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dependence at 1-loop continues to show up as a simple overall factor. Moreover, compared
to tree-level the power of ↵0 given by the net boost weight of the external gluons is shifted
by three units - which is the precise power of ↵0 needed to combine the (dimensionful) ten-
dimensional Yang-Mills coupling constant g10 into a dimensionless parameter g210/↵

03. It
appears natural to identify this as the loop expansion parameter organizing different genus
contributions of celestial amplitudes.

Another puzzling question for celestial string amplitudes concerns how to appropriately
take the field theory limit and whether it commutes with the Mellin transform that mixes
the high and low energy regimes. At loop-level the natural field theory limit arises from a
limit on the moduli space regardless of the value of the conformal cross ratios of celestial
amplitudes. We compute this field theory limit for celestial 4-gluon amplitudes in string
theory at 1-loop following two routes. First, we review how the field theory limit of string
amplitudes of four gluons, corresponding to the appropriate sector of the moduli space
of the genus-1 integrated correlators, matches the expression for the 4-gluon amplitude in
Yang-Mills theory in the worldline formalism. Second, we perform the field theory limit
directly on the celestial 1-loop string amplitudes and compare it to the Mellin transform
of the Yang-Mills amplitude in the worldline representation. This demonstrates that the
Mellin transform and the appropriate field theory limit in the moduli space of the string
worldsheet CFT commute.

The paper is organized as follows. In section 2 we collect relevant formulae and notation
and introduce celestial amplitudes. We review in section 3 the tree-level amplitude for four
gluons in type I open superstring theory in the momentum and boost weight bases and
discuss their forward scattering limit. In section 4 we compute the 1-loop celestial string
amplitude and show that, as for the tree-level amplitude, the dependence on ↵0 is an overall
factor albeit with a shifted power. In section 5 we discuss the field theory limit of celestial
string amplitudes at one-loop. We conclude in section 6 with some open questions.

2 Preliminaries
A generic 4-point scattering amplitude in momentum-space is a function of the Mandelstam
invariants s, t, u defined in terms of the external particle momenta pj as1

s = �(p1 + p2)
2, t = �(p2 + p3)

2, u = �(p1 + p3)
2. (2.1)

1We use the mostly-plus metric and the kinematic conventions of [39,40].
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where (0) indicates the tree-level contribution and (1) the 1-loop correction. The (color-
ordered) 4-gluon amplitude in type I string theory, including the tree-level and its 1-loop
correction, is given by

Astring(p1, p2, p3, p4) = A(0)
YM({pi, Ji})

�
f (0) + f (1) + . . .

�
, (3.2)

with f (0), f (1), ... being contributions from tree level and different loops in the expansion.
f (0) is the Veneziano amplitude

f (0)(s, t) =
�(1� ↵0s)�(1� ↵0t)

�(1� ↵0s� ↵0t)
, (3.3)

which for Re(↵0t) < 1, Re(↵0s) < 0 and using the integral representation of the Euler beta
function can be expressed as

f (0)(s, t) = �↵0s

Z 1

0

dx x�↵0s�1(1� x)�↵0t . (3.4)

This representation naturally arises from the exponentiation of propagators on the disk
when Wick contracting the vertex operators.

The 1-loop contribution f (1) has a planar, orientable piece given by2

f (1)
P (s, t) =

16⇡3g210 st

↵0

Z 1

0

dq

q
(F1(a, q))

10�D

Z 1

0

3Y
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d⌫r⇥(⌫r+1�⌫r)

✓
 12 34

 13 24

◆�↵0s ✓ 23 14

 13 24
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.

(3.5)
Here, g10 is the 10-dimensional Yang-Mills coupling constant and F1 is the factor that
arises in toroidal compactification to D < 10 with compactification radii R = (↵0)1/2/a.
The dependence on the functions  ij =  (⇡(⌫i � ⌫j), q) – see (4.5) below for its explicit
expression in terms of Jacobi functions – follows from
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( ij)
2↵0pi·pj =

✓
 12 34

 13 24

◆�↵0s ✓ 14 23

 13 24

◆�↵0t

, (3.6)

where we are using the definition of the Mandelstam variables, the massless condition for
the external states, and momentum conservation s + t + u = 0. This comes from the
exponentiation of propagators on the annulus when Wick contracting the vertices.

The ellipsis in (3.2) denote further quantum corrections including those coming from
1-loop non-orientable diagram i.e. the Moebius strip diagram, which ensures UV finiteness
of open string amplitudes at one loop, as well as from non-planar insertion configurations.
We will comment on these contributions in the next subsection.
2For a very recent development on the explicit evaluation of this expression, see [42].
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Notice from (3.2) that both string tree-level and 1-loop amplitudes are proportional to
the Yang-Mills field theory amplitudes at tree-level. In particular this is true even for the
non-planar contribution, and it is believed to hold at higher genus as well. Thus, all the
information of the particles’ helicities is encoded in the tree-level field theory amplitude,
while all the stringy dependence lies in the expressions inside the parentheses in (3.2) which
only depend on the Mandelstam invariants sij = �(pi + pj)2.

