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Positivity bounds for Effective Field Theories

Constrain EFTs using 2-to-2 scattering processes and basic assumptions of c.c. toolkit overview

locality, unitarity, analyticity, and large-energy behavior Correia, Sever,
Zhiboedov (2020)

g3
— low-energy EFT Wilson coefficients given
by a high-energy dispersive representation
. . N
— Bounds on EFT Wilson coefficients -~ N
81 \\

82
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Positivity bounds for Effective Field Theories

Examples
Explore abelian single-scalar theory [Caron-Huot, Van Duong] /<
o
EFT-hedron (geometric perspective) [Arkani-Hamed, T-C Huang, Y-t Huang] 81 \

[Chiang, Huang, Li, Rodina, Weng] g
2
Pions & photons [Albert, Rastelli;
Fernandez Ma, Pomarol,Riva, Sciotti;

Haring, Hebbar, Karateev, Meineri, Penedones]

Gravity [Caron-Huot, Li, Parra-Martinez, Simmons-Duffin; Bern, Herrmann, Kosmopoulos, Roiban; Huang, Remmen]

Relation to causality [Gonzales, De Rahm, Jaitly, Poszgay, Tokareva, Tolley, ...]

... and much more [Buric, F. Russo, Vichi; Bellazzini, Isabella, Ricossa, Riva; Bachu, Hillman; Tourkine;
Mazac; Guerrieri; Vierira; Trott,....]
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This talk: combine positivity constraints with maximal supersymmetry in 4d.

Consider N=4 super Yang-Mills + all local 4-field higher-derivative operators
compatible with N=4 supersymmetry:
by

b
L= Lsym + A—Ztr(F‘*) + Ftr(172F4) t..

This class of EFTs include the tree-level open superstring amplitude (Veneziano
amplitude)




This talk: combine positivity constraints with maximal supersymmetry in 4d.

Consider N=4 super Yang-Mills + all local 4-field higher-derivative operators
compatible with N=4 supersymmetry: “N=4 SYM+h.d”, e.g.

b b
L= Lsym + A—Ztr(F‘*) + A—16tr(D2F4) t..

This class of EFTs include the tree-level open superstring amplitude (Veneziano
amplitude)

GOALS

- What are the most general bounds on the coefficients in max SUSY EFTs?

- Where is string theory?

- How does the “EFT-hedron” behave at increasing order in the derivative
expansion?




Constraints from N=4 supersymmetry




Setup: 4-point amplitudes in N=4 SYM + hd

Constraints of maximal supersymmetry: start with the color-ordered 4-point on-shell superamplitude

2
Ay = 63(Q) <[;‘21]>2 f(s,u) where N=4SUSY requires  f(s,u) = f(u,s)
Project out gluons:  Aa[+ + ——] = [12]*(34)* f (s, u)
34)4 12]2(34)2

Leading order: gluon amplitude is Parke-Taylor: AM4+ 4+ ——] = <12><2<3><>34> ) = _[ ]Sfu )
1

So pure YM corresponds to f(s, u) = -
SU




Setup: 4-point amplitudes in N=4 SYM + hd

On-shell local higher-derivative terms with 4 fields are in 1-1 correspondence with Mandelstam
polynomialsin s, t, u subject to s+t+u = 0:

1 Crossing / SUSY
Ansatz:  f(s,u) = —— + E A gs" W, with  Gp g = kg
SU
. 0<q<k '\
YM Wilson coefficients
3o is the coefficient of the N=4 SUSY operator tr(F4) Agl++——] = [12]2<34>2f(8, u)

a1 = ary is the coefficient of the N=4 SUSY operator tr(D2F*)

a,0=ay, and a,; are the two coeffs of the two independent N=4 SUSY operators tr(D*F?).... etc




Setup: 4-point amplitudes in N=4 SYM + hd

The S-matrix bootstrap is simpler for external scalar states, so consider a pair of complex
conjugate N=4 scalars, say

12

z = 2z 7 = 234

Project from the superamplitude to find This amplitude is the

focus of our analysis;
Ay [ZzZZ] = 32f(3, u) we’ll place bounds on
the ay ;s

/

_ s N _
A(s,u) = Alzzzz] = —— + s E apgs" Tul  with U —q = Ok g
u
0<q<k




Veneziano in this framework

One interesting theory within this framework is the open string. Specifically, the
4-point open string tree amplitude.

