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Positivity bounds for Effective Field Theories
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This talk:  Combine positivity constraints with maximal supersymmetry in 4d. 

Consider N=4 super Yang-Mills + all local 4-field higher-derivative operators 
compatible with N=4 supersymmetry:

This class of EFTs include the tree-level open superstring amplitude (Veneziano 
amplitude)
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This talk:  Combine positivity constraints with maximal supersymmetry in 4d. 

Consider N=4 super Yang-Mills + all local 4-field higher-derivative operators 
compatible with N=4 supersymmetry:  “N=4 SYM+h.d.”, e.g.

This class of EFTs include the tree-level open superstring amplitude (Veneziano 
amplitude)
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GOALS
- What are the most general bounds on the coefficients in max SUSY EFTs?
- Where is string theory?
- How does the “EFT-hedron” behave at increasing order in the derivative 

expansion?



Constraints from N=4 supersymmetry 



Setup: 4-point amplitudes in N=4 SYM + hd

Constraints of maximal supersymmetry: start with the color-ordered 4-point on-shell superamplitude

Project out gluons:

1 Introduction

2 Theory Space as a Convex Geometry

In this section, we derive an ansatz for the low-energy expansion of the 2 ! 2 scattering
amplitudes in N = 4 supersymmetric Yang-Mills EFT with gauge group SU(N) in the
strict large-N limit. The dispersive representation of the Wilson coefficients is provided in
Eq. (2.20), while the null constraints from crossing symmetry are provided in Eqs. (2.27)
and (2.38).

2.1 N = 4 Superamplitude

The massless N = 4 vector supermultiplet consists of 16 states: the two gluon helicity
states g±, the four pairs of positive and negative helicity gluinos �A and �ABC , and the
three pairs of complex scalars zAB. Here A,B,C = 1, 2, 3, 4 are R-indices SU(4)R of which
the on-shell states transform in fully antisymmetric irreps.
The scattering amplitudes of an N = 4 SYM EFT can be encoded into on-shell superam-
plitudes. At 4-point, we write

A4 = �8(Q̃)
[12]2

h34i2
f(s, u) with �8(Q̃) =

1

24

4Y

A=1

4X

i,j=1

hiji⌘iA⌘jA . (2.1)

The ordering of the external states is understood to be 1234 unless otherwise specified. The
on-shell superspace formalism with the Grassmann variables ⌘iA can be found in Chapter
4 of [1, 2]. To project out component amplitudes from the superamplitude, one takes
derivatives with respect to the Grassmann variables ⌘iA to match the R-indices of the
ith state. Note that a positive helicity gluon corresponds to the SU(R) singlet with no
indices whereas the negative helicity gluon corresponds to the singlet with all four R-indices,
i.e. g� = g1234. Thus, projecting out the 4-gluon amplitude from (2.1) gives

A4[+ +��] = [12]2h34i2f(s, u) , (2.2)

where ± is shorthand for the gluon helicity states. In pure (S)YM theory, the tree-level
Parke-Taylor gluon amplitude is

AYM
4 [+ +��] =

h34i4

h12ih23ih34ih41i
= �

[12]2h34i2

su
, (2.3)

so this corresponds to f(s, u) = �1/(su).
Consider a pair of conjugate scalars z = z12 and z̄ = z34 of the massless N = 4 super-
multiplet. Projecting three different 4-scalar amplitudes from the superamplitude (2.1), we
find

A4[zzz̄z̄] = s2f(s, u) , A4[zz̄zz̄] = t2f(s, u) = A4[z̄zz̄z] . (2.4)

Cyclicity requires A4[2341] = A4[1234] so together with the supersymmetry requirement
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Leading order: gluon amplitude is Parke-Taylor: 
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So pure YM corresponds to 
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f(s, u) = f(u, s)

get on the Wilson coefficients in Section 2.4 and then show what certain projections of
the EFThedron look like in Sections 2.6 and 2.7. Sections 2.6 and 2.5 locate particular
theories in the EFThedron: theories that lie at obvious corners and boundaries and Type-I
superstring theory respectively.
In Section 3.1, we rephrase the analytical problem, which can only be solved for bounds that
come from considering small subsets of the Wilson coefficients, into a linear optimization
problem which can be solved with CPLEX. Section 3.2 applies this formulation of the
problem to give evidence that the size of particular projections of the EFThedron are
smaller than one would naively expect given the existence of the theories in Section 2.6.
We then apply the linear programming method to the monodromy conjecture and emergent
codimension conjecture in Sections 4.2 and 5 respectively. Section 5.2 gives numerical
evidence for the emergent codimension conjecture. 2

2 Theory Space as a Convex Geometry

In this section, we derive an ansatz for the low-energy expansion of the 2 ! 2 scattering
amplitudes in N = 4 supersymmetric Yang-Mills EFT with gauge group SU(N) in the strict
large-N limit. We then review the derivations of positivity bounds in Refs. [3, 4] for the
Wilson coefficients.

2.1 N = 4 Superamplitude

The massless N = 4 vector supermultiplet consists of 16 states: the two gluon helicity
states g±, the four pairs of positive and negative helicity gluinos �A and �ABC , and the
three pairs of complex scalars zAB. Here A,B,C = 1, 2, 3, 4 are R-indices SU(4)R of which
the on-shell states transform in fully antisymmetric irreps.
The scattering amplitudes of an N = 4 SYM EFT can be encoded into on-shell superam-
plitudes. At 4-point, we write

A4 = �8(Q̃)
[12]2

h34i2
f(s, u) with �8(Q̃) =

1

24

4Y

A=1

4X

i,j=1

hiji⌘iA⌘jA . (2.1)

The ordering of the external states is understood to be 1234 unless otherwise specified. The
on-shell superspace formalism with the Grassmann variables ⌘iA can be found in Chapter
4 of [22, 23]. To project out component amplitudes from the superamplitude, one takes
derivatives with respect to the Grassmann variables ⌘iA to match the R-indices of the
ith state. Note that a positive helicity gluon corresponds to the SU(R) singlet with no
indices whereas the negative helicity gluon corresponds to the singlet with all four R-indices,

2The amplitudes we study are technically not well defined because perturbative N = 4 SYM amplitudes
at the origin of moduli space are IR divergent. To make our calculations precise, we can consider taking
the N = 4 SYM amplitudes to be on the Coulomb branch, but asymptotically close to the origin [17–21].
Even though the higher loop amplitudes are ill-defined at the origin of moduli space, they are well defined
asymptotically close to the origin. The positivity bounds we derive are independent of how one approaches
the origin of moduli space.
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Setup: 4-point amplitudes in N=4 SYM + hd

On-shell local higher-derivative terms with 4 fields are in 1-1 correspondence with Mandelstam 
polynomials in s, t, u subject to s+t+u = 0:

A4[zz̄zz̄] = A4[z̄zz̄z] from (2.4) we see that f must be symmetric in s and u:

f(u, s) = f(s, u) . (2.5)

We denote this “crossing symmetry”. It is clearly satisfied by the Parke-Taylor amplitude,
but it has to hold for the full amplitude too.

2.2 Low Energy Ansatz

Local higher-derivative corrections are in 1-1 correspondence with terms of d that are poly-
nomials s, t, u, subject to momentum conservation s+ t+ u = 0. Hence, in the low-energy
expansion we have

f(s, u) = �
1

su
+

X

0qk

ak,qs
k�quq , (2.6)

where the ak,q are the Wilson coefficients of linear combinations of the set of on-shell local
operators tr(D2kF 4) that are independent under the equations of motion and integration
by parts. In particular, a0,0 is the coefficient of tr(F 4). Not all higher-derivative operators
are compatible with N = 4 supersymmetry, and that is reflected in constraints on the
coefficients ak,q imposed by the crossing relation (2.5), namely

Crossing / SUSY: ak,k�q = ak,q for all 0  q  k . (2.7)

Using (2.4), we write the low-energy expansion of the 4-scalar amplitude as

A[zzz̄z̄] = �
s

u
+ s2

X

0qk

ak,q s
k�q uq , (2.8)

with the crossing relations (2.7) imposed on the Wilson coefficients ak,q. There are no
further bounds from 4-point supersymmetry alone.
The factor of s2 multiplying the sum in Eq. (2.8) means that no interaction with less
than four-derivatives contributes to this amplitude, i.e. there are no N = 4 compatible
interactions of the form tr(z2z̄2) and tr(D2z2z̄2).1 This is simply the statement that tr(F 4)

is the lowest-dimensional N = 4 supersymmetric higher-derivative operator available in the
vector sector.
The factor s2 in front of the higher-derivative terms in (2.8) is also useful for deriving the
bounds on the Wilson coefficients ak,q from causality and unitarity, which is the subject of
this paper.

1N = 4 SYM does of course have local 4-scalar interactions, but these have a different R-symmetry

index structure, for example z12z23z34z41; i.e. they involve two different pairs of conjugate scalars, not just

one.
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YM Wilson coefficients

Ansatz:

a0,0  is the coefficient of the N=4 SUSY operator tr(F4)

a1,0 = a1,1 is the coefficient of the N=4 SUSY operator tr(D2F4)

a2,0 = a2,2  and  a2,1 are the two coeffs of the two independent N=4 SUSY operators tr(D4F4)…. etc

with 
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1 Introduction

2 Theory Space as a Convex Geometry

In this section, we derive an ansatz for the low-energy expansion of the 2 ! 2 scattering
amplitudes in N = 4 supersymmetric Yang-Mills EFT with gauge group SU(N) in the
strict large-N limit. The dispersive representation of the Wilson coefficients is provided in
Eq. (2.20), while the null constraints from crossing symmetry are provided in Eqs. (2.27)
and (2.38).