3.2 Celestial string amplitudes at tree-level

At tree-level, the MHV amplitude is the only non-vanishing one; hence, we focus on that
type of amplitudes here. From the factorization in (3.2) we see that the tree-level 4-gluon
MHV amplitude in type I string theory is

A(0)
string(�,�,+,+) = A(0)

YM(�,�,+,+)f (0)(s, t) (3.7)

with the (color-ordered) 4-gluon Yang-Mills amplitude given by

A(0)
YM(�,�,+,+) = g210

!1!2

!3!4

z312
z23z34z41

= g210 r
z12z̄34
z̄12z34

. (3.8)

The corresponding celestial amplitude obtained by a Mellin transform of each external
particle is given by [30]

f̃ (0)(r, �) =

Z 1

0

!���1f (0)(r!,�!) d! . (3.9)

Using (3.4) with s = r! and t = �! we find

f̃ (0)(r, �) = �↵0�r �(1� �)

Z 1

0

dx

x
[r log x� log(1� x)]��1 . (3.10)

Notice that in writing (3.4) we have used an integral representation for the Euler beta
function which converges only if Re(s) < 0, thus forcing us away from the physical scattering
region. In the rest of this article we will assume that an analytic continuation back to
Re(s) > 0 is possible and must be performed at the end.

Expression (3.10) concludes the computation of the tree-level celestial string amplitude.
Notice that all Mellin transforms have already been explicitly performed and the final
result for f̃ (0)(r, �) is indeed a function of the invariant cross-ratio r and the total scaling
dimension

P4
i=1 �i through the �-dependence.
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where (0) indicates the tree-level contribution and (1) the 1-loop correction. The (color-
ordered) 4-gluon amplitude in type I string theory, including the tree-level and its 1-loop
correction, is given by
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YM({pi, Ji})
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, (3.2)

with f (0), f (1), ... being contributions from tree level and different loops in the expansion.
f (0) is the Veneziano amplitude
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�(1� ↵0s)�(1� ↵0t)
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, (3.3)

which for Re(↵0t) < 1, Re(↵0s) < 0 and using the integral representation of the Euler beta
function can be expressed as

f (0)(s, t) = �↵0s

Z 1

0

dx x�↵0s�1(1� x)�↵0t . (3.4)

This representation naturally arises from the exponentiation of propagators on the disk
when Wick contracting the vertex operators.

The 1-loop contribution f (1) has a planar, orientable piece given by2
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(3.5)
Here, g10 is the 10-dimensional Yang-Mills coupling constant and F1 is the factor that
arises in toroidal compactification to D < 10 with compactification radii R = (↵0)1/2/a.
The dependence on the functions  ij =  (⇡(⌫i � ⌫j), q) – see (4.5) below for its explicit
expression in terms of Jacobi functions – follows from
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where we are using the definition of the Mandelstam variables, the massless condition for
the external states, and momentum conservation s + t + u = 0. This comes from the
exponentiation of propagators on the annulus when Wick contracting the vertices.

The ellipsis in (3.2) denote further quantum corrections including those coming from
1-loop non-orientable diagram i.e. the Moebius strip diagram, which ensures UV finiteness
of open string amplitudes at one loop, as well as from non-planar insertion configurations.
We will comment on these contributions in the next subsection.
2For a very recent development on the explicit evaluation of this expression, see [42].
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Notice from (3.2) that both string tree-level and 1-loop amplitudes are proportional to
the Yang-Mills field theory amplitudes at tree-level. In particular this is true even for the
non-planar contribution, and it is believed to hold at higher genus as well. Thus, all the
information of the particles’ helicities is encoded in the tree-level field theory amplitude,
while all the stringy dependence lies in the expressions inside the parentheses in (3.2) which
only depend on the Mandelstam invariants sij = �(pi + pj)2.

3.2 Celestial string amplitudes at tree-level

At tree-level, the MHV amplitude is the only non-vanishing one; hence, we focus on that
type of amplitudes here. From the factorization in (3.2) we see that the tree-level 4-gluon
MHV amplitude in type I string theory is

A(0)
string(�,�,+,+) = A(0)

YM(�,�,+,+)f (0)(s, t) (3.7)

with the (color-ordered) 4-gluon Yang-Mills amplitude given by
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The corresponding celestial amplitude obtained by a Mellin transform of each external
particle is given by [30]

f̃ (0)(r, �) =

Z 1

0

!���1f (0)(r!,�!) d! . (3.9)

Using (3.4) with s = r! and t = �! we find

f̃ (0)(r, �) = �↵0�r �(1� �)

Z 1
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dx
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Notice that in writing (3.4) we have used an integral representation for the Euler beta
function which converges only if Re(s) < 0, thus forcing us away from the physical scattering
region. In the rest of this article we will assume that an analytic continuation back to
Re(s) > 0 is possible and must be performed at the end.

Expression (3.10) concludes the computation of the tree-level celestial string amplitude.
Notice that all Mellin transforms have already been explicitly performed and the final
result for f̃ (0)(r, �) is indeed a function of the invariant cross-ratio r and the total scaling
dimension

P4
i=1 �i through the �-dependence.
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where (0) indicates the tree-level contribution and (1) the 1-loop correction. The (color-
ordered) 4-gluon amplitude in type I string theory, including the tree-level and its 1-loop
correction, is given by

Astring(p1, p2, p3, p4) = A(0)
YM({pi, Ji})
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, (3.2)

with f (0), f (1), ... being contributions from tree level and different loops in the expansion.
f (0) is the Veneziano amplitude

f (0)(s, t) =
�(1� ↵0s)�(1� ↵0t)

�(1� ↵0s� ↵0t)
, (3.3)

which for Re(↵0t) < 1, Re(↵0s) < 0 and using the integral representation of the Euler beta
function can be expressed as

f (0)(s, t) = �↵0s

Z 1

0

dx x�↵0s�1(1� x)�↵0t . (3.4)

This representation naturally arises from the exponentiation of propagators on the disk
when Wick contracting the vertex operators.

The 1-loop contribution f (1) has a planar, orientable piece given by2

f (1)
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(3.5)
Here, g10 is the 10-dimensional Yang-Mills coupling constant and F1 is the factor that
arises in toroidal compactification to D < 10 with compactification radii R = (↵0)1/2/a.
The dependence on the functions  ij =  (⇡(⌫i � ⌫j), q) – see (4.5) below for its explicit
expression in terms of Jacobi functions – follows from
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where we are using the definition of the Mandelstam variables, the massless condition for
the external states, and momentum conservation s + t + u = 0. This comes from the
exponentiation of propagators on the annulus when Wick contracting the vertices.

