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A celestial hologram?

S-matrix
has holographic flavour -
can we make it more

manifest?

Exploit powertful CFT toolkit and
other methods such as twistors.

bottom-up top-down

understand universal properties of explore toy models and (super)
quantum gravity that are independent of symmetry to construct dual pairs
short distance microphysics
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i ' 2d CCET Some recent progress:

“ 7 e Bulk O — boundary 0
F T future null o e CCFT building blocks

e universal features of observables

l

novel type of holography

4d Quantum
Gravity
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-

4 )
4d Quantum Gravity = 2d Celestial CFT

in asymptotically flat spacetimes or CCFT for short

*extends to general spacetime dimensions
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Bulk—boundary dictionary

From bulk operators to boundary operators:

Sd Sd

— —

rlg?o =17l [j: duu=" / \

boost-weight spin

P
, X large r limit gght—ray
/ O(X) - Opr (X)

conformal primaries

null boundary: bulk Lorentz acts as
degenerate metric, boundary global conformal
¢ — 0 field theory which in gravity is enhanced

to local conformal

> “Extrapolate” dictionary for celestial holography.
[Pasterski,AP Trevisani’'21]
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Scattering amplitudes: Celestial amplitudes:

basic observables in flat space natural observables in CCFT:
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* Observables

in asymptotically flat spacetimes

\,
% el ||n ...............
— o ® .
|ntegrate over a” energ|es ® ...............................
P = lw;, x;) J doo™™! | A}, x;)
0
energy basis boost-weight basis
Scattering amplitudes: Celestial amplitudes:
basic observables in flat space natural observables in CCFT:
_ . transform nicely under
gQ{(pl, oo .pn) — <01/tf ‘ CS) ‘ ln> <@A1(x1) oo @An(xn)> conformal transformations!
translation symmetry Lorentz symmetry
lane wave . _ ip(w,x)-X . _ 1 conformal primary
' (I)G)(X’ X) € (I)A(X’ X) (—g(x) - X)A  wavefunction

Ho— Iz
pr =+ wq"(x) *+ige prescription

[de Boer, Solodukhin’03] [Pasterski,Shao,Strominger'17] [Pasterski,Shao'17]
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[Donnay, Pasterski,AP'22]
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boost weight
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[Donnay, Pasterski,AP'22]



3 bases

boost weight

A

ﬂellin <%ght—ray

+00
ﬂ(.):J doo®1(.) 3(.):[ duu=2(.)
0 —00

), U
L . .
energy S ourier null time

+0o0
F(.)= [ due' ()

Together with an ie prescription for well-definedness of transforms.



IR triangle

symmetries
boost weight

%ellin gght-ray

ﬂ(.):J doo® 1(.) g(.):[ ooduu_A(.)
0 —00
)
37, . U .
energy ourier null time

soft theorems s)=| ae=) memory effect

[Strominger'13+...]
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boost<0ut| S | in)boost — <@A1,fl(x1)' . @An,fn(xn»CCFT

® no Wilsonian decoupling since integration over all energies

— potentially problematic in field theory but not in string theory

® distributional support on the sphere from translation symmetry in bulk
SHI(YY . plw;x)

— scattering on backgrounds: more standard correlators

® spectrum (A) complex — non-unitary CFT

w >0 Ael+iR
«—>
w=0 Ael—-27Z.

— symmetries?



Outline

Introduction
. Celestial string amplitudes @ tree and 1-loop
II. Symmetries of celestial CFT,

1. Celestial amplitudes on (particle-like) backgrounds

Summary & outlook

based on

.2307.03551 with Laura Donnay, Gaston Giribet, Hernan Gonzales & Francisco Rojas
1. 2302.10222 with Yorgo Pano & Emilio Trevisani
I11. 2207.13719 with Riccardo Gonzo & Tristan McLoughlin


https://arxiv.org/abs/2307.03551

No Wilsonian decoupling: integration over all energies
potentially problematic in field theory but not string theory

|

. Celestial string amplitudes

@ tree and 1-loop
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Focus: 4d scattering processes of 4 gluons in open string theory