2.1 N = 4 Superamplitude

The massless N = 4 vector supermultiplet consists of 16 states: the two gluon helicity
states g±, the four pairs of positive and negative helicity gluinos �A and �ABC , and the
three pairs of complex scalars zAB. Here A,B,C = 1, 2, 3, 4 are R-indices SU(4)R of which
the on-shell states transform in fully antisymmetric irreps.
The scattering amplitudes of an N = 4 SYM EFT can be encoded into on-shell superam-
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The ordering of the external states is understood to be 1234 unless otherwise specified. The
on-shell superspace formalism with the Grassmann variables ⌘iA can be found in Chapter
4 of [1, 2]. To project out component amplitudes from the superamplitude, one takes
derivatives with respect to the Grassmann variables ⌘iA to match the R-indices of the
ith state. Note that a positive helicity gluon corresponds to the SU(R) singlet with no
indices whereas the negative helicity gluon corresponds to the singlet with all four R-indices,
i.e. g� = g1234. Thus, projecting out the 4-gluon amplitude from (2.1) gives

A4[+ +��] = [12]2h34i2f(s, u) , (2.2)

where ± is shorthand for the gluon helicity states. In pure (S)YM theory, the tree-level
Parke-Taylor gluon amplitude is

AYM
4 [+ +��] =

h34i4

h12ih23ih34ih41i
= �

[12]2h34i2

su
, (2.3)

so this corresponds to f(s, u) = �1/(su).
Consider a pair of conjugate scalars z = z12 and z̄ = z34 of the massless N = 4 super-
multiplet. Projecting three different 4-scalar amplitudes from the superamplitude (2.1), we
find

A4[zzz̄z̄] = s2f(s, u) , A4[zz̄zz̄] = t2f(s, u) = A4[z̄zz̄z] . (2.4)

Cyclicity requires A4[2341] = A4[1234] so together with the supersymmetry requirement

– 2 –



Setup: 4-point amplitudes in N=4 SYM + hd

The S-matrix bootstrap is simpler for external scalar states, so consider a pair of complex 
conjugate N=4 scalars, say   

1 Introduction

2 Theory Space as a Convex Geometry

In this section, we derive an ansatz for the low-energy expansion of the 2 ! 2 scattering
amplitudes in N = 4 supersymmetric Yang-Mills EFT with gauge group SU(N) in the
strict large-N limit. The dispersive representation of the Wilson coefficients is provided in
Eq. (2.20), while the null constraints from crossing symmetry are provided in Eqs. (2.27)
and (2.38).

2.1 N = 4 Superamplitude

The massless N = 4 vector supermultiplet consists of 16 states: the two gluon helicity
states g±, the four pairs of positive and negative helicity gluinos �A and �ABC , and the
three pairs of complex scalars zAB. Here A,B,C = 1, 2, 3, 4 are R-indices SU(4)R of which
the on-shell states transform in fully antisymmetric irreps.
The scattering amplitudes of an N = 4 SYM EFT can be encoded into on-shell superam-
plitudes. At 4-point, we write

A4 = �8(Q̃)
[12]2

h34i2
f(s, u) with �8(Q̃) =

1

24

4Y

A=1

4X

i,j=1

hiji⌘iA⌘jA . (2.1)

The ordering of the external states is understood to be 1234 unless otherwise specified. The
on-shell superspace formalism with the Grassmann variables ⌘iA can be found in Chapter
4 of [1, 2]. To project out component amplitudes from the superamplitude, one takes
derivatives with respect to the Grassmann variables ⌘iA to match the R-indices of the
ith state. Note that a positive helicity gluon corresponds to the SU(R) singlet with no
indices whereas the negative helicity gluon corresponds to the singlet with all four R-indices,
i.e. g� = g1234. Thus, projecting out the 4-gluon amplitude from (2.1) gives

A4[+ +��] = [12]2h34i2f(s, u) , (2.2)

where ± is shorthand for the gluon helicity states. In pure (S)YM theory, the tree-level
Parke-Taylor gluon amplitude is

AYM
4 [+ +��] =

h34i4

h12ih23ih34ih41i
= �

[12]2h34i2

su
, (2.3)

so this corresponds to f(s, u) = �1/(su).
Consider a pair of conjugate scalars z = z12 and z̄ = z34 of the massless N = 4 super-
multiplet. Projecting three different 4-scalar amplitudes from the superamplitude (2.1), we
find

A4[zzz̄z̄] = s2f(s, u) , A4[zz̄zz̄] = t2f(s, u) = A4[z̄zz̄z] . (2.4)

Cyclicity requires A4[2341] = A4[1234] so together with the supersymmetry requirement

– 2 –

1 Introduction

2 Theory Space as a Convex Geometry

In this section, we derive an ansatz for the low-energy expansion of the 2 ! 2 scattering
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The scattering amplitudes of an N = 4 SYM EFT can be encoded into on-shell superam-
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The ordering of the external states is understood to be 1234 unless otherwise specified. The
on-shell superspace formalism with the Grassmann variables ⌘iA can be found in Chapter
4 of [1, 2]. To project out component amplitudes from the superamplitude, one takes
derivatives with respect to the Grassmann variables ⌘iA to match the R-indices of the
ith state. Note that a positive helicity gluon corresponds to the SU(R) singlet with no
indices whereas the negative helicity gluon corresponds to the singlet with all four R-indices,
i.e. g� = g1234. Thus, projecting out the 4-gluon amplitude from (2.1) gives

A4[+ +��] = [12]2h34i2f(s, u) , (2.2)

where ± is shorthand for the gluon helicity states. In pure (S)YM theory, the tree-level
Parke-Taylor gluon amplitude is

AYM
4 [+ +��] =

h34i4

h12ih23ih34ih41i
= �

[12]2h34i2

su
, (2.3)

so this corresponds to f(s, u) = �1/(su).
Consider a pair of conjugate scalars z = z12 and z̄ = z34 of the massless N = 4 super-
multiplet. Projecting three different 4-scalar amplitudes from the superamplitude (2.1), we
find

A4[zzz̄z̄] = s2f(s, u) , A4[zz̄zz̄] = t2f(s, u) = A4[z̄zz̄z] . (2.4)

Cyclicity requires A4[2341] = A4[1234] so together with the supersymmetry requirement
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A4[zz̄zz̄] = A4[z̄zz̄z] from (2.4) we see that f must be symmetric in s and u:

f(u, s) = f(s, u) . (2.5)

We denote this “crossing symmetry”. It is clearly satisfied by the Parke-Taylor amplitude,
but it has to hold for the full amplitude too.

2.2 Low Energy Ansatz

Local higher-derivative corrections are in 1-1 correspondence with terms of d that are poly-
nomials s, t, u, subject to momentum conservation s+ t+ u = 0. Hence, in the low-energy
expansion we have

f(s, u) = �
1

su
+

X

0qk

ak,qs
k�quq , (2.6)

where the ak,q are the Wilson coefficients of linear combinations of the set of on-shell local
operators tr(D2kF 4) that are independent under the equations of motion and integration
by parts. In particular, a0,0 is the coefficient of tr(F 4). Not all higher-derivative operators
are compatible with N = 4 supersymmetry, and that is reflected in constraints on the
coefficients ak,q imposed by the crossing relation (2.5), namely

Crossing / SUSY: ak,k�q = ak,q for all 0  q  k . (2.7)

Using (2.4), we write the low-energy expansion of the 4-scalar amplitude as

A[zzz̄z̄] = �
s

u
+ s2

X

0qk

ak,q s
k�q uq , (2.8)

with the crossing relations (2.7) imposed on the Wilson coefficients ak,q. There are no
further bounds from 4-point supersymmetry alone.
The factor of s2 multiplying the sum in Eq. (2.8) means that no interaction with less
than four-derivatives contributes to this amplitude, i.e. there are no N = 4 compatible
interactions of the form tr(z2z̄2) and tr(D2z2z̄2).1 This is simply the statement that tr(F 4)

is the lowest-dimensional N = 4 supersymmetric higher-derivative operator available in the
vector sector.
The factor s2 in front of the higher-derivative terms in (2.8) is also useful for deriving the
bounds on the Wilson coefficients ak,q from causality and unitarity, which is the subject of
this paper.

1N = 4 SYM does of course have local 4-scalar interactions, but these have a different R-symmetry

index structure, for example z12z23z34z41; i.e. they involve two different pairs of conjugate scalars, not just

one.
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A(s, u) = with 

This amplitude is the 
focus of our analysis;
we’ll place bounds on
the ak,q’s



Veneziano in this framework
One interesting theory within this framework is the open string. Specifically, the 
4-point open string tree amplitude. 

In the scalar sector, the Veneziano amplitude takes the form  

Figure 2: A visualization of the difference between the projections of a a hyperplane (red,
long) two-dimensional geometry (blue, medium) and and the projection of their intersection
(purple, short). This represents how the intersection of the projections of the EFThedron
and crossing hyperplane can be larger than the projection of the intersection between the
spaces.

a convex region of this projective space.6 Note that even though we call this a vertex
representation of the geometry, there is a continuum of vertices so the geometry space is
not necessarily a polytope.

2.5 Veneziano Amplitude

The Veneziano amplitude for tree-level scattering of massless open strings is unitary [27, 28],
compatible with N = 4 supersymmetry upon restriction to 4d, and obeys the criteria in
Section 2.3, so it must ‘live’ within the boundaries of our supersymmetric EFT-hedron.
Projecting to two pairs of massless external scalars, the Veneziano amplitude is [AH: Need
to cross check pre-factor matches convention. HE: I think it is right]

Astr[zzz̄z̄] = �(↵0s)2
�(�↵0s)�(�↵0u)

�(1� ↵0(s+ u))
. (2.33)

Expanding this in small ↵0s and ↵0u gives

Astr[zzz̄z̄] = �
s

u
+ s2

✓
⇣2↵

02 + ⇣3↵
03(s+ u) + ⇣3↵

04�s2 + 1
4su+ u2

�
+ . . .

◆
, (2.34)

so recalling the rescaling of the (2.19) of the Wilson coefficients, the dimensionless Wil-
son coefficients are a0,0 = ⇣2↵02M4

gap, a1,0 = ⇣3↵03M6
gap, etc. The smallest massive state

6The vertex representation of polytopes in projective space is reviewed in Appendix [].
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Dispersive representations



Assumptions

1) Large N  =>  color-ordered single-trace amplitude has no t-pole or t-channel discontinuities.

2) Weak-coupling at all energy scales  =>  ensures we can disregard loops of massless states.

3) Mass gap: other than the massless N=4 supermultiplet, there are no other states with 
        mass less than Mgap.

4)     Partial wave decomposition 

         Unitarity   =>   

5)     Amplitude analytic away from the real s-axis.

6)     Froissart-Martin-like bounds                                                            and        

2.3 Causality Bounds on Wilson Coefficients

We are going to study the full color-ordered N = 4 SYM EFT scalar amplitude

A(s, u) = A[zzz̄z̄] . (2.9)

In general, this amplitude can have poles from exchanges of massive and massless particles
as well as branch cuts. We make the following set of assumptions:

1. The theory admits a weak-coupling description. This means that we can ignore loops
of massless particles and assume the low-energy expansion of the amplitude to be
(2.8).

