Can 3-loop tadpoles be reduced to polylogarithms?
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A massless elliptic 2-loop lobster read George Orwell and made up this ditty:
two legs bad, four legs good, ten legs better. This talk concerns massive legless 3-loop
tadpoles. I shall exhibit something that might surprise massless lobsters, namely
that an integral of a trilogarithm against elliptic integrals reduces empirically
to classical polylogs of weight 4, against strong expectation to the contrary.

1. Comparison of a 2-loop lobster with a 3-loop tadpole
2. Fast numerical algorithms for kites and tadpoles
3. Surprising empirical reductions to polylogs

4. Rumination on my title: pro and contra

In memoriam, Gabriel Barton (25 February 1934 to 11 October 2022) and Donald
Hill Perkins (15 October 1925 to 30 October 2022), trusted guides and mentors.



2-loop lobster: In 2012, Simon Caron-Huot, Kasper Larsen, Miguel Paulos, Marcus
Spradlin and Anastasia Volovic found an elliptic obstruction to evaluation of a
massless double-box integral with 10 legs, suggesting a schematic form
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with a quartic Q)(«a) that seems to frustrate integration over trilogs of a and the
external kinematics. In 2018, Jacob Bourjaily, Andrew McLeod, Marcus Spradlin,
Matt von Hippel and Matthias Wilhelm gave an explicit result of this form.

3-loop tadpole: Consider the generic 2-loop scalar kite with 5 internal masses:
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Since 1962 it was known to have elliptic obstructions from 3-particle cuts.



Now close the kite with a sixth propagator 1/(¢* — m%) to obtain
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with the symmetry group Ss of the tetrahedron giving 12 elliptic obstructions.
The tadpole has a logarithmic divergence that we regulate in D = 4 — 2¢ dimensions
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with a finite part F' that depends on the six ratios my/u, where p is the scale
of dimensional regularization. The rescaling my — Amy, gives F' — F + 12(31log(\).
Without loss of generality, choose mg to be the largest mass and set u = mg = 1.



With u = mg = 1, Schwinger parametrization gives the 5-dimensional integral
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after setting ¢ = 1 in the Symanzik polynomial of the tetrahedron

U = x3(x129 + T4x5) + x6(21T4 + 2x5) + x326(T1 + T2 + T4 + T5)
+ 5172584(271 + T3 + Ty + 5136) + 161135(5172 + X3+ T4 + 336). (3)

I was able to reduce this to a single integral of a dilogarithm against the derivative
of the discontinuity (s + ic) — I(s — ie) = 2wio(s) of a kite integral:

Ff”f’f = —/ dso'(s) Lig(1 — s), (4)

I(¢*) = a4 /d%Hp?_m]_le=/Oodsa’(s)log(1—q;), (5)
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The non-elliptic contribution from 2-particle intermediate states has the form
on(s) = O(s — 512)075(5) + O(s — s45)0y5(s). (6)

Denote the square root of the symmetric Kallén function by

A(a,b,c) = v/a% + b2 + ¢ — 2(ab + bc + ca) (7)

with abbreviations A;.(s) = A(s,m?,m;) and A; jx = Ajx(m7). Then
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provides the logarithms in
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with constants
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where s locate leading Landau singularities of triangles that form the kite.

Elliptic contribution: This comes from 3-particle intermediate states, giving

o5(s) = O(s — 52;34)0934(5) + O(s — 5135)07 35(5)- (10)
It contains complete elliptic integrals of the third kind of the form
M(n, k m/2 df
P k) = 0K ey / (11)
I1(0, k) 0 (1—nsin?0)v/1 — k2sin®6

with I1(0, k) = (7/2)/AGM (1,41 — k?) given by an arithmetic-geometric mean.



With s = w?, an integration over the phase space of particles 2, 3 and 4 determines
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with wy = w £+ my and m4+ = m3 = m4. Then I obtain

dmmsm P(n;, k) — P(ny, k)
0 5 4(W?) = i g, ’ 13
2’3’4( ) AGM (\/16m2m3m4w,\/7 (Z; t — 1 ) (13)
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with coefficients and arguments given, as compactly as possible, by
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An AGM procedure speedily evaluates P(n, k) = II(n, k) /I1(0, k) to high precision.

1. Initialize [a, b, p, q| = [1, V1 — k2, /1 —n, n/(2 — 2n)]. Then set f =1 +q.

2. Set m = ab and then r = p* + m. Replace [a, b, p, q] by a vector of new
values as follows: [(a + b)/2, /m, r/(2p), (r —2m)q/(2r)]. Add q to f.