In the scalar sector, the Veneziano amplitude takes the form

['(—d/s)I'(—a'u)

Astr[zzgg] = —(04/3)2 F(l _ o/(s + U))

Upon expanding in small ¢’s and o’u we find
1
AV [p2z7] = — 2 4 62 (@0/2 + G (s +u) + G (8% +u?) + ZQO/ su+ .. )
Uu

T T T

40,0 d10=d11 d0=4d2 a1




Dispersive representations




Assumptions  A(s,u) = A[zzZZ]

1) Large N => color-ordered single-trace amplitude has no t-pole or t-channel discontinuities.
2) Weak-coupling at all energy scales => ensures we can disregard loops of massless states.

3) Mass gap: other than the massless N=4 supermultiplet, there are no other states with
mass less than Mg,

4) Partial wave decomposition A(s,u) = 167 Z(Qé + 1) as(s) Py( cos(8))
=0 X

Legendre

Unitarity => Im(as(s)) >0

5) Amplitude analytic away from the real s-axis.

A(s,u) A(s,—s —t)

6) Froissart-Martin-like bounds fixed u <0: lim =0 gand fixedt<0: lim =0

s—oo  §2 5—00 52




Dispersive representation - important
At low-energy, we have A(s,u) = A[2222] = A Z apq 8" U
Y 0<¢<k

, - : , 1 01 ds’ A(s',u)
So we can extract each Wilson coefficient via a contour integral:  ag, = — - —r 3
(fixed u<0) ’ q! Qul Jex 2mi sNTIF

3

u=0

Contour around s=0

All k and g




Dispersive representation - important
At low-energy, we have A(s,u) = A[2222] = A Z apq 8" U
Y 0<¢<k

So we can extract each Wilson coefficient via a contour integral:

1 (‘3(1/ ds’ A(s',u)
Qk.q —
(fixed u<0)

gl Oud Jou 2mi s'k—at3

3

u=0

Deform the contour: pick up pole-terms and branch cuts All k and g Contour around s=0

on the real s-axis and

Im
1 07 (1 ds’ ,

Then use the partial wave expansion and M? =4 to get

u=0




Dispersive representation

k+3
1
Qg = Z/ M? py(M?) <M2) Viq where  pg(M?) = 16(2¢ + 1)Im(ag(M2)) >0

and we have expanded the Legendre polynomials as

‘ T 0+ 1) — ala—1
Pg(l -+ 25) — Zve’q5q with vé,q — a=1 [ ( —Eq';Q CI,(CI, )] Z 0
q=0 :

Finally, rescale the ay 4’s by (Mgap)z(k’“z) (so they are all dimensionless)

2
and change the integration variable M2 to = = ]\j;p : then
! k 2
kg = Z/ dx pe(x) 2" v g, with pe(z) = x pe(My,,/z) >0
0
£=0




Dispersive representation

1
Result
Ak,qg = / dxpﬁ<x) z* V,q; pe(z) >0 “moment map”
/ ¢=0 " \ all0 < ¢ <k
Low-energy EFT Integral over the high-energy spectrum

Immediate consequences:
1) Qg q >0

2) ag’ q < Qk g, k< k' (b/c 0<x<1)




Dispersive representation

1
Result
Ak,qg = / dx pg(iﬂ) z* V,q; pe(z) >0 “moment map”
7 ¢=0 0 ’\ all0 < g <k
Low-energy EFT Integral over the high-energy spectrum
Immediate consequences: / Biggest
1) Ak q >0 ap,0 >ai,0 > G20 > a30- - - So
I
2) ag’ < ag k < ]{7, (b/c 0<x<1) Ak.q
4 = T o ai1 = a1 2> a3 --- 0< <1
0,0
3)  Using SUSY crossing Gk k—q = Qk,q => _J :
asz ... for all kand g




Then what?