2. The theory has a mass gap, Mgap, such that there are no states with nonzero mass
below Mgap.

3. Large-N ensures that the color-ordered amplitude A[1234] has no t-channel poles or
discontinuities.

4. The amplitude admits a partial wave decomposition

A(s, u) = 16⇡
1X

`=0

(2`+ 1) a`(s)P`

�
cos(✓)

�
, (2.10)

where cos(✓) = 1 + 2u/s and the Legendre polynomials P` are labeled by the spin `.
Crucially, unitarity requires Im(a`(s)) > 0.2

5. For fixed u < 0 and sufficiently large |s|, the amplitude is analytic away from the real
axis in the complex s-plane.

6. The amplitude obeys a Froissart-Martin-like bound:

fixed u < 0 : lim
s!1

A(s, u)

s2
= 0 ,

fixed t < 0 : lim
s!1

A(s,�s� t)

s2
= 0 .

(2.11)

A rigorous derivation of Property 5 for general theories is not currently known, but it does
hold at all orders in perturbation theory [3–5]. Property 6 can be shown to hold with
assumptions about the UV behavior of the theory [6, 7]. For example, if we assume the
amplitude is analytic and polynomially bounded as M < sN for some N at large s, then
Eq. (2.11) follows from unitarity [4].
We now turn to deriving the causality bounds. We first relate the Wilson coefficients ak,q
to the theory spectrum using the Froissart bound. Each ak,q can be extracted from the

2
In principle, Im(a`(s)) is also bounded from above. However, we do not use the upper bound in this

paper.
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Legendre
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(2.8).

2. The theory has a mass gap, Mgap, such that there are no states with nonzero mass
below Mgap.

3. Large-N ensures that the color-ordered amplitude A[1234] has no t-channel poles or
discontinuities.

4. The amplitude admits a partial wave decomposition

A(s, u) = 16⇡
1X

`=0

(2`+ 1) a`(s)P`

�
cos(✓)

�
, (2.10)

where cos(✓) = 1 + 2u/s and the Legendre polynomials P` are labeled by the spin `.
Crucially, unitarity requires Im(a`(s)) > 0.2

5. For fixed u < 0 and sufficiently large |s|, the amplitude is analytic away from the real
axis in the complex s-plane.

6. The amplitude obeys a Froissart-Martin-like bound:

fixed u < 0 : lim
s!1

A(s, u)

s2
= 0 ,

fixed t < 0 : lim
s!1

A(s,�s� t)

s2
= 0 .

(2.11)

A rigorous derivation of Property 5 for general theories is not currently known, but it does
hold at all orders in perturbation theory [3–5]. Property 6 can be shown to hold with
assumptions about the UV behavior of the theory [6, 7]. For example, if we assume the
amplitude is analytic and polynomially bounded as M < sN for some N at large s, then
Eq. (2.11) follows from unitarity [4].
We now turn to deriving the causality bounds. We first relate the Wilson coefficients ak,q
to the theory spectrum using the Froissart bound. Each ak,q can be extracted from the

2
In principle, Im(a`(s)) is also bounded from above. However, we do not use the upper bound in this

paper.
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Dispersive representation

A4[zz̄zz̄] = A4[z̄zz̄z] from (2.4) we see that f must be symmetric in s and u:

f(u, s) = f(s, u) . (2.5)

We denote this “crossing symmetry”. It is clearly satisfied by the Parke-Taylor amplitude,
but it has to hold for the full amplitude too.

2.2 Low Energy Ansatz

Local higher-derivative corrections are in 1-1 correspondence with terms of d that are poly-
nomials s, t, u, subject to momentum conservation s+ t+ u = 0. Hence, in the low-energy
expansion we have

f(s, u) = �
1

su
+

X

0qk

ak,qs
k�quq , (2.6)

where the ak,q are the Wilson coefficients of linear combinations of the set of on-shell local
operators tr(D2kF 4) that are independent under the equations of motion and integration
by parts. In particular, a0,0 is the coefficient of tr(F 4). Not all higher-derivative operators
are compatible with N = 4 supersymmetry, and that is reflected in constraints on the
coefficients ak,q imposed by the crossing relation (2.5), namely

Crossing / SUSY: ak,k�q = ak,q for all 0  q  k . (2.7)

Using (2.4), we write the low-energy expansion of the 4-scalar amplitude as

A[zzz̄z̄] = �
s

u
+ s2

X

0qk

ak,q s
k�q uq , (2.8)

with the crossing relations (2.7) imposed on the Wilson coefficients ak,q. There are no
further bounds from 4-point supersymmetry alone.
The factor of s2 multiplying the sum in Eq. (2.8) means that no interaction with less
than four-derivatives contributes to this amplitude, i.e. there are no N = 4 compatible
interactions of the form tr(z2z̄2) and tr(D2z2z̄2).1 This is simply the statement that tr(F 4)

is the lowest-dimensional N = 4 supersymmetric higher-derivative operator available in the
vector sector.
The factor s2 in front of the higher-derivative terms in (2.8) is also useful for deriving the
bounds on the Wilson coefficients ak,q from causality and unitarity, which is the subject of
this paper.

1N = 4 SYM does of course have local 4-scalar interactions, but these have a different R-symmetry

index structure, for example z12z23z34z41; i.e. they involve two different pairs of conjugate scalars, not just

one.
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A(s, u) =At low-energy, we have

So we can extract each Wilson coefficient via a contour integral:
(fixed u<0)
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Figure 1: Contour deformation that converts Eq. (2.12) to Eq. (2.13). The arc at infinity
vanishes due to Property 4. The contour around the branch cut can be identified with
the discontinuity of the s-channel branch-cut. We only include a single simple pole in the
figure, but there can be an infinite number of massive simple poles.

low-energy limit (2.4) of the amplitude A(s, u) by the contour integral

ak,q =
1

q!

@q

@uq

Z

C?

ds0

2⇡i

A(s0, u)

s0k�q+3

����
u=0

, (2.12)

where the contour C? is a small circle in the complex s-plane surrounding s = 0. Proceeding
with the contour deformation described in Fig. 1 [3], the formula for the Wilson coefficient
can be rewritten as

ak,q =
1

q!

@q

@uq

✓
1

⇡

Z
ds0

s0k�q+3
ImA(s0, u)

◆ �����
u=0

. (2.13)

Here we used (2.11) to set the contribution from the contour at infinity to zero and the fact
that the discontinuity of the amplitide is proportional to its imaginary part, 2iIm[A(s, u)] =

A(s+ i✏, u)�A(s� i✏, u). There is no t-channel contribution because we work in the planar
limit.3 Using the partial wave decomposition, the discontinuity of the amplitude can be
expressed as

Im(A) = 16⇡
X

`=0

(2`+ 1) Im(a`(s
0))P`

✓
1 +

2u

s0

◆
. (2.14)

In (2.14), the only dependence on u enters via the Legendre polynomials, which can be
written as

P`

�
1 + 2�

�
=

X̀

q=0

v`,q�
q with v`,q =

Qq
a=1

⇥
`(`+ 1)� a(a� 1)

⇤

(q!)2
. (2.15)

Taking q u-derivatives and then setting u = 0 picks out the coefficient v`,q from the Legendre

3
Note that we have absorbed single particle contributions into the definition of the discontinuity. In

comparison, the derivation in Refs. [3, 4] treated the single particle contributions separately, but it makes

no difference in the final positivity bounds.
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Figure 1: Contour deformation that converts Eq. (2.12) to Eq. (2.13). The arc at infinity
vanishes due to Property 4. The contour around the branch cut can be identified with
the discontinuity of the s-channel branch-cut. We only include a single simple pole in the
figure, but there can be an infinite number of massive simple poles.
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where the contour C? is a small circle in the complex s-plane surrounding s = 0. Proceeding
with the contour deformation described in Fig. 1 [3], the formula for the Wilson coefficient
can be rewritten as
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Here we used (2.11) to set the contribution from the contour at infinity to zero and the fact
that the discontinuity of the amplitide is proportional to its imaginary part, 2iIm[A(s, u)] =

A(s+ i✏, u)�A(s� i✏, u). There is no t-channel contribution because we work in the planar
limit.3 Using the partial wave decomposition, the discontinuity of the amplitude can be
expressed as

Im(A) = 16⇡
X

`=0

(2`+ 1) Im(a`(s
0))P`

✓
1 +

2u

s0

◆
. (2.14)

In (2.14), the only dependence on u enters via the Legendre polynomials, which can be
written as
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Taking q u-derivatives and then setting u = 0 picks out the coefficient v`,q from the Legendre

3
Note that we have absorbed single particle contributions into the definition of the discontinuity. In

comparison, the derivation in Refs. [3, 4] treated the single particle contributions separately, but it makes

no difference in the final positivity bounds.
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M2 = s0



Dispersive representationpolynomials in (2.14), so, after a change of integration variable, (2.13) becomes

ak,q =
X

`=0

Z 1

M2
gap

dM2 ⇢`(M
2)

✓
1

M2

◆k+3

v`,q , (2.16)

where
⇢`(M

2) = 16(2`+ 1) Im
�
a`(M

2)
�
. (2.17)

Equation (2.16) is the dispersive representation of the individual Wilson coefficients in
terms of the high energy spectrum. Unitarity requires ⇢`(M2) � 0 and this places non-
trivial restrictions on the ak,q.
To make the Wilson coefficients dimensionless, we multiply (2.16) by (M2

gap)
(k+2) and re-

define the ak,q as4

(M2
gap)

(k+2)ak,q ! ak,q , (2.18)

and define

x =
M2

gap

M2
and p`(x) = x ⇢`

�
M2

gap/x
�
> 0 . (2.19)

The dispersive representation (2.16) of the Wilson coefficients can then be written as

ak,q =
X

`=0

Z 1

0
dx p`(x)x

k v`,q, p`(x) > 0 . (2.20)

A similar version of the crossing symmetric EFT-hedron (also called s-channel EFT-hedron)
was examined in Refs. [4, 8] but without the supersymmetric context.
It is immediately clear from (2.20) that all Wilson coefficients have to be non-negative,

ak,q � 0 . (2.21)

Further, because p(x), v`,q � 0 and 0  x  1 in (2.19), we must have

ak0,q  ak,q, k  k0 . (2.22)

We can now use the crossing conditions ak,k�q = ak,q along with (2.22) to see that

a0,0 �a1,0 � a2,0 � a3,0 . . .

q
a1,1 � a2,1 � a3,1 . . .

q
a3,2 . . .