3. If |q/f| is sufficiently small, return P(n, k) = f, else go to step 2.

On the cut with n > 1, the principal value is ®P(n, k) = 1 — P(k*/n, k).

Criterion for any anomalous contribution: Suppose that s;5 > s12. Then

o' (s) = ox(s) + ox(s) + CA@(AS;(?)’Q R <2W2Aj’z(j_)) (14)

with Cy # 0 if and only if (m; + my)(m3 + mims) < mym? + mym? and at least
one of A 34 and Ay 35 is imaginary, in which case Cy = £1 is the sign of 3A,5(s_).

This value of Cy € {0,1,—1} is determined by the high-energy behaviour

s’0’(s) = 2Ls + Z (Ly +m3) + O <log8(s)) . Lp=mzilog(s/mi).  (15)
k=1,2,4,5



Stringent tests for kites and tadpoles

1. Elliptic terms do not depend on the order of phase-space integrations.

2. The derivative of the discontinuity of a kite satisfies the sum rule

/ " dso’(s) log (i) — 6, (16)

So 80

3. High-energy behaviour of ¢’(s) holds irrespective of anomalous thresholds.

4. Benchmarks for kites given by Stefan Bauberger and Manfred Bohm, to 6
decimal digits, and by Stephen Martin, to 8 decimal digits, are confirmed and
then extended to 100 digits in less than a second.

5. The same tadpole is obtained by integrating over 6 distinct kites.

6. The binary tadpoles with m; € {0, 1} agree with my previous reductions to
poloylogs of sixths roots of unity.



Surprising reductions to polylogs: When all 6 masses are non-zero, there is no
non-elliptic route. Yet in 3 cases, I found empirical reductions to polylogs.
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A binary surprise: Dressings of the tetrahedron with zero or unit masses give
rational linear combinations of 4 constants: ¢, = 7*/90, Cl5(7/3), Us; and Va1,
with Cly(7/3) = QLia(A), A = (1 ++/—3)/2, and reducible double sums
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+ 55Lis(3) — 3Lis(3) + 1Cl3(m/3). (18)



With 5 unit masses, there was a non-elliptic route to my result
Fs = 20¢, +16V3; — 8C15(n/3) (19)

which Yajun Zhou and I have now proved, using HyperInt from Erik Panzer.
More surprising is my very simple empirical result for the totally massive case

Fy = 16(s + 8Us 1 + 4CL(r/3). (20)

The closest we recently got to a proof involves a double integral of products of logs,
for which HyperInt gives 1300 multiple polylogarithms of 12th roots of unity. We
use powerful software from Kam Cheong Au to hand 12th roots, yet still fall far
short of proving (20).

A perfect surprise: Dirk Kreimer and I agreed that the next cases to investigate
should be perfect tetrahedra with A;;; = 0 at all 4 vertices, eliminating all
resolutions square roots. Here I also found an empirical reduction to classical
polylogs, with help from Steven Charlton. Promoting subscripts and superscripts
to mass values, I conjecture that, with L = log(2),

) L p_g (2¢4 — 3Lia(3)) + 8 (2¢3 — 3Lis(7)) L — 12 Lip(5)L* — 4L*. (21)
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This is equivalent to an evaluation in classical polylogs of the integral of a trilog
against complete elliptic integrals of the first and second kinds:

K (k) = / T in?0) e, B(k) / R0 P (22)
y(1+y)K(k) + E(k)
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A third surprise: In an imperfect case, I found empirically that
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also has a remarkable reduction to classical polylogs.



Combining the perfect and imperfect cases, I arrive at the conjecture
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with an integral of a dilogarithm against complete elliptic integrals of the third
kind reduced to classical polylogs in a spectacularly simple result.

Comment: I was guided by Feynman’s skepticism, imagining him to say:

ignore fancy reasons for this integral being impossible; just try to guess it.



Can 3-loop tadpoles be reduced to polylogarithms?
Conservative answer: some can, some cannot.

Bold (or foolish?) suggestion: every 3-loop tadpole with rational masses reduces
to multiple polylogs in an alphabet with algebraic letters.

Contra hyp: With 5 distinct mass ratios there are 12 elliptic obstructions.
Chinks of light:

1. Three seemingly impossible cases reduce empirically to polylogs.
2. The Schwinger parametrization does not too frightening.

3. A double integral over a product of logs with rational arguments is possible.
The obstructing quartics can be rationalized by a pair of Euler substitutions.

Caveat: Regarding massless 2-loop lobsters, I am both ignorant and agnostic.