The ellipsis in (3.2) denote further quantum corrections including those coming from
1-loop non-orientable diagram i.e. the Moebius strip diagram, which ensures UV finiteness
of open string amplitudes at one loop, as well as from non-planar insertion configurations.
We will comment on these contributions in the next subsection.
2For a very recent development on the explicit evaluation of this expression, see [42].
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Notice from (3.2) that both string tree-level and 1-loop amplitudes are proportional to
the Yang-Mills field theory amplitudes at tree-level. In particular this is true even for the
non-planar contribution, and it is believed to hold at higher genus as well. Thus, all the
information of the particles’ helicities is encoded in the tree-level field theory amplitude,
while all the stringy dependence lies in the expressions inside the parentheses in (3.2) which
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Notice that in writing (3.4) we have used an integral representation for the Euler beta
function which converges only if Re(s) < 0, thus forcing us away from the physical scattering
region. In the rest of this article we will assume that an analytic continuation back to
Re(s) > 0 is possible and must be performed at the end.

Expression (3.10) concludes the computation of the tree-level celestial string amplitude.
Notice that all Mellin transforms have already been explicitly performed and the final
result for f̃ (0)(r, �) is indeed a function of the invariant cross-ratio r and the total scaling
dimension
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where (0) indicates the tree-level contribution and (1) the 1-loop correction. The (color-
ordered) 4-gluon amplitude in type I string theory, including the tree-level and its 1-loop
correction, is given by
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with f (0), f (1), ... being contributions from tree level and different loops in the expansion.
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which for Re(↵0t) < 1, Re(↵0s) < 0 and using the integral representation of the Euler beta
function can be expressed as
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0

dx x�↵0s�1(1� x)�↵0t . (3.4)

This representation naturally arises from the exponentiation of propagators on the disk
when Wick contracting the vertex operators.

The 1-loop contribution f (1) has a planar, orientable piece given by2
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(3.5)
Here, g10 is the 10-dimensional Yang-Mills coupling constant and F1 is the factor that
arises in toroidal compactification to D < 10 with compactification radii R = (↵0)1/2/a.
The dependence on the functions  ij =  (⇡(⌫i � ⌫j), q) – see (4.5) below for its explicit
expression in terms of Jacobi functions – follows from
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where we are using the definition of the Mandelstam variables, the massless condition for
the external states, and momentum conservation s + t + u = 0. This comes from the
exponentiation of propagators on the annulus when Wick contracting the vertices.

The ellipsis in (3.2) denote further quantum corrections including those coming from
1-loop non-orientable diagram i.e. the Moebius strip diagram, which ensures UV finiteness
of open string amplitudes at one loop, as well as from non-planar insertion configurations.
We will comment on these contributions in the next subsection.
2For a very recent development on the explicit evaluation of this expression, see [42].
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 Recover field theory limit @ loop?→

Notice from (3.2) that both string tree-level and 1-loop amplitudes are proportional to
the Yang-Mills field theory amplitudes at tree-level. In particular this is true even for the
non-planar contribution, and it is believed to hold at higher genus as well. Thus, all the
information of the particles’ helicities is encoded in the tree-level field theory amplitude,
while all the stringy dependence lies in the expressions inside the parentheses in (3.2) which
only depend on the Mandelstam invariants sij = �(pi + pj)2.

3.2 Celestial string amplitudes at tree-level

At tree-level, the MHV amplitude is the only non-vanishing one; hence, we focus on that
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Notice that in writing (3.4) we have used an integral representation for the Euler beta
function which converges only if Re(s) < 0, thus forcing us away from the physical scattering
region. In the rest of this article we will assume that an analytic continuation back to
Re(s) > 0 is possible and must be performed at the end.

Expression (3.10) concludes the computation of the tree-level celestial string amplitude.
Notice that all Mellin transforms have already been explicitly performed and the final
result for f̃ (0)(r, �) is indeed a function of the invariant cross-ratio r and the total scaling
dimension
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where (0) indicates the tree-level contribution and (1) the 1-loop correction. The (color-
ordered) 4-gluon amplitude in type I string theory, including the tree-level and its 1-loop
correction, is given by
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with f (0), f (1), ... being contributions from tree level and different loops in the expansion.
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Here, g10 is the 10-dimensional Yang-Mills coupling constant and F1 is the factor that
arises in toroidal compactification to D < 10 with compactification radii R = (↵0)1/2/a.
The dependence on the functions  ij =  (⇡(⌫i � ⌫j), q) – see (4.5) below for its explicit
expression in terms of Jacobi functions – follows from
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where we are using the definition of the Mandelstam variables, the massless condition for
the external states, and momentum conservation s + t + u = 0. This comes from the
exponentiation of propagators on the annulus when Wick contracting the vertices.