...

(2.23)

4
Equivalently, we can think of this as setting Mgap = 1.
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Here we used (2.11) to set the contribution from the contour at infinity to zero and the fact
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In (2.14), the only dependence on u enters via the Legendre polynomials, which can be
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Taking q u-derivatives and then setting u = 0 picks out the coefficient v`,q from the Legendre

3
Note that we have absorbed single particle contributions into the definition of the discontinuity. In

comparison, the derivation in Refs. [3, 4] treated the single particle contributions separately, but it makes

no difference in the final positivity bounds.
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Finally, rescale the ak,q’s by (Mgap)2(k+2)
 (so they are all dimensionless)
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Equation (2.16) is the dispersive representation of the individual Wilson coefficients in
terms of the high energy spectrum. Unitarity requires ⇢`(M2) � 0 and this places non-
trivial restrictions on the ak,q.
To make the Wilson coefficients dimensionless, we multiply (2.16) by (M2
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(k+2) and re-

define the ak,q as4
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and define
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The dispersive representation (2.16) of the Wilson coefficients can then be written as
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A similar version of the crossing symmetric EFT-hedron (also called s-channel EFT-hedron)
was examined in Refs. [4, 8] but without the supersymmetric context.
It is immediately clear from (2.20) that all Wilson coefficients have to be non-negative,

ak,q � 0 . (2.21)

Further, because p(x), v`,q � 0 and 0  x  1 in (2.19), we must have

ak0,q  ak,q, k  k0 . (2.22)

We can now use the crossing conditions ak,k�q = ak,q along with (2.22) to see that

a0,0 �a1,0 � a2,0 � a3,0 . . .

q
a1,1 � a2,1 � a3,1 . . .

q
a3,2 . . .

...

(2.23)

4
Equivalently, we can think of this as setting Mgap = 1.
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Low-energy EFT Integral over the high-energy spectrum
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Immediate consequences:

polynomials in (2.14), so, after a change of integration variable, (2.13) becomes

ak,q =
X

`=0

Z 1

M2
gap

dM2 ⇢`(M
2)

✓
1

M2

◆k+3

v`,q , (2.16)

where
⇢`(M

2) = 16(2`+ 1) Im
�
a`(M

2)
�
. (2.17)

Equation (2.16) is the dispersive representation of the individual Wilson coefficients in
terms of the high energy spectrum. Unitarity requires ⇢`(M2) � 0 and this places non-
trivial restrictions on the ak,q.
To make the Wilson coefficients dimensionless, we multiply (2.16) by (M2

gap)
(k+2) and re-

define the ak,q as4

(M2
gap)

(k+2)ak,q ! ak,q , (2.18)

and define

x =
M2

gap

M2
and p`(x) = x ⇢`

�
M2

gap/x
�
> 0 . (2.19)

The dispersive representation (2.16) of the Wilson coefficients can then be written as

ak,q =
X

`=0

Z 1

0
dx p`(x)x

k v`,q, p`(x) > 0 . (2.20)

A similar version of the crossing symmetric EFT-hedron (also called s-channel EFT-hedron)
was examined in Refs. [4, 8] but without the supersymmetric context.
It is immediately clear from (2.20) that all Wilson coefficients have to be non-negative,

ak,q � 0 . (2.21)

Further, because p(x), v`,q � 0 and 0  x  1 in (2.19), we must have

ak0,q  ak,q, k  k0 . (2.22)

We can now use the crossing conditions ak,k�q = ak,q along with (2.22) to see that

a0,0 �a1,0 � a2,0 � a3,0 . . .

q
a1,1 � a2,1 � a3,1 . . .

q
a3,2 . . .

...

(2.23)

4
Equivalently, we can think of this as setting Mgap = 1.

– 6 –

1)

polynomials in (2.14), so, after a change of integration variable, (2.13) becomes

ak,q =
X

`=0

Z 1

M2
gap

dM2 ⇢`(M
2)

✓
1

M2

◆k+3

v`,q , (2.16)

where
⇢`(M

2) = 16(2`+ 1) Im
�
a`(M

2)
�
. (2.17)

Equation (2.16) is the dispersive representation of the individual Wilson coefficients in
terms of the high energy spectrum. Unitarity requires ⇢`(M2) � 0 and this places non-
trivial restrictions on the ak,q.
To make the Wilson coefficients dimensionless, we multiply (2.16) by (M2

gap)
(k+2) and re-

define the ak,q as4

(M2
gap)

(k+2)ak,q ! ak,q , (2.18)

and define

x =
M2

gap

M2
and p`(x) = x ⇢`

�
M2

gap/x
�
> 0 . (2.19)

The dispersive representation (2.16) of the Wilson coefficients can then be written as

ak,q =
X

`=0

Z 1

0
dx p`(x)x

k v`,q, p`(x) > 0 . (2.20)

A similar version of the crossing symmetric EFT-hedron (also called s-channel EFT-hedron)
was examined in Refs. [4, 8] but without the supersymmetric context.
It is immediately clear from (2.20) that all Wilson coefficients have to be non-negative,

ak,q � 0 . (2.21)

Further, because p(x), v`,q � 0 and 0  x  1 in (2.19), we must have

ak0,q  ak,q, k  k0 . (2.22)

We can now use the crossing conditions ak,k�q = ak,q along with (2.22) to see that

a0,0 �a1,0 � a2,0 � a3,0 . . .

q
a1,1 � a2,1 � a3,1 . . .

q
a3,2 . . .

...

(2.23)

4
Equivalently, we can think of this as setting Mgap = 1.

– 6 –

2) (b/c  0 < x < 1)

<latexit sha1_base64="LsQipz520rc2+GnoZNe3iEy21WQ=">AAACBHicbVDJSgNBEO1xjXEb9ZhLYxA8hRlxOwa9eIxgFsiE0NOpSZr0LHbXiGGI4MVf8eJBEa9+hDf/xs5y0MQHRT3eq6K7np9IodFxvq2FxaXlldXcWn59Y3Nr297Zrek4VRyqPJaxavhMgxQRVFGghEaigIW+hLrfvxz59TtQWsTRDQ4SaIWsG4lAcIZGatsFD+EeMybl8IE61JNAb+m49WnbLjolZww6T9wpKZIpKm37y+vEPA0hQi6Z1k3XSbCVMYWCSxjmvVRDwnifdaFpaMRC0K1sfMSQHhilQ4NYmYqQjtXfGxkLtR6EvpkMGfb0rDcS//OaKQbnrUxESYoQ8clDQSopxnSUCO0IBRzlwBDGlTB/pbzHFONocsubENzZk+dJ7ajknpZOro+L5YtpHDlSIPvkkLjkjJTJFamQKuHkkTyTV/JmPVkv1rv1MRldsKY7e+QPrM8ft9aW2Q==</latexit>

all 0  q  k



Dispersive representation

polynomials in (2.14), so, after a change of integration variable, (2.13) becomes

ak,q =
X

`=0

Z 1

M2
gap

dM2 ⇢`(M
2)

✓
1

M2

◆k+3

v`,q , (2.16)

where
⇢`(M

2) = 16(2`+ 1) Im
�
a`(M

2)
�
. (2.17)

Equation (2.16) is the dispersive representation of the individual Wilson coefficients in
terms of the high energy spectrum. Unitarity requires ⇢`(M2) � 0 and this places non-
trivial restrictions on the ak,q.
To make the Wilson coefficients dimensionless, we multiply (2.16) by (M2

gap)
(k+2) and re-

define the ak,q as4

(M2
gap)

(k+2)ak,q ! ak,q , (2.18)

and define

x =
M2

gap

M2
and p`(x) = x ⇢`

�
M2

gap/x
�
> 0 . (2.19)

The dispersive representation (2.16) of the Wilson coefficients can then be written as

ak,q =
X

`=0

Z 1

0
dx p`(x)x

k v`,q, p`(x) > 0 . (2.20)

A similar version of the crossing symmetric EFT-hedron (also called s-channel EFT-hedron)
was examined in Refs. [4, 8] but without the supersymmetric context.
It is immediately clear from (2.20) that all Wilson coefficients have to be non-negative,

ak,q � 0 . (2.21)

Further, because p(x), v`,q � 0 and 0  x  1 in (2.19), we must have

ak0,q  ak,q, k  k0 . (2.22)

We can now use the crossing conditions ak,k�q = ak,q along with (2.22) to see that

a0,0 �a1,0 � a2,0 � a3,0 . . .

q
a1,1 � a2,1 � a3,1 . . .

q
a3,2 . . .

...

(2.23)

4
Equivalently, we can think of this as setting Mgap = 1.

– 6 –

Result

polynomials in (2.14), so, after a change of integration variable, (2.13) becomes

ak,q =
X

`=0

Z 1

M2
gap

dM2 ⇢`(M
2)

✓
1

M2

◆k+3

v`,q , (2.16)

where
⇢`(M

2) = 16(2`+ 1) Im
�
a`(M

2)
�
. (2.17)

Equation (2.16) is the dispersive representation of the individual Wilson coefficients in
terms of the high energy spectrum. Unitarity requires ⇢`(M2) � 0 and this places non-
trivial restrictions on the ak,q.
To make the Wilson coefficients dimensionless, we multiply (2.16) by (M2

gap)
(k+2) and re-

define the ak,q as4

(M2
gap)

(k+2)ak,q ! ak,q , (2.18)

and define

x =
M2

gap

M2
and p`(x) = x ⇢`

�
M2

gap/x
�
> 0 . (2.19)

The dispersive representation (2.16) of the Wilson coefficients can then be written as

ak,q =
X

`=0

Z 1

0
dx p`(x)x

k v`,q, p`(x) > 0 . (2.20)

A similar version of the crossing symmetric EFT-hedron (also called s-channel EFT-hedron)
was examined in Refs. [4, 8] but without the supersymmetric context.
It is immediately clear from (2.20) that all Wilson coefficients have to be non-negative,

ak,q � 0 . (2.21)

Further, because p(x), v`,q � 0 and 0  x  1 in (2.19), we must have

ak0,q  ak,q, k  k0 . (2.22)

We can now use the crossing conditions ak,k�q = ak,q along with (2.22) to see that

a0,0 �a1,0 � a2,0 � a3,0 . . .

q
a1,1 � a2,1 � a3,1 . . .

q
a3,2 . . .