From the moment maps, one can compute analytic bounds (Hankel, cyclic polytope, product Hankel)
[Arkani-Hamed, T-C Huang, Y-t Huang 2012.15849]
[Chiang, Huang, Li, Rodina, Weng 2105.02862]

However, at higher k (higher derivative terms) this quickly becomes unwieldy.

Instead: formulate as an optimization problem and using numerical methods, such as
semi-definite programming (SDPB package by Simmons-Duffin) [Caron-Huot, Van Duong 2011.02957]

N [Albert, Rastelli 2203.11950 + 2307.01246]
written for the conformal bootstrap




Numerical analysis

We use two different complementary numerical methods

SDPB semi-definite programming

CPLEX linear optimization by IBM

Following standard set up, we reformulate the setup as an optimization problem with two sets of
null constraints (aka sum rules)

* SUSY Crossing apk—q = Gk q

e ST channel sum rule

Our A(s,u) = s? f(s,u) is not crossing symmetric, but f(s,u) is and that is sufficient to derive constant-t
crossing relations like those in the analysis of the pion amplitudes of [Albert, Rastelli 2203.11950]




Numerical analysis practicalities

° kmax max derivative order included

The higher k,,,,, the stronger bounds.

. . __ S _
e.g. knax = 4 means null constraints are imposed up Alzzz7) = == + §° g Ak q sF=a 1
to 12-derivative order. u 0<q<k

1
° /max truncate the sum over all spin Afq = Z / dx pe(x) " Ve g5
0
(=0

Chosen to ensure that bounds are converging (typically 200 to 1000)

. .. . . . .
X nax Implementation in CPLEX requires discretization
discretize the integral over x (i.e. the mass-spectrum). We use x,,,, to denote

the number of discretization points of the interval 0 to 1 (typically between 200 and 1000).




Bounds

Justin Berman, Aidan Herderschee, HE (in progress)




Example of SDPB Results: (a,o,a,1) plane (two tr(D*F*) N=4 SUSY ops)

L ] Koax = 4, Imax = 200 allowed region
Kmax = 10, 1.« = 300 allowed region
0.8 ' g2
Red dot: Veneziano w/ choice @ Mg, , =1
0.6;
§l1s | * (0,0) includes theory with tr(F?) as the only h.d. interaction.
041
* (1,1) includes theory with all a ;=ag . Can be re-summed to
02l l s 1
: ‘ : A(s,u) = == + 5°
(5:) u (s —1)(u—1)
0.0 A/ .
00 02 04 0.6 o8 10 Tends to show up in bootstraps;

a0 Probably not a sensible theory.




Comparison: SDPB and CPLEX k...=10and |, = 300

a1

200 2.5 F F E T E R R R TR A e A T T T
1.0
\ 7 o
/ N =) |
@ | @ 20 o}
// S ]
08 =
e @ 15 ]
F o
v @
0.6 // E 10l . b
s o
/ O I ° J
041 / % 05+ o, : ]
/ S . ]
v e ]
l % 00k . .. | L T % % e e s 0.0.0.8. 0. ¢
' /// 0.65 0.70 0.75 0.80 0.85 0.90 0.95
”~
o a2,0
el a2 _
06 07 08 09 a0,0 ao,0

Percentile difference CPLEX vs. SDPB.
e CPLEX discretization error larger on the a21 = 0 axis.
e CPLEX faster by ~ factor of 5 for these runs, but

high precision requires higher Xax

CPLEX W/ X2 = 300
Blue SDPB




What happens near the string?

az1
a0,0
020~

Konax = Imax= 200 allowed region
Koax = 10 | ax = 300 allowed region
. . Blue: Kmax = 15 1,2 = 800 allowed region

0.15

Green dot: Ky =20 [, =600 at a, 4 string value

Red dot: Veneziano

0.10+

os| What happens as k.., increases?