The ellipsis in (3.2) denote further quantum corrections including those coming from
1-loop non-orientable diagram i.e. the Moebius strip diagram, which ensures UV finiteness
of open string amplitudes at one loop, as well as from non-planar insertion configurations.
We will comment on these contributions in the next subsection.
2For a very recent development on the explicit evaluation of this expression, see [42].
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4 Celestial string amplitudes at one-loop
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YM(�,�,+,+) is the same kinematical expression appearing at tree-level (3.8) but

now with the 1-loop stringy form-factor [43]3
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Here f (1)
NP is the orientable, non-planar contribution, while the planar (orientable) contri-

bution which we will focus on is
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dq

q
G(q2) , (4.3)

with
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Z
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Y

i<j

 (✓ji, q)
2↵0pi·pj (4.4)

with ✓ji ⌘ ✓j � ✓i and
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1Y

n=1
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(1� q2n)2
. (4.5)

For computational convenience, we have absorbed a factor of ⇡ in the argument of the
exponentiated propagators  (✓ji, q). Now, the integral on the domain D in (4.4) means
integrating ✓2,3,4 in the interval (0, ⇡) keeping ✓1 = 0 fixed, so that ✓j1 = ✓j and the order
0 < ✓2 < ✓3 < ✓4 < ⇡. Together with a factor that can be written in terms of the Jacobi
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contribute with the color factor Tr(�a1�a2�a3�a4), whereas the 4-point non-planar annulus
3See [40] equation (9.1.11) for the full expression with arbitrary polarizations and equation (10.4.10).
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diagram f (1)
NP contributes with a color factor Tr(�a1�a2)Tr(�a3�a4). A remarkable feature of

the non-planar contribution is that it also factorizes out the contribution A(0)
YM(�,�,+,+).

This is crucial for the string 1-loop computation as it guarantees the correct kinematic
dependence of the amplitude. In the non-planar contribution, one deals with two insertions
at different boundaries of the annulus. This amounts to considering both propagators
between vertices in the same boundary, which are written in terms of the functions given
in (4.5), together with propagators between vertices at different boundaries, which involve
the modified function

 NP (✓, q) =
1Y

n=1

1� 2q2n�1 cos 2✓ + q4n�2

(1� q2n)2
. (4.6)

Analogous to the planar contribution, apart from a factor that can be written in terms of Ja-
cobi function #4, each exponential of the propagator contributes with a factor �2⇡2 log�1 q.
For concreteness, hereafter we focus on the planar, orientable contribution. In the limit we
will be dealing with, the other pieces contribute in a similar way.

4.2 Celestial string amplitudes at one-loop

The Mellin transform of the amplitude (4.1) (with the momentum-conserving �-function
reinstated) is controlled by the integral

f̃ (1)(r, �) =

Z 1

0

d! !���1f (1)(r!,�!) . (4.7)

It turns out that the Mellin transform of the planar contribution

f (1)
P (r!,�!) = �

16⇡3g210
↵0 r!2

Z 1

0

dq

q
⇥

Z

D

4Y

i=2

d✓i
⇣ (✓42, q) (✓3, q)
 (✓43, q) (✓2, q)

⌘�↵0r!⇣ (✓3, q) (✓42, q)
 (✓32, q) (✓4, q)

⌘↵0!

(4.8)

can be evaluated exactly. Defining

V ⌘ log

✓
 (✓42, q) (✓3, q)

 (✓43, q) (✓2, q)

◆
, W ⌘ log

✓
 (✓42, q) (✓3, q)

 (✓4, q) (✓32, q)

◆
, (4.9)

and changing the order of integration we obtain

f̃ (1)
P (r, �) = �16⇡3g210(↵

0)��3�(2� �) r

Z 1

0

dq

q

Z

D

4Y

i=2

d✓i [rV �W ]��2 , (4.10)
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4 Celestial string amplitudes at one-loop
We will now compute the celestial 4-gluon open string amplitude at 1-loop.

4.1 One-loop open string amplitudes

The (color-stripped) MHV amplitude with four external massless vector open string states
in the type I theory is

A(1)
string(�,�,+,+) = A(0)

YM(�,�,+,+) f (1)(s, t) (4.1)

where A(0)
YM(�,�,+,+) is the same kinematical expression appearing at tree-level (3.8) but

now with the 1-loop stringy form-factor [43]3

f (1)(s, t) =
16⇡3g210
↵0 st

Z 1

0

dq

q

⇥
G(q2)�G(�q2)

⇤
+ f (1)

NP (s, t) . (4.2)

Here f (1)
NP is the orientable, non-planar contribution, while the planar (orientable) contri-

bution which we will focus on is

f (1)
P (s, t) =

16⇡3g210
↵0 st

Z 1

0

dq

q
G(q2) , (4.3)

with

G(q2) =

Z

D

4Y

i=2

d✓i
Y

i<j

 (✓ji, q)
2↵0pi·pj (4.4)

with ✓ji ⌘ ✓j � ✓i and

 (✓, q) = sin ✓
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. (4.5)

For computational convenience, we have absorbed a factor of ⇡ in the argument of the
exponentiated propagators  (✓ji, q). Now, the integral on the domain D in (4.4) means
integrating ✓2,3,4 in the interval (0, ⇡) keeping ✓1 = 0 fixed, so that ✓j1 = ✓j and the order
0 < ✓2 < ✓3 < ✓4 < ⇡. Together with a factor that can be written in terms of the Jacobi
function #1, each exponential of the propagator contributes with a factor �2⇡2 log�1 q to
the measure of integration on the modulus.

Only the planar annulus and the Möbius diagrams, G(q2) and �G(�q2), respectively
contribute with the color factor Tr(�a1�a2�a3�a4), whereas the 4-point non-planar annulus
3See [40] equation (9.1.11) for the full expression with arbitrary polarizations and equation (10.4.10).
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function #1, each exponential of the propagator contributes with a factor �2⇡2 log�1 q to
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contribute with the color factor Tr(�a1�a2�a3�a4), whereas the 4-point non-planar annulus
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Celestial strings @ 1-loop

diagram f (1)
NP contributes with a color factor Tr(�a1�a2)Tr(�a3�a4). A remarkable feature of

the non-planar contribution is that it also factorizes out the contribution A(0)
YM(�,�,+,+).