4d momenta p! = (pl.o,pil,piz,pf,H) & 10d loop momenta £#

null vector pointing

plﬂ _ nia)[qlfu(zi’ Zl) & ql'” =1+ %iZp 2t % l(zl . Zi)’l - ZiZi) tO Celestal Sphere
N—p I

Celestial amplitude:
co 4 4
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T
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Strings on the celestial sphere

Focus: 4d scattering processes of 4 gluons in open string theory

4d momenta p! = (pl.o,pil,piz,pf,H) & 10d loop momenta £#

null vector pointing

\' plﬂ _ nia)[qlfu(zi’ Zl) & qlr” = (1 + Z,-Zl-, Zi + Zi’ l(Zl - Zi),l — Zizi) t | t | h
O celeslial spnere

Celestial amplitude:
co 4 4
M AN Az, Zi}):J Hda)iw,-A"_l5(4) 2 p!' |A{w; 2, Z;})
0 i=1 i=1

T

AString(pl’p29p3ap4) — (O)({pl})(f(()) +f(1) + . )

boost weight  net boost weight & cross ratio s=—(p1 +p2)’

Define: < t = —(ps + p3)°
AET+HIR  —  f=—=) ImA, po o S 2ot o

4 Z23Z41 u = _(pl +p3>2
. 4
using 6 2. PP

3 —_
ON0) Z l Z12% . ]
Then A" = g2 =2 2 o2 =2 independent of w; = only need [ f®]!

W3y 793434541 {12434
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Veneziano amplitude: FO (s, t) =

Celestial tree amplitude:
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Celestial strings @ tree

['(1—d's)['(1 —a't)
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Veneziano amplitude: FO (s, t) =

Celestial tree amplitude:
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X
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Celestial strings @ tree

['(1—d's)['(1 —a't)
['(1—ao's —a't)

Veneziano amplitude: FO (s, t) =

Celestial tree amplitude:

1 dx B—1

fO%, B) = —aPrT(1 - 5)/0 — [rlogz —log(1 — )]

X

* Dependence on string tension: overall factor a’” |

— Does a’ dependence still factor out @ loop?

*Low-energy field theory limit from limit cross ratio r = — o
FOr. ) = 4ms(( ¥ ImAi> + 00

— Recover field theory limit @ loop?



Celestial strings @ 1-loop

1-loop stringy form factor (planar, orientable): [Donnay,Giribet,Gonzales, AP,Rojas’23]
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1-loop stringy form factor (planar, orientable): [Donnay,Giribet,Gonzales, AP,Rojas’23]
1673 g%
1 10
D0 = 100 [ g
o [ fln o
1<J T
— 2¢°" cos 20 + ¢*"
Y(0,q) —stH ql—q2”) d

Celestial 1-loop amplitude:
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_ ¥ (ba2, 9)10 (03, q) — 10 ¥ (042, 9) (05, q)
v =log (w(943,q>w<ez,q>> W=l g(¢<94,q>w<932,q>>



Celestial strings @ 1-loop

1-loop stringy form factor (planar, orientable): [Donnay,Giribet,Gonzales, AP,Rojas’23]
1673 g%
1 10
D0 = 100 [ g

T/Hdg Hw 0., q)2PiPs

1<J T
-9 2n 2(9 4n
Y(0,q) —stH ql _C(;S%) R

Celestial 1-loop amplitude:

. d
W, B) = —16m°g% (/)P T (2 — 3 L/‘ 90/ [Id0 v —w)’

P T

_ ¥ (ba2, 9)10 (03, q) — 10 ¥ (042, 9) (05, q)
V:k%(ww@qmw%m> "V‘lg(ww%ww%%m>

*Like @ tree: dependence on a'is overall factor - no scale in flat space!