az,0

0.00 " f A A ; L 1 A : ; )
0.58 0.60 0.62 0.64 0.66 0.68 0.70ap,0




Other projections

(as,0,as3,1) tr(DSF4) (@4.1,a4,2) tr(DEF)




Monodromies

Inspired by
Yu-tin Huang, Jin-Yu Liu, Laurentiu Rodina, Yihong Wang [2008.02293]




Monodromy relations

String disk amplitudes 1

32 1 / 2 4 1
A[1234] = ></ dzz=® 71 (1 — z)~@v 1 <:>
4

3 3
A[1324] = L / dzz=51(y — 1)Ul 1
v 2
5° 1 "u—1
A[2134] = - X / —olsml(p _p)meuml 3 2
4
Contour deformation relates the different color-orderings Stieberger (2009)

while picking up monodromies at x=0 and x=1. Bjerrum-Bohr, Damgaard, Vanhove (2009)

String monodromy relations 0 = A[2134] + ™' A[1234] + et A[1324]




SUSY Ansatz w/ Monodromy Imposed

linear combination fixed

string value

ao,0

a2.0

as,1

as;1 —2as0+C2a10
4,0

4,2 — 2041

as,1 — 3as,0 + C(2a3,0 + Caa1 0

=0,

5
as2 — Saso +2¢2azp + 3¢1a10 =0,

etc

Unfixed coefficients
and their string values

af’h = (3 = 1.202057
ap = 5 = 1.036928
str (WG o 630C§)

LT 1260
as’h = ¢7 = 1.00835.

= 0.040537,

etc

Note: monodromy “‘knows” 7 only, so cannot access any information about coefficients with ((odd)
in the low-energy expansion of the open string amplitude.




Monodromy + EFT-hedron

Yu-tin Huang, Jin-Yu Liu, Laurentiu Rodina, Yihong Wang [2008.02293]

Monodromy + EFT-hedron ""carves out the open string”

Using all Hankel + Cyclic Polytope + Product Hankel constraints to k.., = 4 and one from k.., = 5, they found

pmeT — gmin ~ 1.20667 — 1.18890

af’y = (3 = 1.202057

xstring C(g)
y™mer — gmin 103808 — 1.03594
string - 5 CL?;:’B = g5 = 1.036928
Y ¢(5)
maz _ ;min 0.05699 — 0.03560 6 _ 6302
- strinz - 6 2 aj:li — <7T C3) = 0.040537
Zstring (7% — 630 (3)2)/1260 1260

Indicates that the intersection of the monodromy subspace and EFT-hedron may be a point




MOnOdrOmy + SUSY POSIt|V|ty Justin Berman, Aidan Herderschee, HE (in progress)

* ST sum rules cannot be expressed in terms of the a, ,
so cannot be captured by the (product) Hankel / cyclic polytope constraints
or their enhancements [Chiang, Huang, Li, Rodina, Weng 2105.02862]

* Implementation in SDPB and CPLEX allows going to higher orders

g N

Goals:

1) Further test if positivity bounds and monodromy isolate the string

2) Understand in what sense string theory is then on the boundary of the SUSY EFT-hedron

>
]




MOnOdrOmy + SUSY POSIt|V|ty Justin Berman, Aidan Herderschee, HE (in progress)

The two lowest Wilson coefficients unfixed by string monodromy are a; s and a3 ,

=0 2
Without monodromy: " apo =C(2) = =
’ 6

1.0+

Exact upper and lower bounds
(indep. of ko > 2 and /,.,)

0.8+

3
ai a ai
( ,0) < 3,0 < ,0
ao,0 ao,0 ao,0

With monodromy:

A

0.6

0.4+

knax =3 bounds with monodromy imposed
as null constraints

0.2+

Red: Veneziano




MOnOdrOmy + SUSY POSIt|V|ty Justin Berman, Aidan Herderschee, HE (in progress)

Increase ki, .,

0650

0.645 -

0.640 -

<

0635+ . iz =
1 k‘nax =

0.630 -

0.625] ] Zoom in on green region




MOnOdrOmy + SUSY POSIt|V|ty Justin Berman, Aidan Herderschee, HE (in progress)