This is crucial for the string 1-loop computation as it guarantees the correct kinematic
dependence of the amplitude. In the non-planar contribution, one deals with two insertions
at different boundaries of the annulus. This amounts to considering both propagators
between vertices in the same boundary, which are written in terms of the functions given
in (4.5), together with propagators between vertices at different boundaries, which involve
the modified function

 NP (✓, q) =
1Y

n=1

1� 2q2n�1 cos 2✓ + q4n�2

(1� q2n)2
. (4.6)

Analogous to the planar contribution, apart from a factor that can be written in terms of Ja-
cobi function #4, each exponential of the propagator contributes with a factor �2⇡2 log�1 q.
For concreteness, hereafter we focus on the planar, orientable contribution. In the limit we
will be dealing with, the other pieces contribute in a similar way.

4.2 Celestial string amplitudes at one-loop

The Mellin transform of the amplitude (4.1) (with the momentum-conserving �-function
reinstated) is controlled by the integral
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4 Celestial string amplitudes at one-loop
We will now compute the celestial 4-gluon open string amplitude at 1-loop.

4.1 One-loop open string amplitudes

The (color-stripped) MHV amplitude with four external massless vector open string states
in the type I theory is

A(1)
string(�,�,+,+) = A(0)

YM(�,�,+,+) f (1)(s, t) (4.1)

where A(0)
YM(�,�,+,+) is the same kinematical expression appearing at tree-level (3.8) but

now with the 1-loop stringy form-factor [43]3
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Here f (1)
NP is the orientable, non-planar contribution, while the planar (orientable) contri-

bution which we will focus on is
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with ✓ji ⌘ ✓j � ✓i and

 (✓, q) = sin ✓
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1� 2q2n cos 2✓ + q4n

(1� q2n)2
. (4.5)

For computational convenience, we have absorbed a factor of ⇡ in the argument of the
exponentiated propagators  (✓ji, q). Now, the integral on the domain D in (4.4) means
integrating ✓2,3,4 in the interval (0, ⇡) keeping ✓1 = 0 fixed, so that ✓j1 = ✓j and the order
0 < ✓2 < ✓3 < ✓4 < ⇡. Together with a factor that can be written in terms of the Jacobi
function #1, each exponential of the propagator contributes with a factor �2⇡2 log�1 q to
the measure of integration on the modulus.

Only the planar annulus and the Möbius diagrams, G(q2) and �G(�q2), respectively
contribute with the color factor Tr(�a1�a2�a3�a4), whereas the 4-point non-planar annulus
3See [40] equation (9.1.11) for the full expression with arbitrary polarizations and equation (10.4.10).
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Celestial strings @ 1-loop

 Overall  combines with  to loop expansion parameter  !α′ 
β+3 g2

10 g2
10/α′ 
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diagram f (1)
NP contributes with a color factor Tr(�a1�a2)Tr(�a3�a4). A remarkable feature of

the non-planar contribution is that it also factorizes out the contribution A(0)
YM(�,�,+,+).

This is crucial for the string 1-loop computation as it guarantees the correct kinematic
dependence of the amplitude. In the non-planar contribution, one deals with two insertions
at different boundaries of the annulus. This amounts to considering both propagators
between vertices in the same boundary, which are written in terms of the functions given
in (4.5), together with propagators between vertices at different boundaries, which involve
the modified function

 NP (✓, q) =
1Y

n=1

1� 2q2n�1 cos 2✓ + q4n�2

(1� q2n)2
. (4.6)

Analogous to the planar contribution, apart from a factor that can be written in terms of Ja-
cobi function #4, each exponential of the propagator contributes with a factor �2⇡2 log�1 q.
For concreteness, hereafter we focus on the planar, orientable contribution. In the limit we
will be dealing with, the other pieces contribute in a similar way.

4.2 Celestial string amplitudes at one-loop
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4 Celestial string amplitudes at one-loop
We will now compute the celestial 4-gluon open string amplitude at 1-loop.

4.1 One-loop open string amplitudes

The (color-stripped) MHV amplitude with four external massless vector open string states
in the type I theory is

A(1)
string(�,�,+,+) = A(0)

YM(�,�,+,+) f (1)(s, t) (4.1)

where A(0)
YM(�,�,+,+) is the same kinematical expression appearing at tree-level (3.8) but

now with the 1-loop stringy form-factor [43]3
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For computational convenience, we have absorbed a factor of ⇡ in the argument of the
exponentiated propagators  (✓ji, q). Now, the integral on the domain D in (4.4) means
integrating ✓2,3,4 in the interval (0, ⇡) keeping ✓1 = 0 fixed, so that ✓j1 = ✓j and the order
0 < ✓2 < ✓3 < ✓4 < ⇡. Together with a factor that can be written in terms of the Jacobi
function #1, each exponential of the propagator contributes with a factor �2⇡2 log�1 q to
the measure of integration on the modulus.

Only the planar annulus and the Möbius diagrams, G(q2) and �G(�q2), respectively
contribute with the color factor Tr(�a1�a2�a3�a4), whereas the 4-point non-planar annulus
3See [40] equation (9.1.11) for the full expression with arbitrary polarizations and equation (10.4.10).
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in (4.5), together with propagators between vertices at different boundaries, which involve
the modified function

 NP (✓, q) =
1Y

n=1

1� 2q2n�1 cos 2✓ + q4n�2

(1� q2n)2
. (4.6)

Analogous to the planar contribution, apart from a factor that can be written in terms of Ja-
cobi function #4, each exponential of the propagator contributes with a factor �2⇡2 log�1 q.
For concreteness, hereafter we focus on the planar, orientable contribution. In the limit we
will be dealing with, the other pieces contribute in a similar way.
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reinstated) is controlled by the integral

f̃ (1)(r, �) =

Z 1

0

d! !���1f (1)(r!,�!) . (4.7)

It turns out that the Mellin transform of the planar contribution

f (1)
P (r!,�!) = �

16⇡3g210
↵0 r!2

Z 1

0

dq

q
⇥

Z

D

4Y

i=2

d✓i
⇣ (✓42, q) (✓3, q)
 (✓43, q) (✓2, q)

⌘�↵0r!⇣ (✓3, q) (✓42, q)
 (✓32, q) (✓4, q)

⌘↵0!