...

(2.23)

4
Equivalently, we can think of this as setting Mgap = 1.

– 6 –

Low-energy EFT Integral over the high-energy spectrum

“moment map”

Immediate consequences:

polynomials in (2.14), so, after a change of integration variable, (2.13) becomes

ak,q =
X

`=0

Z 1

M2
gap

dM2 ⇢`(M
2)

✓
1

M2

◆k+3

v`,q , (2.16)

where
⇢`(M

2) = 16(2`+ 1) Im
�
a`(M

2)
�
. (2.17)

Equation (2.16) is the dispersive representation of the individual Wilson coefficients in
terms of the high energy spectrum. Unitarity requires ⇢`(M2) � 0 and this places non-
trivial restrictions on the ak,q.
To make the Wilson coefficients dimensionless, we multiply (2.16) by (M2

gap)
(k+2) and re-

define the ak,q as4

(M2
gap)

(k+2)ak,q ! ak,q , (2.18)

and define

x =
M2

gap

M2
and p`(x) = x ⇢`

�
M2

gap/x
�
> 0 . (2.19)

The dispersive representation (2.16) of the Wilson coefficients can then be written as

ak,q =
X

`=0

Z 1

0
dx p`(x)x

k v`,q, p`(x) > 0 . (2.20)

A similar version of the crossing symmetric EFT-hedron (also called s-channel EFT-hedron)
was examined in Refs. [4, 8] but without the supersymmetric context.
It is immediately clear from (2.20) that all Wilson coefficients have to be non-negative,

ak,q � 0 . (2.21)

Further, because p(x), v`,q � 0 and 0  x  1 in (2.19), we must have

ak0,q  ak,q, k  k0 . (2.22)

We can now use the crossing conditions ak,k�q = ak,q along with (2.22) to see that

a0,0 �a1,0 � a2,0 � a3,0 . . .

q
a1,1 � a2,1 � a3,1 . . .

q
a3,2 . . .

...

(2.23)

4
Equivalently, we can think of this as setting Mgap = 1.

– 6 –

1)

polynomials in (2.14), so, after a change of integration variable, (2.13) becomes

ak,q =
X

`=0

Z 1

M2
gap

dM2 ⇢`(M
2)

✓
1

M2

◆k+3

v`,q , (2.16)

where
⇢`(M

2) = 16(2`+ 1) Im
�
a`(M

2)
�
. (2.17)

Equation (2.16) is the dispersive representation of the individual Wilson coefficients in
terms of the high energy spectrum. Unitarity requires ⇢`(M2) � 0 and this places non-
trivial restrictions on the ak,q.
To make the Wilson coefficients dimensionless, we multiply (2.16) by (M2

gap)
(k+2) and re-

define the ak,q as4

(M2
gap)

(k+2)ak,q ! ak,q , (2.18)

and define

x =
M2

gap

M2
and p`(x) = x ⇢`

�
M2

gap/x
�
> 0 . (2.19)

The dispersive representation (2.16) of the Wilson coefficients can then be written as

ak,q =
X

`=0

Z 1

0
dx p`(x)x

k v`,q, p`(x) > 0 . (2.20)

A similar version of the crossing symmetric EFT-hedron (also called s-channel EFT-hedron)
was examined in Refs. [4, 8] but without the supersymmetric context.
It is immediately clear from (2.20) that all Wilson coefficients have to be non-negative,

ak,q � 0 . (2.21)

Further, because p(x), v`,q � 0 and 0  x  1 in (2.19), we must have

ak0,q  ak,q, k  k0 . (2.22)

We can now use the crossing conditions ak,k�q = ak,q along with (2.22) to see that

a0,0 �a1,0 � a2,0 � a3,0 . . .

q
a1,1 � a2,1 � a3,1 . . .

q
a3,2 . . .

...

(2.23)

4
Equivalently, we can think of this as setting Mgap = 1.
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2)

3)

(b/c  0 < x < 1)

Using SUSY crossing                                         =>   

A4[zz̄zz̄] = A4[z̄zz̄z] from (2.4) we see that f must be symmetric in s and u:

f(u, s) = f(s, u) . (2.5)

We denote this “crossing symmetry”. It is clearly satisfied by the Parke-Taylor amplitude,
but it has to hold for the full amplitude too.

2.2 Low Energy Ansatz

Local higher-derivative corrections are in 1-1 correspondence with terms of d that are poly-
nomials s, t, u, subject to momentum conservation s+ t+ u = 0. Hence, in the low-energy
expansion we have

f(s, u) = �
1

su
+

X

0qk

ak,qs
k�quq , (2.6)

where the ak,q are the Wilson coefficients of linear combinations of the set of on-shell local
operators tr(D2kF 4) that are independent under the equations of motion and integration
by parts. In particular, a0,0 is the coefficient of tr(F 4). Not all higher-derivative operators
are compatible with N = 4 supersymmetry, and that is reflected in constraints on the
coefficients ak,q imposed by the crossing relation (2.5), namely

Crossing / SUSY: ak,k�q = ak,q for all 0  q  k . (2.7)

Using (2.4), we write the low-energy expansion of the 4-scalar amplitude as

A[zzz̄z̄] = �
s

u
+ s2

X

0qk

ak,q s
k�q uq , (2.8)

with the crossing relations (2.7) imposed on the Wilson coefficients ak,q. There are no
further bounds from 4-point supersymmetry alone.
The factor of s2 multiplying the sum in Eq. (2.8) means that no interaction with less
than four-derivatives contributes to this amplitude, i.e. there are no N = 4 compatible
interactions of the form tr(z2z̄2) and tr(D2z2z̄2).1 This is simply the statement that tr(F 4)

is the lowest-dimensional N = 4 supersymmetric higher-derivative operator available in the
vector sector.
The factor s2 in front of the higher-derivative terms in (2.8) is also useful for deriving the
bounds on the Wilson coefficients ak,q from causality and unitarity, which is the subject of
this paper.

1N = 4 SYM does of course have local 4-scalar interactions, but these have a different R-symmetry

index structure, for example z12z23z34z41; i.e. they involve two different pairs of conjugate scalars, not just

one.
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polynomials in (2.14), so, after a change of integration variable, (2.13) becomes

ak,q =
X

`=0

Z 1

M2
gap

dM2 ⇢`(M
2)

✓
1

M2

◆k+3

v`,q , (2.16)

where
⇢`(M

2) = 16(2`+ 1) Im
�
a`(M

2)
�
. (2.17)

Equation (2.16) is the dispersive representation of the individual Wilson coefficients in
terms of the high energy spectrum. Unitarity requires ⇢`(M2) � 0 and this places non-
trivial restrictions on the ak,q.
To make the Wilson coefficients dimensionless, we multiply (2.16) by (M2

gap)
(k+2) and re-

define the ak,q as4

(M2
gap)

(k+2)ak,q ! ak,q , (2.18)

and define

x =
M2

gap

M2
and p`(x) = x ⇢`

�
M2

gap/x
�
> 0 . (2.19)

The dispersive representation (2.16) of the Wilson coefficients can then be written as

ak,q =
X

`=0

Z 1

0
dx p`(x)x

k v`,q, p`(x) > 0 . (2.20)

A similar version of the crossing symmetric EFT-hedron (also called s-channel EFT-hedron)
was examined in Refs. [4, 8] but without the supersymmetric context.
It is immediately clear from (2.20) that all Wilson coefficients have to be non-negative,

ak,q � 0 . (2.21)

Further, because p(x), v`,q � 0 and 0  x  1 in (2.19), we must have

ak0,q  ak,q, k  k0 . (2.22)

We can now use the crossing conditions ak,k�q = ak,q along with (2.22) to see that

a0,0 �a1,0 � a2,0 � a3,0 . . .

q
a1,1 � a2,1 � a3,1 . . .

q
a3,2 . . .

...

(2.23)

4
Equivalently, we can think of this as setting Mgap = 1.
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So   

Thus, a0,0 is the largest Wilson coefficient, a1,0 = a1,1 the second largest and so on. In
particular, if a0,0 = 0 all other ak,q’s vanish. In order words, unless the supersymmetrization
of the operator trF 4 is included, there can be no other higher-derivative operators. Further,
we can simply bound the ratio

0 
ak,q
a0,0

 1 (2.24)

for all k and q.
Finally, the space of Wilson coefficients is best understood as a projective space. Given a
set of Wilson coefficients ak,q with a valid a dispersive representation (2.20), a new set of
Wilson coefficients defined by

8k, q : a0k,q = �ak,q, � > 0 (2.25)

also trivially admits a valid dispersive representation. Therefore the bounds only apply to
ratios of Wilson coefficients, such as ak,q/a0,0 which we bounded from above and below in
(2.24).

2.4 Null Constraints

Eq. (2.20) is not the unique dispersive representation of a given Wilson coefficient in terms
of p`(x). In particular, due to the crossing symmetry constraint (2.7), we also find

ak,q =
X

`

Z 1

0
dxp`(x)x

kv`,k�q . (2.26)

Equating Eqs. (2.20) and (2.26) yields a null constraint on p`(x):

Xk,q =
X

`=0

xk
⇥
v`,q � v`,k�q

⇤
, 8 k, q : 0 =

Z 1

0
dx p`(x)Xk,q . (2.27)

Ref. [9] noted that there is an additional crossing symmetry constraint on the p`(x), whose
supersymmetric analog we derive here. The core idea is that one gets a fundamentally new
representation of the ak,q working at fixed t instead of fixed u. At fixed t, the partial wave
representation becomes

A(s,�s� t) = 16⇡
1X

`=0

(�1)`(2`+ 1) a`(s)P`

⇣
1 +

2t

s

⌘
(2.28)

where we have used that P`(x) = P`(�x) and that the partial wave decomposition of the
amplitude can be analytically continued from |u| ⌧ s to |t| ⌧ s in the physical region.5

5
This assumption is slightly different than assuming that the amplitude itself is analytic, which is well

understood. For example, the asymptotic expansion of a function does not generically commute with its

analytic continuation.
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for all  k and q

Biggest

<latexit sha1_base64="LsQipz520rc2+GnoZNe3iEy21WQ=">AAACBHicbVDJSgNBEO1xjXEb9ZhLYxA8hRlxOwa9eIxgFsiE0NOpSZr0LHbXiGGI4MVf8eJBEa9+hDf/xs5y0MQHRT3eq6K7np9IodFxvq2FxaXlldXcWn59Y3Nr297Zrek4VRyqPJaxavhMgxQRVFGghEaigIW+hLrfvxz59TtQWsTRDQ4SaIWsG4lAcIZGatsFD+EeMybl8IE61JNAb+m49WnbLjolZww6T9wpKZIpKm37y+vEPA0hQi6Z1k3XSbCVMYWCSxjmvVRDwnifdaFpaMRC0K1sfMSQHhilQ4NYmYqQjtXfGxkLtR6EvpkMGfb0rDcS//OaKQbnrUxESYoQ8clDQSopxnSUCO0IBRzlwBDGlTB/pbzHFONocsubENzZk+dJ7ajknpZOro+L5YtpHDlSIPvkkLjkjJTJFamQKuHkkTyTV/JmPVkv1rv1MRldsKY7e+QPrM8ft9aW2Q==</latexit>

all 0  q  k



Then what?