Celestial strings @ 1-loop

1-loop stringy form factor (planar, orientable): [Donnay,Giribet,Gonzales, AP,Rojas’23]
1673 g%
1 10
D0 = 100 [ g
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-9 2n 2(9 4n
Y(0,q) —stH ql _C(;S%) R

Celestial 1-loop amplitude:
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Celestial strings @ 1-loop

1-loop stringy form factor (planar, orientable): [Donnay,Giribet,Gonzales, AP,Rojas’23]
1673 g%
1
D0 = 100 [ g

T/Hdg Hw 0., q)2PiPs

1<J T
-9 2n 2(9 4n
Y(0,q) —stH ql _C(;S%) i

Celestial 1-loop amplitude:

i d
W, B) = —16m°g% (/)P T (2 — 3 / q/Hd@ v —w)’

P T

— 1o ¥ (042, ¢) (05, q) — 1o ¥ (042, 9) (05, q)
V= g(w<e43,q>w<ez,q>> W= g(w<e4,q>w<932,q>>

*Like @ tree: dependence on a'is overall factor - no scale in flat space!
* Overall @’ combines with ¢2 to loop expansion parameter 92./a” |
810 P exp P 810

* The field theory limit, dominated by g — 1 region,asa’ — 0

regardless of cross ratio r and commutes with the Mellin transform.
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Symmetries in QFT

Conservation equations of operators @O detine symmetries in QFT.
Noether currents #“ from contraction of @ with parameter e.

Conservation d__7“ = 0 imposes condition on e.
a P

Conformal
Field Theory

< B

& oo
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Conformal

Symmetries in QFT ==
<4

Conservation equations of operators (0 define symmetries in QFT. b
Noether currents #“ from contraction of @ with parameter e.

Conservation 0, 7 = 0 imposes condition on e.

up to contact terms:
N

(0,700 (x))...On(xy)) = Z 5D (x = x)(0(x))...60,(x)...On(xy))  Ward identity
i=1

\ 4
surfaci element x n? normal to X = d — 1 dimensional surface in R4
Topological surface charge = | dS®¥ ... conserved upon deformations X — X’
> a P
>
QZ@(X) - 566()6) ... acts as variation on enclosed operators

When X contains all insertions we can deform the integral to infinity and get

N
0= ) (0)(x))...00,x)...0y(xy))
i=1
which defines a symmetry transformation.
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Symmetries

What are all the symmetries (of nature)?

Key for any holographic dual construction.

Important in its own right.

Stl‘ategyZ [Pasterski,AP,Trevisani’21 ] [Pano,AP,Trevisani’23] uses work of [Penedones, Trevisani,Yamazaki’'15]

%ellin

Soft theorems ——  CFT correlator for O, with conformally soft A € Z

see also [Banerjee et al'19] [Kapec,Mitra’21-'22]

CFT tool:
conformal representation theory
v
Ward identity for O,
=l
Conformal
Field Theory
ﬁ%g (+ a bit more advanced stuff)
v e

Noether current = charge — symmetry group.
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propagation direction of soft particle polarization




Soft Ward identities

: i 1
(Energetically) soft theorems :  —.1.o....

|

. _ 1-k
lim oy, (0g.8) = ) S" ™ (wg, &)l
%ellin w—0 T T T
""Od_a)wA propagation direction of soft particle polarization
0 @

v



Soft Ward identities

. 1
(Energetically) soft theorems : —.1.0....

|
e liII(l) A yp1(wg, €) = 2 SUTP(wq, e)d
ellin w— f p I

ro dw A propagation direction of soft particle polarization
0 O

v

Conformally soft theorems :
N

im;ﬁ (A — k)<@A Aq.€)0n s ... Op sy =Y S17Kq.e)(0y 4,50 4.0, )

soft operator

A=10,-1,.

gauge theory: [Fan,Faotopoulos,Taylor'19][[Nandan,Schreiber,Volovich,Zlotnikov'19]Pate,Raclariu,Strominger’19]

gravity: [Adamo,Mason,Sharma’19][AP'19] [Guevara’19]



