Amplitudes meet galaxy clustering

Marko Simonović (CERN)

Amplitudes 2023

Cosmic Microwave Background

CMB will reach its limits with upcoming polarization experiments

Many open questions in cosmology regarding inflation, history of the early universe, dark matter, late-time acceleration and structure formation require new data

Spectroscopic Galaxy Surveys

Large volume and more information in principle, but hard due to nonlinearities

Spectroscopic Galaxy Surveys

Effective Field Theory of Large-Scale Structure

Carrasco, Hertzberg, Senatore (2012) Baumann, Nicolis, Senatore, Zaldarriaga (2010)

…

Large distance dof: δ_{ϱ} EoM are fluid-like, including gravity Expansion in variance of δ_{lin} and derivatives ∂ / k_{NL} "UV" dependence is in a handful of free parameters Symmetries, Equivalence Principle

There is a universal description of galaxy clustering on scales larger than $1/k_{\text{NL}}$

D'Amico, Senatore, Zhang (2019) Chudaykin, Ivanov, Philcox, MS (2019) Chen, Vlah, Castorina, White (2020)

Complete evolution of the vacuum state from inflation to redshift zero

Application to BOSS Data

Ivanov, MS, Zaldarriaga (2019) d'Amico, Gleyzes, Kokron, Markovic, Senatore, Zhang, Beutler, Gil Marin (2019) Philcox, Ivanov, MS, Zaldarriaga (2020)

(FS) modelling of unreconstructed power spectra via a one-loop full-shape model and BAO-modelling of reconstructed power spectra to compute Alcock-Paczynski parameters, incorporating the theoretical These results will dramatically improve with data from ongoing surveys

Challenges in performing an analysis

In an MCMC chain we typically need \sim 10⁷ evaluations of the likelihood

To be practical, each evaluation of the likelihood should last at most a few sec

With the conventional numerical approach this is hard

The problem can be rewritten in terms of QFT amplitudes

This leads to a dramatic improvements in efficiency

An example: nonlinear dark matter at one-loop

$$
\delta_{\mathbf{k}}^{(2)}(\eta) = D^2(\eta) \int_{\mathbf{q}_1} \int_{\mathbf{q}_2} F_2(\mathbf{q}_1, \mathbf{q}_2) \delta_{\mathbf{q}_1}^0 \delta_{\mathbf{q}_2}^0 (2\pi)^3 \delta^D(\mathbf{k} - \mathbf{q}_1 - \mathbf{q}_2)
$$

$$
F_2(\mathbf{q}_1, \mathbf{q}_2) = \frac{5}{7} + \frac{1}{2} \frac{\mathbf{q}_1 \cdot \mathbf{q}_2}{q_1 q_2} \left(\frac{q_1}{q_2} + \frac{q_2}{q_1}\right) + \frac{2}{7} \left(\frac{\mathbf{q}_1 \cdot \mathbf{q}_2}{q_1 q_2}\right)^2
$$

An example: nonlinear dark matter at one-loop the lowest order PT solutions, and performing all angular integrals, the one-loop expressions, the one-loop expressions, \mathcal{L}_{max}

$$
P_{22}(k) = 2\int_{\mathbf{q}} F_2^2(\mathbf{q}, \mathbf{k} - \mathbf{q}) P_{\text{lin}}(q) P_{\text{lin}}(|\mathbf{k} - \mathbf{q}|)
$$

Rather than solving numerically, **Rather than solving numerically**, expand P_{lin} using simple functions $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

all cosmology dependence in coefficients

^l ^ki⌘*^m* min *^e*2⇡*iml/N* In practice N~100 and η_{max} ~50 \longrightarrow Very large imaginary parts!

Very large imaginary parts!

MS, Baldauf, Zaldarriaga, Carrasco, Kollmeier (2017)

Basic integral

$$
\int_{\mathbf{q}} \frac{1}{q^{2\nu_1} |\mathbf{k} - \mathbf{q}|^{2\nu_2}} \equiv k^{3-2\nu_{12}} I(\nu_1, \nu_2)
$$

Euclidean and 3D "off-shell", since $k^2 > 0$ complex exponents in propagators

$$
I(\nu_1, \nu_2) = \frac{1}{8\pi^{3/2}} \frac{\Gamma(\frac{3}{2} - \nu_1)\Gamma(\frac{3}{2} - \nu_2)\Gamma(\nu_1 - \frac{3}{2})}{\Gamma(\nu_1)\Gamma(\nu_2)\Gamma(3 - \nu_1)}.
$$

The full answer can be written as

$$
P_{22}(k) = k^3 \sum_{m_1, m_2} c_{m_1} k^{-2\nu_1} \cdot M_{22}(\nu_1, \nu_2) \cdot c_{m_2} k^{-2\nu_2} \qquad \text{~\sim 1000 times faster!}
$$

$$
M_{22}(\nu_1, \nu_2) = \frac{\left(\frac{3}{2} - \nu_{12}\right)\left(\frac{1}{2} - \nu_{12}\right)\left[\nu_1\nu_2\left(98\nu_{12}^2 - 14\nu_{12} + 36\right) - 91\nu_{12}^2 + 3\nu_{12} + 58\right]}{196 \nu_1 \left(1 + \nu_1\right)\left(\frac{1}{2} - \nu_1\right)\nu_2 \left(1 + \nu_2\right)\left(\frac{1}{2} - \nu_2\right)} I(\nu_1, \nu_2).
$$

MS, Baldauf, Zaldarriaga, Carrasco, Kollmeier (2017)

This idea generalizes to higher order n-point functions or higher loops

one-loop bispectrum

$$
\int_{\mathbf{q}} \frac{1}{q^{2\nu_1}|\mathbf{k}_1 - \mathbf{q}|^{2\nu_2}|\mathbf{k}_2 + \mathbf{q}|^{2\nu_3}} \equiv k_1^{3-2\nu_{123}} J(\nu_1, \nu_2, \nu_3; x, y) \qquad x \equiv k_3^2 / k_1^2 \qquad y \equiv k_2^2 / k_1^2
$$

two-loop power spectrum

$$
\int_{\mathbf{q}} \frac{1}{q^{2\nu_4}|\mathbf{k}-\mathbf{q}|^{2\nu_5}} \int_{\mathbf{p}} \frac{1}{p^{2\nu_1}|\mathbf{k}-\mathbf{p}|^{2\nu_2}|\mathbf{q}-\mathbf{p}|^{2\nu_3}} \equiv k^{6-2\nu_{12345}} K(\nu_1,\ldots,\nu_5)
$$

The main challenge is to find "simple" expressions for J, K…

In general, function K is very hard to compute

We know many properties: recursion relations, $Z_2 \times S_6$ symmetry etc.

Luckily, we only need a special case where two parameters are equal 1

 $K(\nu_1, 1, \nu_3, \nu_4, 1)$ can be written in terms of ${}_{3}F_{2}$ functions $K(1,\nu_2,\nu_3,\nu_4,1)$ no known simple closed form expression

Anastasiou, Bragança, Senatore, Zheng (2023)

Advantage: only integer powers of propagators \rightarrow use recursion relations

Particularly useful for the one-loop bispectrum

Conclusions

- Using amplitudes in galaxy clustering has been very fruitful
- It made running MCMC possible and lead to a small revolution in the field
- However, going to higher loops/n-point functions is still a challenge
- New ideas are needed!