From the moment maps, one can compute analytic bounds (Hankel, cyclic polytope, product Hankel)   

[Arkani-Hamed, T-C Huang, Y-t Huang 2012.15849] 

[Chiang, Huang, Li, Rodina, Weng 2105.02862]

Instead: formulate as an optimization problem and using numerical methods, such as
semi-definite programming (SDPB package by Simmons-Duffin)

However, at higher k (higher derivative terms) this quickly becomes unwieldy.  

[Albert, Rastelli 2203.11950 + 2307.01246] 
[Caron-Huot, Van Duong 2011.02957]

written for the conformal bootstrap



Numerical analysis

• SUSY Crossing

A4[zz̄zz̄] = A4[z̄zz̄z] from (2.4) we see that f must be symmetric in s and u:

f(u, s) = f(s, u) . (2.5)

We denote this “crossing symmetry”. It is clearly satisfied by the Parke-Taylor amplitude,
but it has to hold for the full amplitude too.

2.2 Low Energy Ansatz

Local higher-derivative corrections are in 1-1 correspondence with terms of d that are poly-
nomials s, t, u, subject to momentum conservation s+ t+ u = 0. Hence, in the low-energy
expansion we have

f(s, u) = �
1

su
+

X

0qk

ak,qs
k�quq , (2.6)

where the ak,q are the Wilson coefficients of linear combinations of the set of on-shell local
operators tr(D2kF 4) that are independent under the equations of motion and integration
by parts. In particular, a0,0 is the coefficient of tr(F 4). Not all higher-derivative operators
are compatible with N = 4 supersymmetry, and that is reflected in constraints on the
coefficients ak,q imposed by the crossing relation (2.5), namely

Crossing / SUSY: ak,k�q = ak,q for all 0  q  k . (2.7)

Using (2.4), we write the low-energy expansion of the 4-scalar amplitude as

A[zzz̄z̄] = �
s

u
+ s2

X

0qk

ak,q s
k�q uq , (2.8)

with the crossing relations (2.7) imposed on the Wilson coefficients ak,q. There are no
further bounds from 4-point supersymmetry alone.
The factor of s2 multiplying the sum in Eq. (2.8) means that no interaction with less
than four-derivatives contributes to this amplitude, i.e. there are no N = 4 compatible
interactions of the form tr(z2z̄2) and tr(D2z2z̄2).1 This is simply the statement that tr(F 4)

is the lowest-dimensional N = 4 supersymmetric higher-derivative operator available in the
vector sector.
The factor s2 in front of the higher-derivative terms in (2.8) is also useful for deriving the
bounds on the Wilson coefficients ak,q from causality and unitarity, which is the subject of
this paper.

1N = 4 SYM does of course have local 4-scalar interactions, but these have a different R-symmetry

index structure, for example z12z23z34z41; i.e. they involve two different pairs of conjugate scalars, not just

one.
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Following standard set up, we reformulate the setup as an optimization problem with two sets of 
null constraints (aka sum rules)

Our A(s,u) = s2 f(s,u) is not crossing symmetric, but f(s,u) is and that is sufficient to derive constant-t 
crossing relations like those in the analysis of the pion amplitudes of [Albert, Rastelli 2203.11950] 

• ST channel sum rule

We use two different complementary numerical methods

SDPB    semi-definite programming 

CPLEX linear optimization by IBM 



Numerical analysis practicalities

• kmax  max derivative order included 

The higher kmax, the stronger bounds. 

A4[zz̄zz̄] = A4[z̄zz̄z] from (2.4) we see that f must be symmetric in s and u:

f(u, s) = f(s, u) . (2.5)

We denote this “crossing symmetry”. It is clearly satisfied by the Parke-Taylor amplitude,
but it has to hold for the full amplitude too.

2.2 Low Energy Ansatz

Local higher-derivative corrections are in 1-1 correspondence with terms of d that are poly-
nomials s, t, u, subject to momentum conservation s+ t+ u = 0. Hence, in the low-energy
expansion we have

f(s, u) = �
1

su
+

X

0qk

ak,qs
k�quq , (2.6)

where the ak,q are the Wilson coefficients of linear combinations of the set of on-shell local
operators tr(D2kF 4) that are independent under the equations of motion and integration
by parts. In particular, a0,0 is the coefficient of tr(F 4). Not all higher-derivative operators
are compatible with N = 4 supersymmetry, and that is reflected in constraints on the
coefficients ak,q imposed by the crossing relation (2.5), namely

Crossing / SUSY: ak,k�q = ak,q for all 0  q  k . (2.7)

Using (2.4), we write the low-energy expansion of the 4-scalar amplitude as

A[zzz̄z̄] = �
s

u
+ s2

X

0qk

ak,q s
k�q uq , (2.8)

with the crossing relations (2.7) imposed on the Wilson coefficients ak,q. There are no
further bounds from 4-point supersymmetry alone.
The factor of s2 multiplying the sum in Eq. (2.8) means that no interaction with less
than four-derivatives contributes to this amplitude, i.e. there are no N = 4 compatible
interactions of the form tr(z2z̄2) and tr(D2z2z̄2).1 This is simply the statement that tr(F 4)

is the lowest-dimensional N = 4 supersymmetric higher-derivative operator available in the
vector sector.
The factor s2 in front of the higher-derivative terms in (2.8) is also useful for deriving the
bounds on the Wilson coefficients ak,q from causality and unitarity, which is the subject of
this paper.

1N = 4 SYM does of course have local 4-scalar interactions, but these have a different R-symmetry

index structure, for example z12z23z34z41; i.e. they involve two different pairs of conjugate scalars, not just

one.
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e.g. kmax = 4 means null constraints are imposed up
to 12-derivative order.

• lmax truncate the sum over all spin

polynomials in (2.14), so, after a change of integration variable, (2.13) becomes

ak,q =
X

`=0

Z 1

M2
gap

dM2 ⇢`(M
2)

✓
1

M2

◆k+3

v`,q , (2.16)

where
⇢`(M

2) = 16(2`+ 1) Im
�
a`(M

2)
�
. (2.17)

Equation (2.16) is the dispersive representation of the individual Wilson coefficients in
terms of the high energy spectrum. Unitarity requires ⇢`(M2) � 0 and this places non-
trivial restrictions on the ak,q.
To make the Wilson coefficients dimensionless, we multiply (2.16) by (M2

gap)
(k+2) and re-

define the ak,q as4

(M2
gap)

(k+2)ak,q ! ak,q , (2.18)

and define

x =
M2

gap

M2
and p`(x) = x ⇢`

�
M2

gap/x
�
> 0 . (2.19)

The dispersive representation (2.16) of the Wilson coefficients can then be written as

ak,q =
X

`=0

Z 1

0
dx p`(x)x

k v`,q, p`(x) > 0 . (2.20)

A similar version of the crossing symmetric EFT-hedron (also called s-channel EFT-hedron)
was examined in Refs. [4, 8] but without the supersymmetric context.
It is immediately clear from (2.20) that all Wilson coefficients have to be non-negative,

ak,q � 0 . (2.21)

Further, because p(x), v`,q � 0 and 0  x  1 in (2.19), we must have

ak0,q  ak,q, k  k0 . (2.22)

We can now use the crossing conditions ak,k�q = ak,q along with (2.22) to see that

a0,0 �a1,0 � a2,0 � a3,0 . . .

q
a1,1 � a2,1 � a3,1 . . .

q
a3,2 . . .

...

(2.23)

4
Equivalently, we can think of this as setting Mgap = 1.
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Chosen to ensure that bounds are converging (typically 200 to 1000)

• xmax     Implementation in CPLEX requires discretization

discretize the integral over x (i.e. the mass-spectrum). We use xmax to denote 
the number of discretization points of the interval 0 to 1 (typically between 200 and 1000).



Bounds
Justin Berman, Aidan Herderschee, HE (in progress)



Example of SDPB Results: (a20,a21) plane (two tr(D4F4) N=4 SUSY ops) 

Orange: kmax = 4,  lmax = 200 allowed region
Rosa:  kmax = 10, lmax = 300 allowed region

Red dot: Veneziano w/ choice

• (0,0) includes theory with tr(F4) as the only h.d. interaction.

• (1,1) includes theory with all ak,q=a0,0. Can be re-summed to

Tends to show up in bootstraps; 
Probably not a sensible theory.
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A(s, u) = � s

u
+ s2

1

(s� 1)(u� 1)
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↵0M2
gap = 1



Comparison: SDPB and CPLEX  kmax=10 and lmax = 300

Orange: CPLEX w/ xmax = 300
Blue SDPB

Percentile difference CPLEX vs. SDPB.
• CPLEX discretization error larger on the a21 = 0 axis.
• CPLEX faster by ~ factor of 5 for these runs, but
      high precision requires higher xmax



What happens near the string?

Orange:    kmax = 4     lmax= 200 allowed region
Rosa:    kmax = 10  lmax = 300 allowed region
Blue:    kmax = 15  lmax = 800 allowed region
Green dot:  kmax = 20  lmax = 600 at a2,0 string value

Red dot: Veneziano 

What happens as kmax increases?