Soft Ward identities

. 1
(Energetically) soft theorems : —.1.0....

|
e liII(l) A yp1(wg, €) = 2 SUTP(wq, e)d
ellin w— I p I

ro dw A propagation direction of soft particle polarization
0 O

v

Conformally soft theorems :
N

im;ﬁ (A — k)<@A Aq.€)0n s ... Op sy =Y S17Kq.e)(0y 4,50 4.0, )

soft operator

A=10,-1,.

gauge theory: [Fan,Faotopoulos,Taylor'19][[Nandan,Schreiber,Volovich,Zlotnikov'19]Pate,Raclariu,Strominger’19]

gravity: [Adamo,Mason,Sharma’19][AP'19] [Guevara’19]

Classify all conformally soft operators in gauge theory and gravity.
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I o
I
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//
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Conformally soft primary 0, operators have descendant operators
that are primaries themselves. They organize into multiplets.

celedlial diamondd

0; = ?/\q =0,

| o]
|
d
I11
o
II
II o
o

types I, Il, lll: spin of descendant >,<,= spin of parent primary

[Pasterski,AP Trevisani'21]



Conformally soft primary 0, operators have descendant operators
that are primaries themselves. They organize into multiplets.

celedlial diamonadd
0: = 0 =0,
/\ primary
primary |

N, I

primary
LI descendant
o
11
primary
descendant 11
types I, Il, lll: spin of descendant >,<,= spin of parent primary

[Pasterski, AP, Trevisani'21]



Conformally soft primary 0, operators have descendant operators
that are primaries themselves. They organize into multiplets.

celedlial diamonadd
0: = 0 =0,
/\ primary
primary |

N, I

primary
111 descendant
o
I1 /
¥ >\ — primary
aT@(ZQ Z) - O desceﬂdi/ I1
# depends on  types |, Il, lll: spin of descendant >,<,= spin of parent primary

Bottom of a diamond: conservation equation for 0,.

[Pasterski, AP, Trevisani'21]



Conformally soft primary 0, operators have descendant operators
that are primaries themselves. They organize into multiplets.

celedlial diamonadd
0: = 0 =0,
/\ primary
primary |

N, I

primary
111 descendant
o
I1 /
¥ >\ — primary
aT@(ZQ Z) - O desceﬂdi/ I1
# depends on  types |, Il, lll: spin of descendant >,<,= spin of parent primary

Bottom of a diamond: conservation equation for 0,.

#—1
Noether current: 7 = Z (—=1)"0"e(z,2)0" " 10(z, )
m=0 [Pasterski, AP, Trevisani'21]



Soft symmetries

Leading soft photon theorem:
allm (A — 1)@Af=+1 —_ O
A—1 ’
Leading soft graviton theorem:
0*lim (A — )0y ,_,, =0

A—1

Subleading soft graviton theorem:

53 llm A@A,f=-|—2 — O
A—0



Soft symmetries

Leading soft photon theorem:

aiirri (A=1)0Op -1 =0 — large gauge transformations
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Soft symmetries

Leading soft photon theorem:

aiirri (A—=1)Op -1 =0 — large gauge transformations
— F with de =0

Leading soft graviton theorem:

0*lim (A — 1)0y y—,, =0 - BMS supertranslations

A—1 _

Subleading soft graviton theorem:
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Soft symmetries

Leading soft photon theorem:

0i1rri (A—=1)Op -1 =0 — large gauge transformations

¥ with de =0

Leading soft graviton theorem:

0% lim (A — 1)@A =12=0 = BMS supertranslatlons

A—>1
Subleading soft graviton theorem:
0’ ilII}) A@A r=12=0 — BMS superrotations
e 7 with & = 0
0°T
Stress tensor? T is shadow transform of T which satisfies 0T = 0°T = 0
integral transform on $2: ofh(@A) = 52—A j with de = 0

[Guevara,Himwich,Pate,Strominger'21]