(4.8)

can be evaluated exactly. Defining

V ⌘ log

✓
 (✓42, q) (✓3, q)

 (✓43, q) (✓2, q)

◆
, W ⌘ log

✓
 (✓42, q) (✓3, q)

 (✓4, q) (✓32, q)

◆
, (4.9)
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Celestial 1-loop amplitude:

Like @ tree: dependence on  is overall factor - no scale in flat space!α′ 

 The field theory limit, dominated by  region, as 
regardless of cross ratio  and commutes with the Mellin transform.

q → 1 α′ → 0
r



II. Symmetries in celestial CFTd

spectrum ( ) complex  non-unitary CFTΔ →
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Soft Ward identities
(Energetically) soft theorems :
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𝒜N+1(ωq, ε) = ∑
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(Δ − k)𝒪Δ,ℓ=2(x)
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gauge theory: [Fan,Faotopoulos,Taylor’19][[Nandan,Schreiber,Volovich,Zlotnikov’19]Pate,Raclariu,Strominger’19] 
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[Pasterski,AP,Trevisani’21]

Conformally soft primary  operators have descendant operators 
that are primaries themselves. They organize into multiplets.

𝒪Δ

CCFT2

types I, II, III:  spin of descendant >,<,= spin of parent primary

celestial diamonds
∂∂̄

conservation laws for asymptotic symmetry charges.

3.1 Celestial Diamonds

It will be convenient to work in complex coordinates z = x1 + ix2 and z̄ = x1 � ix2 and define

holomorphic an antiholomorphic derivatives @ ⌘ @z and @̄ ⌘ @z̄. The global conformal multiplets

for the conformally soft operators in CCFT2 take the form of diamond-shaped descendancy

relations [26] obtained by acting with @s and @̄s as illustrated in figure 1. A notable feature of

these celestial diamonds is that the primary operators on the left and on the right are related by

the shadow transform in d = 2 CFT.

I

I

II

II

III

Figure 1: Celestial diamonds in d = 2.

The conservation equations for the conformally soft operators responsible for factorization of

celestial amplitudes are encoded in the primary descendants at the bottom of celestial diamonds.

We distinguish three categories of primary descendants depending on whether the spin of the

primary descendant is larger, smaller or equal in absolute value compared to the spin of the

parent primary operator.

Type I A descendant of type I has spin n units larger in absolute value than its parent

primary. Type I descendant operators are further divided in Type Ia and Ib, where the former

is a descendant at level n of the form

OIa,n(z, z̄) ⌘ @nO�,+|`| , or OIa,n(z, z̄) ⌘ @̄nO�,�|`| , (3.1)

while the latter is a descendant at level 2|`|+ n of the form

OIb,2|`|+n(z, z̄) ⌘ @2|`|+nO�,�|`| , or OIb,2|`|+n(z, z̄) ⌘ @̄2|`|+nO�,+|`| . (3.2)

The operators OIa,n and OIb,2|`|+n become primary when

� = 1� |`|� n , n 2 Z>0 . (3.3)

17
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4 Symmetries in Celestial CFTd>2

We now discuss the symmetries in celestial CFTs in d > 2 dimensions. We start in section 4.1

by reviewing useful technology to deal with SO(d) tensors. In section 4.2 we then classify the

different types of primary descendant operators associated to CCFT symmetries using conformal

representation theory. By demanding that they satisfy some (higher-derivative) conservation

equations we construct in section 4.3 their associated charges. In section 4.4 and 4.5 we identify

the types of conserved operators that soft theorems and their shadow transforms give rise to and

we build the associated charges.

4.1 Technology for SO(d) tensors

In the rest of the paper it will be convenient to use an efficient technology to deal with SO(d)

tensors [30, 66–68]. In this section we review how this works starting with the traceless and

symmetric representations and then generalizing to the mixed-symmetric ones.

4.1.1 Traceless and Symmetric Tensors

We will often encounter CFTd traceless and symmetric tensors contracted with polarization

vectors ea which square to zero. Let us review two ways to recover the indices either using a

special differential operator or a projector. First we introduce the differential operator [69]

Da
e ≡

(
d

2
− 1 + e · ∂e

)
∂a
e −

1

2
ea∂e · ∂e . (4.1)

This can be used to differentiate the vectors ea and automatically renders the final expression

traceless and symmetric. E.g. given a tensor t(e) ≡ ta1...a!ea1 . . . ea! , we can recover the indices

by

ta1...a! =
1

"!(d2 − 1)!
Da1

e · · ·Da!
e t(e) . (4.2)

Indeed by taking derivatives of the polarization vectors we get a projector into traceless and

symmetric representations π!,

π!

(
a1 ··· a! ; b1 ··· b!

)
=

1

"!(d2 − 1)!
Da1

e · · ·Da!
e eb1 · · · eb! . (4.3)

This projector π! is defined in such a way that if we contract its indices bi with a tensor t (not

necessarily in an irreducible representation) it gives back a tensor t′ that depends on the indices

ai which are symmetric and traceless,

t′a1...a! = π!

(
a1 ··· a! ; b1 ··· b!

)
tb1...b! . (4.4)
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Another way to get back the open indices is to use the projector itself. Indeed the projector

contracted with unconstrained vectors ê, f̂∈ Rd (now ê2, f̂2 "= 0) is known in a closed form

π!(f̂; ê) ≡ π!