Increase ki, .,

0650
0.645 -
0.640 |-
,,,,,,,,,
2| <
o =
< <
0.635 { Okpax =
= _ 4 083151\
| kmax = 4 \
0.630 |-
0.6310 - 3 ]
0.625 | ] \ \
3 1 0O km =4
B Koy
0.68 0.69 0.70 0.71 0.72 0.73 O Kpax =5
a0 0.6305 | | Okmax =6
ao0 i
0.6300 -
0.715 0.720 0.725 0.730
ao
apo




MOnOdrOmy + SUSY POSIt|V|ty Justin Berman, Aidan Herderschee, HE (in progress)

Increase ki, .,

0.63040
. L
0650 0.63038 |-
- 063036 |-
0.640 |- §ls O kmax = 6
— S — i I
2| 2 ] O kmax =8
< <
0635+ . iz = L |
1k, = 4 06315} \ 3032}
| Koy = \
0.630 -
3030 -
0.6310 |- < g 07298 07300 07302 07304 07306  0.7308
0625 \
1 = km = 4 aro
5 110,0
0.68 0.69 0.70 0.71 072 0.73 O Kmax =
a0 0.6305 | | Okmax =6
aopo §
0.6300 |-
0.715 0.720 0.725 0.730
aro

aoo




MOnOdrOmy + SUSY POSIt|V|ty Justin Berman, Aidan Herderschee, HE (in progress)

Overall bounds for k = 8 with / = 800

max max

1.20198 < a0 < 1.20206 within 0.0066% of af'y = (3 = 1.202057

1.03692 < aso < 1.03694 within 0.0014% of a5 = (5 = 1.036928

vs. ~1.5% and 0.2% in Huang, Liu, Rodina, Wang [2008.02293]




Monodromy + SUSY POS|t|V|ty Justin Berman, Aidan Herderschee, HE (in progress)

7 8 v
1
1
4 a String value N d3 o
1,0 T 7t g ¢
! |
6 o !
. \ ; 6 ¢
1 1
5r o—1io 1
o5 ! - :
1 5F op
4r I |
1 1
| af —-—
3 [ + 1
1 1
' :
2t . : - 3L, . o . . . . .
0.66 0.68 0.70 072 0.74 076 0.620 0.625 0.630 0.635 0.640 0.645 0.650 0.655
Allowed a o/ao Allowed a3 0/ao,0
. 1
8 |. 8t °
1
! 1
! 1
: d 4, 1 ! d 5, 0
7 ¢t ;
l 7t 4o
! 1
! 1
»
g 6 .I—o g :
3 : 18 !
e | L
1
5 -~ I
! 1
! 1
! |
4t — . st !
0.02 0.03 0.04 0.05 0.06 0.6128 06130 0.6132 0.6134 0.6136

Allowed as1/ao o Allowed as o/ao o




MOnOdrOmy + SUSY POSIt|V|ty Justin Berman, Aidan Herderschee, HE (in progress)

Overall bounds for k = 8 with / = 800

max max

1.20198 < a0 < 1.20206 within 0.0066% of af'y = (3 = 1.202057

1.03692 < aso < 1.03694 within 0.0014% of a5 = (5 = 1.036928

vs. ~1.5% and 0.2% in Huang, Liu, Rodina, Wang [2008.02293]

70 — 630¢3
0.0405345 < a4 < 0.0406249 within 0.22% of a3} = ( 00 @)

vs. ~52% in Huang, Liu, Rodina, Wang [2008.02293]

= 0.040537

as.0 ae.1 ar.o a7 2 as 1

Within 0.0001% 0.9% 0.00006% 27% 3.8%




MOnOdrOmy + SUSY POSIt|V|ty Justin Berman, Aidan Herderschee, HE (in progress)

d

ag . a
Define Lk,q = max < ’q) — min (—) measure of how well each coefficient is fixed for given k.-
ao,o 0,0