. £ |
From OPE of type |, II, Ill: find algebra Wit - [Strominger'21]
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[Pano,AP Trevisani'23]
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Fromd=2tod > 2

[Pano,AP Trevisani'23]

e 1 more types of primary descendants:

even d: 1,11, vs odd d: LI, P,S

parity shadow

® S5O(d) spin more complicated:

aj

2| .| ] a2

— to capture all soft theorems: ap | .. | a > : :
o k| gk
go beyond traceless and symmetric a | |,

— refinement of types I, I, IIT — I, IT,, ITI,

® No non-trivial charges without shadows = integral transform on $¢ |

— interpretation inRM4*1 2

Summarizing 50+ pages...
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CCFT,

Conformally soft primary 0, operators have descendant operators
that are primaries themselves. They organize into multiplets.

celedlial necklaced

even d odd d
Y Il i Il
primary O orimary
Y 12 :
(:) 1
1 I d
I[%] [2]
P
I1
4]
: g
(I> 1

[Pano, AP, Trevisani'23]



CCFT,

Conformally soft primary 0, operators have descendant operators
that are primaries themselves. They organize into multiplets.

celedlial necklaced

even d odd d
L i L
primary s primary
12 :
: g integral transform on S$¢
' 2t
I[g] 2 ~
2 Sh(@A) — @d—A
P
g1
2
! Mg
(I> 1
Y 112 :
@
< 111 IIl
primary ¢ primary
descendant descendant

[Pano, AP, Trevisani'23]



CCFT,

Conformally soft primary 0, operators have descendant operators
that are primaries themselves. They organize into multiplets.

celedlial necklaced

even d odd d
L i L
primary s primary
12 :
: g integral transform on S$¢
' 2t
I[g] 2 ~
2 Sh(@A) — @d—A
P
g1
2
! Mg
(I> 1
Vv II2 :
@
< 111 IIl
primary ¢ primary
descendant descendant

Bottom of a necklace: conservation equation for 0,.
[Pano, AP, Trevisani'23]
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Symmetriesind > 2 CCFT

[Pano, AP, Trevisani’'23]  related work by [Kapec,Mitra’17,21]

Leading soft photon & graviton, subleading soft graviton:

Ward ID for type I, operators: trivial charges

l Shadow transform €= action of type S operator*

* analytically continued

Ward ID for type II; operators

Noether currents #“ from contraction of @® with parameter e:
[Brust,Hinterbichler'16]

jea — @aal...abﬂ_laal.“a c

an_l an”.af_l

—0, 0“9 .0, €
1 2

an_l an“.af_l

+0,, 0,019, ...0, €

an_l an”.af_l

+(=1)"""9,...0

Cjaalu.af_le
an_l an“.af_l
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[Pano, AP, Trevisani’'23]  related work by [Kapec,Mitra’17,21]

Leading soft photon & graviton, subleading soft graviton:

Ward ID for type I, operators: trivial charges

l Shadow transform €= action of type S operator*

* analytically continued

Ward ID for type II; operators

Noether currents #“ from contraction of @® with parameter e:
[Brust,Hinterbichler'16]
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[Pano, AP, Trevisani’'23]  related work by [Kapec,Mitra’17,21]

Leading soft photon & graviton, subleading soft graviton:

Ward ID for type I, operators: trivial charges

l Shadow transform €= action of type S operator*

* analytically continued

Ward ID for type II; operators

Noether currents #“ from contraction of @® with parameter e:
[Brust,Hinterbichler'16]
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Symmetriesind > 2 CCFT

[Pano, AP, Trevisani’'23]  related work by [Kapec,Mitra’17,21]

Leading soft photon & graviton, subleading soft graviton:

Ward ID for type I, operators: trivial charges

l Shadow transform €= action of type S operator*

* analytically continued

Ward ID for type II; operators

Noether currents #“ from contraction of @® with parameter e:
[Brust,Hinterbichler'16]

jea — @aal...abﬂ_laal“.a c

an—] Cln. . .le_l

aay...d,_ . -
_aa1@ e 1aaz“'aczn_lean...af_l conservation condition:
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Symmetriesind > 2 CCFT