(
a1 ··· a! ; b1 ··· b!

)
f̂a1 êb1 · · · f̂a! êb! (4.5)

=
"!

2!(d/2− 1)!
|ê|!|f̂|!Cd/2−1

!

(
ê · f̂
|ê||f̂|

)

, (4.6)

where Cn
! (x) is a Gegenbauer polynomial. Now, since ê, f̂ are unconstrained, by taking simple

derivatives ∂ê, ∂f̂ we can open the indices of the projector which can then be contracted with the

tensor. E.g. a traceless and symmetric tensor ta1...a! can be recovered from its contracted form

t(e) by11

ta1...a! =
1

("!)2
∂a1
f̂

· · ·∂a!
f̂
π!(f̂; ∂e) t(e) . (4.7)

This method is easily generalizable to the more complicated cases which we will need in the

following.

4.1.2 Mixed-symmetric Tensors

In general, in d dimensions the representations of SO(d) of the spin of tensor operators can be

more complicated with respect to the traceless and symmetric one. They are labelled by a set

of [d/2] numbers " = ("1, . . . , "[d/2]−1, |"[d/2]|) where "i ≥ "i+1 which can be associated to a Young

tableau with "i boxes in the i-th row. In odd dimensions all the labels "i are greater or equal

than zero while in even d the label "[d/2] of the last row can be negative, so the Young tableau

has to be labelled by its absolute value |"[d/2]|. We can place the indices of the tensor in the

boxes of the Young tableau, as follows

a ≡

a11 ··· ··· ··· ··· ··· a1!1

a21 ··· ··· ··· a2!2
.
.
.

.

.

.

.

.

. . .
.

ak1 ··· ak!k

, (4.8)

with k ≤ [d/2]. The indices on the rows are symmetrized while the ones on the columns are

antisymmetrized, all traces are then removed. Since the indices are not all symmetric or anti-

symmetric, these representations are sometimes called mixed-symmetric tensor representations.

E.g. a traceless symmetric operator with spin " corresponds to ("1 = ", "2 = 0 . . . , "[d/2] = 0).

As before we can obtain an index-free notation by contracting the indices (4.8) with a set of

polarization vectors ei with i = 1, . . . k, such that the indices aij (for j = 1, . . . , "i) of the i-th

row are contracted with "i identical vectors ei, such that ei · el = 0 for i, l = 1, . . . , k. Using

11Notice that since we are in Rd we may equivalently use upper or lower indices.
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In odd d there exist another type of descendant operator which we refer to as type P. For

this paper, the only relevant type P operators will arise for d = 3, but we will discuss it for

completeness. We leave the discussion of more subleading soft theorems that receive non-universal

contributions, and thus the discussion of type III operators, for future work.

I1

I2

I[ d2 ]

II[ d2 ]

II2

II1

(a)

I1

I[ d2 ]

P

II[ d2 ]

II1

(b)

Figure 2: Celestial necklaces in even dimensions (a) and odd dimensions (b).

We schematically illustrate in figure 2 the structure of a conformal multiplet in CFTd. Not

all cases are presented. In odd d the type S has a simpler structure (since it relates operators

with half integer weights) and it would be thus represented by a separate diagram with a single

arrow. The type III descendants in even d are also not presented. The d = 2 example of such

operators corresponds to the case when the diamond degenerates to have zero area (see [26]).

4.1.1 Type I Operators

Given a primary O�,` with dimension � and spin ` = (`1, . . . , `[d/2]), its type Ik descendant of

order n is defined by the operator with spin `0 such that `0
i
= `i + n�ik, namely with the k-th

spin label increased by n units. They take the form14

OIk,n(x, ei) =

0

@
[d/2]Y

i=1

1

`0
i
!

1

A ⇡`0(ei; @fi)(fk · @x)nO�,`(x,fi) . (4.1)

14This formula generalizes the one of [28] to any k. Some examples of k = 2 primary descendants were already

defined in appendix B of [29].
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Noether current  charge  symmetry group:→ →

▶ Role of higher-dimensional BMS ?

[Pano,AP,Trevisani’23]

CCFTd>2

finite-dimensional 
symmetry group

translations

rotations

[Pasterski,AP,Trevisani’21]

CCFT2

infinite-dimensional 
symmetry group

superrotations

BMS supertranslations2D local 
conformal 
symmetry

compare to [Kapec,Lysov,Pasterski,Strominger’15] 
vs  [Hollands,Ishibashi,Wald’16]

interesting interpretation: [Kapec’22]



III. Celestial amplitudes on backgrounds

distributional support on the sphere from bulk  
can be smeared out if translation symmetry broken

δ(d+2)(∑N
i=1 pμ

i )



Scattering on backgrounds

gμν = ημν + hμνhμν = Vkμkν

Aμ = Vkμ

→

𝒜2(p1, p2) = −
2

∏
k=1

( lim
p2

k →0
p2

k )
δ

δJ̄(p1)
ϕ̄(−p2)

J=0

To study wave scattering on classical backgrounds we use the method of 
[Boulware,Brown’68] which amounts to solving the classical equations of motion 
for  in the presence of a source .Φ(x) J(x)

↔
ℏ → 0
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To study wave scattering on classical backgrounds we use the method of 
[Boulware,Brown’68] which amounts to solving the classical equations of motion 
for  in the presence of a source .Φ(x) J(x)

𝒜n(p1, . . . , pn) = in
n

∏
k=1

( lim
p2

k →0
p2

k )
δ

δJ̄(p1)
…

δ
δJ̄(pn−1)

Φ̄(−pn)
J=0

The -point amplitude is:n

Solve for  in momentum-space order-by-order in coupling.Φ̄(p) =
∞

∑
n=0

Φ̄(n)(p)

order  in couplingn
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Consider scattering scalars on particle-like backgrounds 
(sources of mass and charge) & interpret them in celestial CFT.