Other projections
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(a3,0, a3,1)
<latexit sha1_base64="8g3I1DC3E8ahYrTsD/6MJxYlwiQ=">AAAB+nicbVDLSsNAFJ3UV62vVJduBotQoZSk1Mey6MZlBfuANoTJdNIOnUzCzEQpMZ/ixoUibv0Sd/6N0zQLbT1wuYdz7mXuHC9iVCrL+jYKa+sbm1vF7dLO7t7+gVk+7MowFph0cMhC0feQJIxy0lFUMdKPBEGBx0jPm97M/d4DEZKG/F7NIuIEaMypTzFSWnLNchW5SbNmp7WsN9Iz16xYdSsDXCV2TiogR9s1v4ajEMcB4QozJOXAtiLlJEgoihlJS8NYkgjhKRqTgaYcBUQ6SXZ6Ck+1MoJ+KHRxBTP190aCAilngacnA6Qmctmbi/95g1j5V05CeRQrwvHiIT9mUIVwngMcUUGwYjNNEBZU3wrxBAmElU6rpEOwl7+8SrqNun1RP79rVlrXeRxFcAxOQBXY4BK0wC1ogw7A4BE8g1fwZjwZL8a78bEYLRj5zhH4A+PzB9Cykm8=</latexit>

(a4,1, a4,2)tr(D6F4) tr(D8F4) 



Monodromies

Yu-tin Huang, Jin-Yu Liu, Laurentiu Rodina, Yihong Wang [2008.02293]
Inspired by



Monodromy relations

String disk amplitudes

Stieberger (2009)
Bjerrum-Bohr, Damgaard, Vanhove (2009)
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Contour deformation relates the different color-orderings
while picking up monodromies at x=0 and x=1.  

String monodromy relations

Figure 4: The allowed regions for the projection to the (a4,1, a4,2) plane as obtained with
SDPB. The orange bounds are for kmax = 4 and `max = 200, while the violet bound is
kmax = 10 and `max = 300. Taking `max higher results in differences at order 10�4 or less,
not visible in the plot. The red dot marks the Veneziano amplitude.

pre-factor matches convention. HE: are you sure about the powers in the integrands?]

A[1234] =
�s2

t
⇥

Z 1

0
dzz�↵0s�1(1� z)�↵0u�1 ,

A[1324] =
�s2

t
⇥

Z 1

1
dzz�↵0s�1(z � 1)�↵0u�1 ,

A[2134] =
�s2

t
⇥

Z 0

�1
dz(�z)�↵0s�1(1� z)�↵0u�1 .

(5.1)

Here and below, we assume states 1 and 2 to be z and 3 and 4 to be z̄, with the complex
scalars introduced in Section 2.1. Because the integrands are the same, the three amplitudes
(5.1) only differ by the integration region and a contour deformation [13–17] the 4-point
string monodromy relation: HE: I put in the ⇡’s

0 = A[2134] + ei⇡↵
0sA[1234] + e�i⇡↵0tA[1324] . (5.2)

When the N = 4 SUSY ansatz (2.8) for the 4-point amplitude is plugged into the string
monodromy relation (5.2) and solved order by order in the low-energy expansion, particular
linear combinations of Wilson coefficients are fixed as shown in Table 1.
The Wilson coefficients unfixed by monodromy for k  5 are a1,0, a3,0, a4,1, a5,0. For the
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Figure 4: The allowed regions for the projection to the (a4,1, a4,2) plane as obtained with
SDPB. The orange bounds are for kmax = 4 and `max = 200, while the violet bound is
kmax = 10 and `max = 300. Taking `max higher results in differences at order 10�4 or less,
not visible in the plot. The red dot marks the Veneziano amplitude.
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1
16⇣6 = �

⇡6

15120 , HE: RHS minus fixed. JB: I agree

a5,1 � 3a5,0 + ⇣2a3,0 + ⇣4a1,0 = 0 ,

a5,2 � 5a5,0 + 2⇣2 a3,0 +
5
4⇣4 a1,0 = 0 ,

Table 1: The string monodromy relation (5.2) fixes particular linear combination of the
Wilson coefficients ak,q as shown here up to k = 5.

Veneziano amplitude their values are

astr
1,0 = ⇣3 = 1.202057

astr
3,0 = ⇣5 = 1.036928

astr
4,1 =

�
⇡6

� 630⇣23
�

1260
= 0.040537 ,

astr
5,0 = ⇣7 = 1.00835 .

(5.3)

Because they these coefficients depend on ⇣(odd), there is no way they could have been
fixed by the monodromy relations which only “know” ⇡.

5.2 Numerical Analysis

The authors of [18] found numerical evidence that the coefficients unfixed by monodromy
were closed to the values (5.3) when the monodromy constraints were combined with a
select subset of kmax = 6 EFT-hedron bounds.
To reproduce and extend the results of [18], we include the monodromy constraints in Table
1 as null conditions in the formulation of the linearized optimization problem (3.1)-(3.2).
Also, we rescale the normalization of a0,0 to be the monodromy value ⇡2/6.
Our results for a3,0 vs. a1,0 Figure ??. The SDPB results are shown for kmax = 8 JB:
Someone to add kmax = 4, 6 results? and `max = 500, 800; The values (5.3) for the Veneziano
amplitude are indicated with the red dot in each plot.
By kmax = 8, bounds on the Wilson coefficients with `max = 800 are as follows
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5.2 Numerical Analysis
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were closed to the values (5.3) when the monodromy constraints were combined with a
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To reproduce and extend the results of [18], we include the monodromy constraints in Table
1 as null conditions in the formulation of the linearized optimization problem (3.1)-(3.2).
Also, we rescale the normalization of a0,0 to be the monodromy value ⇡2/6.
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By kmax = 8, bounds on the Wilson coefficients with `max = 800 are as follows
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etc

etc

Note: monodromy ``knows”        only, so cannot access any information about coefficients with
in the low-energy expansion of the open string amplitude.                    
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Monodromy + EFT-hedron
Yu-tin Huang, Jin-Yu Liu, Laurentiu Rodina, Yihong Wang [2008.02293]

Monodromy + EFT-hedron ``carves out the open string”

product Hankel matrices, and one k = 6 matrix H9 on points in the blue region in Figure 7b.

We are able to rule out most of the region and achieve a much smaller allowed region, marked

in red in Figure 9. We compare to the original region in blue to manifest the magnitude of

this reduction.

Figure 9: Blue region reduces to red region after projecting det(H9) > 0 constraint on x, y.

We can perform the same scanning for points in Figure 8 by imposing compatibility with

det(H9) > 0, as well as all positivity constrains for k = 5. The result is again a more

constrained region, which we show in red in Figure 10a. We observe that, by including all

constraints up to k = 5 and one at k = 6, we have already fixed the value for (x, y, z) to the

string value with the following precision:

xmax � xmin

xstring
=

1.20667� 1.18890

⇣(3)
⇡ 1.5%,

ymax � ymin

ystring
=

1.03808� 1.03594

⇣(5)
⇡ 0.2%,

zmax � zmin

zstring
=

0.05699� 0.03560

(⇡6 � 630⇣(3)2)/1260)
⇡ 52.8% . (5.25)

Extending to k = 8, the reduction of constraints becomes di�cult even with a numerical

scan. However, we are able to use the FindInstance function in Mathematica to verify if a

point in the k = 6 allowed region of Figure 9 or Figure 10a is compatible with k = 7, 8 Hankel

matrix constraints. We impose the positivity constraints for all k = 7 Hankel matrices, and

the following k = 8 principle minor H10

det(H10) =

0

BBBBB@

g0,0 g1,0 g2,0 g3,0 g4,0
g1,0 g2,0 g3,0 g4,0 g5,0
g2,0 g3,0 g4,0 g5,0 g6,0
g3,0 g4,0 g5,0 g6,0 g7,0
g4,0 g5,0 g6,0 g7,0 g8,0

1

CCCCCA
> 0 . (5.26)

34

Using all Hankel + Cyclic Polytope + Product Hankel constraints to kmax = 4 and one from kmax = 5, they found
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360 ,

a3,1 � 2a3,0 + ⇣2 a1,0 = 0 ,

a4,0 = ⇣6 =
⇡6

945 ,

a4,2 � 2a4,1 = �
1
16⇣6 = �

⇡6

15120 , HE: RHS minus fixed. JB: I agree

a5,1 � 3a5,0 + ⇣2a3,0 + ⇣4a1,0 = 0 ,

a5,2 � 5a5,0 + 2⇣2 a3,0 +
5
4⇣4 a1,0 = 0 ,

Table 1: The string monodromy relation (5.2) fixes particular linear combination of the
Wilson coefficients ak,q as shown here up to k = 5.

Veneziano amplitude their values are

astr
1,0 = ⇣3 = 1.202057

astr
3,0 = ⇣5 = 1.036928

astr
4,1 =

�
⇡6

� 630⇣23
�

1260
= 0.040537 ,

astr
5,0 = ⇣7 = 1.00835 .

(5.3)

Because they these coefficients depend on ⇣(odd), there is no way they could have been
fixed by the monodromy relations which only “know” ⇡.

5.2 Numerical Analysis

The authors of [18] found numerical evidence that the coefficients unfixed by monodromy
were closed to the values (5.3) when the monodromy constraints were combined with a
select subset of kmax = 6 EFT-hedron bounds.
To reproduce and extend the results of [18], we include the monodromy constraints in Table
1 as null conditions in the formulation of the linearized optimization problem (3.1)-(3.2).
Also, we rescale the normalization of a0,0 to be the monodromy value ⇡2/6.
Our results for a3,0 vs. a1,0 Figure ??. The SDPB results are shown for kmax = 8 JB:
Someone to add kmax = 4, 6 results? and `max = 500, 800; The values (5.3) for the Veneziano
amplitude are indicated with the red dot in each plot.
By kmax = 8, bounds on the Wilson coefficients with `max = 800 are as follows
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Indicates that the intersection of the monodromy subspace and EFT-hedron may be a point



Monodromy + SUSY Positivity Justin Berman, Aidan Herderschee, HE (in progress)

• ST sum rules cannot be expressed in terms of the ak,q 
     so cannot be captured by the (product) Hankel / cyclic polytope constraints  
     or their enhancements [Chiang, Huang, Li, Rodina, Weng 2105.02862]

• Implementation in SDPB and CPLEX allows going to higher orders

Goals:

1) Further test if positivity bounds and monodromy isolate the string

2) Understand in what sense string theory is then on the boundary of the SUSY EFT-hedron



Monodromy + SUSY Positivity Justin Berman, Aidan Herderschee, HE (in progress)

The two lowest Wilson coefficients unfixed by string monodromy are a1,0 and a3,0

Exact upper and lower bounds
(indep. of kmax > 2 and lmax)
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Orange: 
 kmax  = 3 bounds with monodromy imposed 
as null constraints

Without monodromy:

With monodromy:

Red: Veneziano
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Monodromy + SUSY Positivity Justin Berman, Aidan Herderschee, HE (in progress)

Increase kmax 

Zoom in on green region
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Monodromy + SUSY Positivity Justin Berman, Aidan Herderschee, HE (in progress)

Overall bounds for  kmax  = 8 with  lmax  = 800  
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15120 , HE: RHS minus fixed. JB: I agree
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5
4⇣4 a1,0 = 0 ,

Table 1: The string monodromy relation (5.2) fixes particular linear combination of the
Wilson coefficients ak,q as shown here up to k = 5.
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(5.3)

Because they these coefficients depend on ⇣(odd), there is no way they could have been
fixed by the monodromy relations which only “know” ⇡.