[Pano, AP, Trevisani’'23]  related work by [Kapec,Mitra’17,21]

Leading soft photon & graviton, subleading soft graviton:

Ward ID for type I, operators: trivial charges

l Shadow transform €= action of type S operator*

* analytically continued

Ward ID for type II; operators

Noether currents #“ from contraction of @® with parameter e:
[Brust,Hinterbichler'16]

jea — @aal...abﬂ_laal“.a c

an—] Cln. . .le_l

ad dy_ . o
_aa1@ e 1aaz“'aczn_lean...af_l conservation condition:
+0 0, 0 %19 ...0 €

ap~a as a,_1 a,...dy_q a g€ __
_1\n—1 aay...as_y l
+(—1) Oal...aan_lﬁ €4 a

a{al...dan}eanﬂ...af — O

— M He—1 Vi Ve_p, S
€4.a,, =94 Oalq ...aaf_nq Cor o pp ity very constraining!
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Symmetries ind > 2 CCFT

Leading soft photon & graviton, subleading soft graviton:

Ward ID for type I, operators: trivial charges

l Shadow transform €= action of type S operator

* analytically continued

Ward ID for type II; operators

Noether currents #“ from contraction of @® with parameter e:

/

CCFT,: J, T, P d + 2 bulk: U(1), Lorentz, translations

e e e e




Symmetriesind > 2 CCFT

[Pano, AP, Trevisani’'23]  related work by [Kapec,Mitra’17,’21]
Leading soft photon & graviton, subleading soft graviton:
Ward ID for type I, operators: trivial charges

l Shadow transform €<= action of type S operator

* analytically continued

Ward ID for type II; operators

Noether currents #“ from contraction of @® with parameter e:

/

CCFT,: J, T, P d + 2 bulk: U(1) Lorentz translatlons

Charges for global symmetries!

rn

Q5 = ddxe (X0, ...0, O4 - 4(x)
JR
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Noether current = charge — symmetry group:
[Pasterski,AP Trevisani’'21]
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[Pasterski, AP, Trevisani'21] [Pano, AP, Trevisani'23]
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» Role of higher-dimensional BMS ?



2D local
conformal
symmetry

<

Soft symmetries

Noether current = charge — symmetry group:

[Pasterski,AP Trevisani’'21]

CCFT,

infinite-dimensional
symmetry group

T

BMS supertranslations

superrotations

[Pano, AP, Trevisani'23]
CCFT ..,

finite-dimensional
symmetry group

!

translations

rotations

» Role of higher-dimensional BMS ?

compare to [Kapec,Lysov,Pasterski,Strominger'15]
vs [Hollands,Ishibashi,Wald'16]

interesting interpretation: [Kapec'22]



distributional support on the sphere from bulk §@*+)( Zi,ilpl”)
can be smeared out if translation symmetry broken

|

1. Celestial amplitudes on backgrounds
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order n in coupling
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n=0
The n-point amplitude is:
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Scattering on backgrounds

To study wave scattering on classical backgrounds we use the method of
[Boulware, Brown'68] which amounts to solving the classical equations of motion

for @(x) in the presence of a source J(x).

order n in coupling

/
Solve for ©(p) = Z ®"(p) in momentum-space order-by-order in coupling.

n=0

The n-point amplitude is:

5 .
A (pry...,p,) =i" (hm p?) = O(—p,)
H pi0 © 5J(P1) SJ(pa_y) J=0

Consider scattering scalars on particle-like backgrounds
(sources of mass and charge) & interpret them in celestial CFT.
[Gonzo, McLoughlin, AP'22]

Coulomb field of static and spinning point charges & ultraboost limits.
Schwarzschild, Kerr & ultraboost limits: Aichelburg-Sex| and gyraton metrics.
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Scattering on particle-like backgrounds