Coulomb field of static and spinning point charges & ultraboost limits. 
Schwarzschild, Kerr & ultraboost limits: Aichelburg-Sexl and gyraton metrics.

[Gonzo, McLoughlin, AP’22]
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ϕ̄(n)(p) G h

𝒜2(p1, p2) = (2π)4 lim
p2

1→0
lim
p2

2→0
p2

1δ(4)(p1 + p2) − [(p1)μ(p2)ν−
1
2 ημν p1 ⋅ p2]h̄μν(p1 + p2) + . . .

order  in coupling n G

n = 0 n = 1

gμν = ημν + hμν

Focus on 2-point amplitudes:
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Compute celestial scattering on Schwarzschild & Kerr:

[Gonzo, McLoughlin, AP’22]

black holes
(massive)

scalar
(massless)

Celestial amplitudes on backgrounds: nicer features than in flat space▶

Black hole avatars in CCFT

-function support on  !δ S2

ellin integrals UV divergent.ℳ

non-spinning spinning

∫
∞

0
dωωΔ−1 → ∫

∞

0
dωωΔH(2)

−1(aω)

2πδ(iΔ) finite support

Hankel fct

Supported everywhere on the .S2
vspower-law in  !zij = zi − zj

Classical spin acts as UV regulator.

z, z̄

1
−g

∂μ( −ggμν∂νϕ(x)) = J(x)
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Ultraboost limit of black holes is special:

ultraboost

black holes shockwaves
Aichelburg-Sexl metricSchwarzschild metric

[Pasterski,AP’20]Shockwaves are generated by conformal primaries in CCFT!▶

Shocks in CCFT

Spinning shockwaves:
hμν(X) = r0ϕsw(X)qμqν

Aμ(X) = r0ϕsw(X)qμ  vector primary(Δ, ℓ) = (0,0)

 metric primary(Δ, ℓ) = (−1,0)

Kerr-Schild double copy

ϕsw(X) = − log(X2)δ(q ⋅ X)

qμ = (1 + |zsw |2 , zsw + z̄sw, i(z̄sw − zsw),1 − |zsw |2 )

Scalar shockwaves:

null vector pointing at  on celestial sphere(zsw, z̄sw)

 scalar primary(Δ, ℓ) = (1,0)

gμν = ημν + r0 log(X2)δ(q ⋅ X )qμqν
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ℳ3(Δ1, Δ2, Δsw) =
e(2π)3δ(i(Δ1 + Δ2 − 2))

|z12 |Δ1+Δ2 |z1sw |Δ1−Δ2 |z2sw |Δ2−Δ1

0
Looks like 3-point correlator in standard CFT  !2
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Aμ(X) = r0ϕsw(X)qμ  vector primary(Δ, ℓ) = (0,0)

 metric primary(Δ, ℓ) = (−1,0)

electromagnetic:

gravitational:

[Gonzo,McLoughlin,AP'22]

ℳ3(Δ1, Δ2, Δsw) =
e(2π)3δ(i(Δ1 + Δ2 − 2))

|z12 |Δ1+Δ2 |z1sw |Δ1−Δ2 |z2sw |Δ2−Δ1

0
Looks like 3-point correlator in standard CFT  !2

=

ℳ3(Δ1, Δ2, Δsw) =
r0(2π)3δ(i(Δ1 + Δ2 − 1))

|z12 |Δ1+Δ2+1 |z1sw |Δ1−Δ2−1 |z2sw |Δ2−Δ1−1

Looks like 3-point correlator in standard CFT  
( after continuing off the principal series  ) !

2
Re(Δ1 + Δ2) = 1

−1

=



Correlators from on-shell action
S = eom + Sbdy

CFT
quantum gravity 

in AdS

In AdS/CFT on-shell action 
generates CFT correlators.

Celestial holography: on-shell 
action generates CCFT correlators?

quantum 
gravity  
in Mink

CCFT
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On-shell action
S = eom + Sℐ−∪ℐ+

ϕ = ϕin + ϕout  &  solved via Green’s fctϕin = eip⋅X ϕout

[Fabbrichesi,Pettorini,Veneziano,Vilkovisky’93]* on-shell action also studied in 

ℐ−

ℐ+

i+

i−

i0

S2

u

v

r =
∞

r =
∞

Sℐ−∪ℐ+(p) = #J̄eff(p)

At large  at fixed  and :r v = t + r u = t − r

On-shell action localizes on the boundary onto the Fourier transform 
of effective source evaluated along the incoming momentum.

[Gonzo, McLoughlin, AP’22]

Complex massless scalar  minimally coupled to gravityϕ

gμν = ημν + hμν

1
−g

∂μ( −ggμν∂νϕ(x)) = J(x) ημν∂μ∂νϕ(x) = Jeff(x)→
effective source
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Summary and outlook
We classified the soft symmetries of celestial CFT .d

d+2 
Quantum 

Gravity

CCFTd

Celestial amplitudes on backgrounds: smear -fct support on sphere, 
well-defined Mellin integrals for classical spin.

δ

Future: identify CCFTs and all its properties! 

In  they include infinite BMS-type enhancements 
which obey  algebra.

d = 2
w1+∞

In  there are only finite-dimensional global symmetries.d > 2

Celestial string amplitudes: well-defined Mellin integrals,  natural loop 
expansion parameter and get field theory limit regardless of cross ratio.

∃

Axioms? Toy models? More string theory! More loops! Non-perturbative physics?…