Log-Log plot shows convergence faster than powers of 1/k,.,

oM =1

gap

0.100 | ¢
0.010

0.001

- (1,0)
- (30 _
07 e (4,1)

108t - (5,0

Lk,q

107




Justin Berman, Aidan Herderschee, HE (in progress)

Monodromy + SUSY Positivity

. ak7q 3 a/kaq . . . . .
Define Lk,q = max —min | — measure of how well each coefficient is fixed for given k.-
ao,o 0,0

Log-Log plot shows convergence faster than powers of 1/k,.,

/ 2 _ 2 1
o Mgap =1 o Mg, = 2
0.100} o
0.010 0.01} )
0.001 1,0
N 1.0 ; % 1074 - (10
S el = GO N | - (3,0
1070 . 1078t i ’
- @D % - (5,0)
1076} —*= (5,0)
, . 3 1078 .
2 4 8 4
kmax kmax




Where is string theory?

So, the tree-level open string (i.e. the Veneziano amplitude) does indeed appear to be
on the intersection of the convex space carved out by the positivity constraints and
the monodromy constraints. But how?



Where is string theory?

So, the tree-level open string (i.e. the Veneziano amplitude) does indeed appear to be
on the intersection of the convex space carved out by the positivity constraints and
the monodromy constraints. But how?

Or does the convex space shrink in such a way that

) the intersection shrinks to a point as k..., increases?
Is the string on the boundary of the P e

convex positive region?

monodromy plane
monodromy plane




Where is string theory?

So, the tree-level open string (i.e. the Veneziano amplitude) does indeed appear to be
on the intersection of the convex space carved out by the positivity constraints and
the monodromy constraints. But how?

Or does the convex space shrink in such a way that

: the intersection shrinks to a point as k..., increases?
Is the string on the boundary of the P e

convex positive region?

To assess,
vary the monodromy
plane and bootstrap




Testing the geometry




Monovariables

Recall string monodromies

linear combination fixed string value

ao,0 =G="

a2.0 - C4 - g_g )

a1 — %64 - % )

as,1 — 2a3,0 + (2a1,0 =0,

a4.0 = (6 = % )

ag2 — 2041 = —1606 = —#620 :
as1 — 3aso + Caaso + Quarp =0,

5
as2 — Saso + 22 az0 + 3G aip =0,




Monovariables

Recall string monodromies

linear combination fixed Stri& value /

ao,0 = (2 = To
a2,0 = (4 =1
a1 =14 = — T2
as;1 — 2a3p + C2aip =0, => =713
4,0 = (6 — T4
a4,2 — 204, = — = T5
as1 — 3as0 + Caazo + Caa1p =0, — T6
as2 — das0 + 2¢2 a3 0 + %C4 aip =0, — T7




Monovariables

Recall string monodromies

linear combination fixed “Monovariables”
ao,0 —T0

a2,0 — 71

a1 = T2

ag — 2a30 + C2a1,0 — T3

40 — T4

ag2 — 2a4,1 = T5

as,1 — 3as,0 + (2a3,0 + C4a10 — T6

as2 — das0 + 2¢2 a3 0 + §C4 a1,0 — Ty




Monovariables

Then construct theories that obey the positivity bounds
. “(1,1) theory”

Alsu) =4 (fMO: 2| o=y

[ 2P [m‘*_r(—s/m?)r(—u/m?)})

M2, m* | su [(1+t/m?)
/ \
Subtract off massless poles Veneziano
. 1 2) 1 . 1 1,1
e.g. picking pfn% = pfn% = 55(7712 —1) gives ap, = 5(@2‘22 4+ a((),(i) ))

Generally, we can pick the densities to be sums over delta-functions at various masses.
These will be the




Test theories

For a given test-theory, we compute the corresponding a,, and
thus the monovariables r;.

Monovariable constraints are null constraints for SDPB/CPLEX.

We test if SDPB/CPLEX narrows in on the Wilson coefficients unfixed by
the monovariable constraints (just as it did for Veneziano).