Focus on 2-point amplitudes:

2
5
o S _
A~(pi,Pr) = ;!=I1 (,}]glf?o pi) 5J_(p1)(/5( D))

J=0

Wave equation for complex scalar field minimally coupled to gravity in
presence of a source:

ﬁ@(ﬁg%qb(x» = J(x)

order n in coupling G 8w =MNuw T h/w
Solve for ¢(p) = Zgﬁ(")(p) perturbatively in G and to linear order in h and plug into

n=0

Ay (pr.py) = Qo) lim lim ps@(p, + py) = [(P)(PDy= 5Py - PPy + ) + ..

pi—0p>3—0

n=>0 n=1



Scattering on particle-like backgrounds

Focus on 2-point amplitudes:
2

AH(p1.pr) =—| | (lim p;)
o\P1> P2 Hpﬁokfﬂ(l)

Cb( P2)

J=0

Wave equation for complex scalar field minimally coupled to gravity in
presence of a source:

—0,(y/—88"0,9(x)) = J(x)

order n in coupling G 8w =MNuw T h/w
Solve for ¢(p) = Zgﬁ(")(p) perturbatively in G and to linear order in h and plug into

n=0

A (p1,py) = 2n)* hmo hmop [6Y(py + py) = [(P1) (Pz)y—g’?ﬂypl Pz]hﬂ D(Pl "‘Pz) T
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Black hole avatars in CCFT

Compute celestial scattering on Schwarzschild & Kerr:

\
/

scalar black holes

(massless) (massive)

» Celestial amplitudes on backgrounds: nicer features than in flat space

£i..2h Supported everywhere on the S2. S-function support on S |
‘- VS

Classical spin acts as UV regulator. A ellin integrals UV divergent.

Hankel fct
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Shocks in CCFT

Ultraboost limit of black holes is special:

ultraboost
‘ 4’

black holes shockwaves

Schwarzschild metric Aichelburg-Sex| metric

» Shockwaves are generated by conformal primaries in CCFT!

Scalar shockwaves: ¢ (X) = —log(X»)d(g - X) (A, ¢) = (1,0) scalar primary

T

. qﬂ — (1 + |st |2’ZSW + ZSW’ l(st o st)’l o |st |2)
Kerr-Schild double copy

null vector pointing at (z,, Z,,,) on celestial sphere
v

Spinning shockwaves: AM(X) - ’”o¢sw(X)qﬂ (A, 2) = (0,0) vector primary

h/w(X) — rogbsw(X)qﬂqy (A,7) = (—1,0) metric primary



Shocks in CCFT

Ultraboost limit of black holes is special:

ultraboost
‘ 4’

black holes shockwaves
Schwarzschild metric Aichelburg-Sexl metric £, =, T 1 log(X2)5(c] . X)q,,,qv

» Shockwaves are generated by conformal primaries in CCFT!

Scalar shockwaves: ¢ (X) = —log(X»)d(g - X) (A, ¢) = (1,0) scalar primary

T

. 0" = (1 20 1% 2 + Z i = 201 = 120 )
Kerr-Schild double copy

null vector pointing at (z,, Z,,,) on celestial sphere
v

Spinning shockwaves: AM(X) - ’”o¢sw(X)qﬂ (A, 2) = (0,0) vector primary

h/w(X) — quSSW(X)quy (A,7) = (—1,0) metric primary



Celestial shockwave correlators

electromagnetic: A (X) = 1y, (X)g, (A, £) = (0,0) vector primary

gravitational: hﬂy(X) — I’quSW(X)qﬂqy (A,7) = (—1,0) metric primary



Celestial shockwave correlators

[Gonzo,McLoughlin,AP'22]

electromagnetic: A (X) = 1y, (X)g, (A, £) = (0,0) vector primary

e(2m) 6(i(A, + A, —2))
|A2—A1

%3(A1’ AZ’ ASw) —

| | 215 |
0

Looks like 3-point correlator in standard CFT, | h

Artds | Llsw |A1_A2 | LD sw

gravitational: h,uy(X) — rO¢sw(X)quU (A,7) = (—1,0) metric primary



Celestial shockwave correlators

[Gonzo,McLoughlin,AP'22]

