomic of rank ord $_{(0,1)}(P) = 2$.
- **②** Gröbner fan of *I*: two maximal cones $\pm \mathbb{R}_{>0}$.
- ∂ For the weight $w=1$, in $_{(-w,w)}(I)=\langle \, \theta(\theta-3) \, \rangle =\,$ ind $_{w}(I).$
- \bullet Exponents of $I \colon V(\mathsf{ind}_w(I)) = \{0,3\}.$ starting monomials $x^0 = 1$ and x^3
- **3** Choose x^3 as starting monomial, $L_p = \mathbb{C} \cdot \{x^{p+3}, x^{p+3} \log(x)\}$. $x^3 \sum_p c_{p,1} x^p + c_{p,2} x^p \log(x)$
- **6** Write $P = f h$, where $f = \theta(\theta 3)$ and $h = x(\theta + a)(\theta + b)$. Action of θ on L_p :

$$
\theta \bullet x^{p+3} = (p+3)x^{p+3}
$$
 and $\theta \bullet (x^{p+3} \log(x)) = x^{p+3} + (p+3)x^{p+3} \log(x)$.

Thus, the matrix of the operator θ in the basis $\{x^{p+3}, x^{p+3} \log(x)\}$ is

$$
\begin{bmatrix} p+3 & 1 \ 0 & p+3 \end{bmatrix}.
$$

7 Let $c_{p,1}$ and $c_{p,2}$ be the coefficients of x^{p+3} and x^{p+3} log(x) in the power series expansion. Then we can write our operators as matrices, and our recurrence as

$$
\begin{bmatrix} p & 1 \\ 0 & p \end{bmatrix} \begin{bmatrix} p+3 & 1 \\ 0 & p+3 \end{bmatrix} \begin{bmatrix} c_{p,1} \\ c_{p,2} \end{bmatrix} = \begin{bmatrix} p-a+2 & 1 \\ 0 & p-a+2 \end{bmatrix} \begin{bmatrix} p-b+2 & 1 \\ 0 & p-b+2 \end{bmatrix} \begin{bmatrix} c_{p-1,1} \\ c_{p-1,2} \end{bmatrix}
$$

with initial values $c_{0,1} = 1$, $c_{0,2} = 0$. Solving the recurrence yields

cp,¹ = 0 and cp,² = (a+3)p (b+3)p (1)p (4)p

.