Because we know all a, , by construction, we know if SDPB/CPLEX gets it right.

Example ->




Test theory example

Known (by construction) values of a; g and a3 o

T T T T T T T T T T T T T T T T T T T T
Q.30 1 0.2805 |
02821 ‘ ]
0.29+ 4
0.280 - 0.2800
sl o [ 2l g ol o
gvgo‘zs km 3c|-¢.° rkmax=4 gl e O kmax = 6
- kmax 4 0278 ] kmax = O kinax =7
[ = 278
& O kmax = 0 kmax = 8
027 0.2795
0.276 -
0.26
L . . . . ) . . ) ! ! . .
L | L 1 ! L . .
0.49 0.50 051 0.52 0.53 0.54 0.55 0.56 0.520 0.525 0.530 0.535 0.540 0.545 0.550 0.534 0.535 0.536 0.537 0.538 0.539
a a
ato 10 1.0
. aoo ao0

aoo

Similarly to the string: closing in on narrower and narrower allowed regions, shrinking toward the point of the
constructed (known) values of the Wilson coefficients.




Test Theory: ranges shrinking with increasing k...,

8 ¢ 8 @
I I
7 o |
! 7 oo
i
} i
ot Known value o :
' 6 .—e‘
5 s ; 5 !
& ' & :
H 5 ——
4t v !
41
3+
2 3 L &&———mmm—m— V0V .
0.40 0.45 0.50 0.55 0.60 0.26 0.27 0.28 0.29 0.30
Allowed a1 9 Allowed a3
8 —p 8l o
| '
' '
I :
7 .—:—. !
|
! 7 1o
i |
% ! x 1
g 6 L ——— !
S ' & .
! '
6 —
5 ‘
4+ 5 L
. ! ! N . ! . ‘ ) ' ) )
0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.188 0.190 0.192 0.194
Allowed a4 Allowed as o




Three sample theories L, =max (%> — min <%>

ao,o ao,0
0.100 |
0.010 £
-o— Test 1
—.— 0.010 |
o— Test 2 - S 0001}
—o— Test 3 ~ ~
. 0.001 |
-o- String o' = 1 107}
10—4 L
107°¢ .
2 4 6 8 3 4 5 6 7 8

0.100 —

0010} Intervals shrink towards zero as power laws

or faster.

Ly,

0.001 ¢




Flattening of the EFT-hedron

This indicates that as k,,,, grows, the allowed convex region flattens in certain directions

conjey




Flattening of the EFT-hedron

To do:

* Higher k.., with monovariables and other ways of testing
the flattening conjecture

 Understand how the flattening happens. Which directions? How
generic is this (also for other S-matrix bootstraps?)

* Flattening => correlations between linear combinations of EFT
coefficients. Can this be exploited to extract information about the UV
theory?




Flattening of the EFT-hedron

e Also, assuming as stringy a relation as the monodromy to isolate
the string is not quite satisfactory. It would be interesting to understand
what minimal conditions (purely field theoretical) can be used
instead to isolate the string in the space of EFTs.

* Note: string monodromies do show up in low-energy physics as shown in for
the bi-adjoint scalar with higerh-derivative interactions and
in the context of generalizing the double copy.

[Alan (S-K) Chen, Aidan Herderschee, HE 2212.13998 + 2302.04895]

But that’s another story for another time.




Thank you

Justin Berman Aidan Herderschee
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Example of dependence of on /., (k,..=10fora,,=0.7)

a21 min

0.1756 SDPB time (s)
0.1754 800: ®
600 | ’
400 o
0.1750 - \ 200 i_.
\
‘ ‘ ; o T ‘ - : ‘ L : i — |max
100 200 300 400 500 200 250 300 350 400
kmax = 10 lower bound on a21 min vs /., Difference between /,,, 300 and
Blue: fit to A/(/a)¢ + B fitted asymptotic value is ~ 8 x10~
Green: asymptotic fit value B =0.17485... => OK for plots
lnax=300 value: 0.17493.. But for precision bounds, need higher /5,