electromagnetic: A (X) = 1y, (X)g, (A, £) = (0,0) vector primary

3 B
MDA ALY = eQr)’o(i(A, + A, = 2))

A +A A—A A—A
g |2 177 2w |70 T 2o |7

Looks like 3-point correlator in standard CFT, | h

gravitational: h,uy(X) — rO¢sw(X)qlqu (A,7) = (—1,0) metric primary

ro(2n)°6(i(A, + A, — 1))
‘ﬂ3(A1’ AZ’ Aﬂv) o | Zis |A1+A2+1 A—A,— |A2—A1—1

—1

Looks like 3-point correlator in standard CFT,
( after continuing off the principal series Re(A; + A,) = 1) !

|
| Ll sw | | LD 5w



Correlators from on-shell action

5 =eom + Spqy

In AdS/CFT on-shell action Celestial holography: on-shell
generates CFT correlators. action generates CCFT correlators?

CFT

quantum gravity

quantum
gravity
in Mink
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effective source
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On-shell action

S=eom + 37 s
8w = M + 1y

Complex massless scalar ¢ minimally coupled to gravity

ﬁaﬂ(\/—fggﬂ”ayd)(x» =J(x) = 7"0,0,0(x) = Jpu(x)

effective source

b=a¢,+d¢,, . =ePX & ¢ solved via Green's fct

At large ratfixedv=tr+randu=1r—r:

_ Sj—uj+(p) — #jeff(p) [Gonzo, McLoughlin, AP'22]

On-shell action localizes on the boundary onto the Fourier transform
of effective source evaluated along the incoming momentum.

* on-shell action also studied in
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Generating CCFT correlators

Boulware-Brown

5¢0ut( pl)
A5(p1,py) = = lim lim pip;
B pi—0pi—0 1 5](]92)

solving the eom _ - jeff(p)
to leading order DoulP) = =

. , p?
in coupling

ff( 2,
= Iim lim p2
pi—0p;—0 5J(p,)




Generating CCFT correlators

Boulware-Brown

&2[2([?1 pz) v hl’Il lim plp 5¢0ut( pl)
Pi=0pi=0 5](]92) solving the eom _ Tofr(P)
) to leading order PoulP) = = bz
in coupling
ff( py)
= lim lim p2
pi—0p3—0 5]([92) large r limit +
) saddle point S, 7+(p) = #/,4(p)
approximation
1 I : 5 08 74 7+(—D1)
=— lim lim p; -

# pi—0pi—0 oJ(py)



Generating CCFT correlators

Boulware-Brown

5¢0ut( pl)
A H(p p)——hm hrnpp
PP om0 TP 8(py)

solving the eom _ - jeff(l?)
to leading order DoulP) = =

p2
in coupling
ff( py)

= lim lim p2

pi—0p3—0 5]([92) large r limit +

) saddle point S, 7+(p) = #/,4(p)
approximation

1 Ii . zésj—ujﬂ(_pl)
=— lim lim p; -

# pi=0pi~0 0J(p2)

Boundary on-shell action generates CCFT correlators!



Summary and outlook

CCFT,

A We classified the soft symmetries of celestial CFT .

In d = 2 they include infinite BMS-type enhancements

d+2
Quantum
Gravity

which obey w,, . algebra.

In d > 2 there are only finite-dimensional global symmetries.

Celestial string amplitudes: well-defined Mellin integrals, 3 natural loop
expansion parameter and get field theory limit regardless of cross ratio.

Celestial amplitudes on backgrounds: smear -fct support on sphere,
well-defined Mellin integrals for classical spin.

Future: identify CCFTs and all its properties!

Axioms? Toy models? More string theory! More loops! Non-perturbative physics?...