5.2 Numerical Analysis

The authors of [18] found numerical evidence that the coefficients unfixed by monodromy
were closed to the values (5.3) when the monodromy constraints were combined with a
select subset of kmax = 6 EFT-hedron bounds.
To reproduce and extend the results of [18], we include the monodromy constraints in Table
1 as null conditions in the formulation of the linearized optimization problem (3.1)-(3.2).
Also, we rescale the normalization of a0,0 to be the monodromy value ⇡2/6.
Our results for a3,0 vs. a1,0 Figure ??. The SDPB results are shown for kmax = 8 JB:
Someone to add kmax = 4, 6 results? and `max = 500, 800; The values (5.3) for the Veneziano
amplitude are indicated with the red dot in each plot.
By kmax = 8, bounds on the Wilson coefficients with `max = 800 are as follows

– 15 –

linear combination fixed string value

a0,0 = ⇣2 =
⇡2

6

a2,0 = ⇣4 =
⇡4

90 ,

a2,1 = 1
4⇣4 =

⇡4

360 ,

a3,1 � 2a3,0 + ⇣2 a1,0 = 0 ,

a4,0 = ⇣6 =
⇡6

945 ,

a4,2 � 2a4,1 = �
1
16⇣6 = �

⇡6

15120 , HE: RHS minus fixed. JB: I agree

a5,1 � 3a5,0 + ⇣2a3,0 + ⇣4a1,0 = 0 ,

a5,2 � 5a5,0 + 2⇣2 a3,0 +
5
4⇣4 a1,0 = 0 ,

Table 1: The string monodromy relation (5.2) fixes particular linear combination of the
Wilson coefficients ak,q as shown here up to k = 5.

Veneziano amplitude their values are

astr
1,0 = ⇣3 = 1.202057

astr
3,0 = ⇣5 = 1.036928

astr
4,1 =

�
⇡6

� 630⇣23
�

1260
= 0.040537 ,

astr
5,0 = ⇣7 = 1.00835 .

(5.3)

Because they these coefficients depend on ⇣(odd), there is no way they could have been
fixed by the monodromy relations which only “know” ⇡.

5.2 Numerical Analysis

The authors of [18] found numerical evidence that the coefficients unfixed by monodromy
were closed to the values (5.3) when the monodromy constraints were combined with a
select subset of kmax = 6 EFT-hedron bounds.
To reproduce and extend the results of [18], we include the monodromy constraints in Table
1 as null conditions in the formulation of the linearized optimization problem (3.1)-(3.2).
Also, we rescale the normalization of a0,0 to be the monodromy value ⇡2/6.
Our results for a3,0 vs. a1,0 Figure ??. The SDPB results are shown for kmax = 8 JB:
Someone to add kmax = 4, 6 results? and `max = 500, 800; The values (5.3) for the Veneziano
amplitude are indicated with the red dot in each plot.
By kmax = 8, bounds on the Wilson coefficients with `max = 800 are as follows
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Overall bounds for  kmax  = 8 with  lmax  = 800  

linear combination fixed string value

a0,0 = ⇣2 =
⇡2

6

a2,0 = ⇣4 =
⇡4

90 ,

a2,1 = 1
4⇣4 =

⇡4

360 ,

a3,1 � 2a3,0 + ⇣2 a1,0 = 0 ,

a4,0 = ⇣6 =
⇡6

945 ,

a4,2 � 2a4,1 = �
1
16⇣6 = �

⇡6

15120 , HE: RHS minus fixed. JB: I agree

a5,1 � 3a5,0 + ⇣2a3,0 + ⇣4a1,0 = 0 ,

a5,2 � 5a5,0 + 2⇣2 a3,0 +
5
4⇣4 a1,0 = 0 ,

Table 1: The string monodromy relation (5.2) fixes particular linear combination of the
Wilson coefficients ak,q as shown here up to k = 5.

Veneziano amplitude their values are

astr
1,0 = ⇣3 = 1.202057

astr
3,0 = ⇣5 = 1.036928

astr
4,1 =

�
⇡6

� 630⇣23
�

1260
= 0.040537 ,

astr
5,0 = ⇣7 = 1.00835 .

(5.3)

Because they these coefficients depend on ⇣(odd), there is no way they could have been
fixed by the monodromy relations which only “know” ⇡.

5.2 Numerical Analysis

The authors of [18] found numerical evidence that the coefficients unfixed by monodromy
were closed to the values (5.3) when the monodromy constraints were combined with a
select subset of kmax = 6 EFT-hedron bounds.
To reproduce and extend the results of [18], we include the monodromy constraints in Table
1 as null conditions in the formulation of the linearized optimization problem (3.1)-(3.2).
Also, we rescale the normalization of a0,0 to be the monodromy value ⇡2/6.
Our results for a3,0 vs. a1,0 Figure ??. The SDPB results are shown for kmax = 8 JB:
Someone to add kmax = 4, 6 results? and `max = 500, 800; The values (5.3) for the Veneziano
amplitude are indicated with the red dot in each plot.
By kmax = 8, bounds on the Wilson coefficients with `max = 800 are as follows
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vs. ~1.5% and 0.2% in Huang, Liu, Rodina, Wang [2008.02293]
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4 Veneziano from String Monodromy

In [15], Huang, Liu, Rodina, and Wang presented numerical evidence that the Type-I open
string Veneziano amplitude is picked out by the intersection of the EFT-hedron constraints
and the string monodromy (reviewed below). In this section, we provide further evidence
of this conjecture using the linearization of the EFT-hedron in Section 3 and CPLEX.

4.1 String Monodromy

The tree-level amplitudes in Type-I string theory can be written as a period integral mul-
tiplying a universal pre-factor. Specifically at 4-point, we have [AH: Need to cross check
pre-factor matches convention. HE: are you sure about the powers in the integrands?]

A[1234] =
�s2

t
⇥

Z 1

0
dzz�↵0s�1(1� z)�↵0u�1 ,

A[1324] =
�s2

t
⇥

Z 1

1
dzz�↵0s�1(z � 1)�↵0u�1 ,

A[2134] =
�s2

t
⇥

Z 0

�1
dz(�z)�↵0s�1(1� z)�↵0u�1 .

(4.1)

Here and below, we assume states 1 and 2 to be z and 3 and 4 to be z̄, with the complex
scalars introduced in Section 2.1. Because the integrands are the same, the three amplitudes
(4.1) only differ by the integration region and a contour deformation [30–34] the 4-point
string monodromy relation: HE: I put in the ⇡’s

0 = A[2134] + ei⇡↵
0sA[1234] + e�i⇡↵0tA[1324] . (4.2)

When the N = 4 SUSY ansatz (2.8) for the 4-point amplitude is plugged into the string
monodromy relation (4.2) and solved order by order in the low-energy expansion, particular
linear combinations of Wilson coefficients are fixed as shown in Table 1.
The Wilson coefficients unfixed by monodromy for k  5 are a1,0, a3,0, a4,1, a5,0. For the
Veneziano amplitude their values are

astr
1,0 = ⇣3 = 1.202057

astr
3,0 = ⇣5 = 1.036928

astr
4,1 =

�
⇡6

� 630⇣23
�

1260
= 0.040537 ,

astr
5,0 = ⇣7 = 1.00835 .

(4.3)

Because they these coefficients depend on ⇣(odd), there is no way they could have been
fixed by the monodromy relations which only “know” ⇡.
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vs. ~52% in Huang, Liu, Rodina, Wang [2008.02293]
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the monodromy constraints. But how?

Figure 9: Cartoon of how monodromy line (blue) could intersect with the EFThedron in
three dimensions with codimension zero (left) or nonzero (right).

Figure 10: The EFThedron projected in two different ways with the projection of the
monodromy space given as a dashed gray line.

Looking at projections of these higher dimensional spaces is misleading as the intersection of
the projections of spaces is not the same as the projection of the intersection. The right hand
side of Fig. 10 shows how, by looking in a slightly different projection of the EFThedron
that includes more Wilson coefficients, the intersection of the projections becomes much
thinner.

5 Flattening of the EFT-hedron

We use the monodromy results to motivate the emergent codimension conjecture which
states that any valid low energy amplitude, not just the string amplitude, is uniquely fixed
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the intersection shrinks to a point as kmax increases?
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Monovariables

linear combination fixed string value

a0,0 = ⇣2 =
⇡2

6

a2,0 = ⇣4 =
⇡4

90 ,

a2,1 = 1
4⇣4 =

⇡4

360 ,

a3,1 � 2a3,0 + ⇣2 a1,0 = 0 ,

a4,0 = ⇣6 =
⇡6

945 ,

a4,2 � 2a4,1 = �
1
16⇣6 = �

⇡6

15120 , HE: RHS minus fixed. JB: I agree

a5,1 � 3a5,0 + ⇣2a3,0 + ⇣4a1,0 = 0 ,

a5,2 � 5a5,0 + 2⇣2 a3,0 +
5
4⇣4 a1,0 = 0 ,

Table 1: The string monodromy relation (5.2) fixes particular linear combination of the
Wilson coefficients ak,q as shown here up to k = 5.

Veneziano amplitude their values are

astr
1,0 = ⇣3 = 1.202057

astr
3,0 = ⇣5 = 1.036928

astr
4,1 =

�
⇡6

� 630⇣23
�

1260
= 0.040537 ,

astr
5,0 = ⇣7 = 1.00835 .

(5.3)

Because they these coefficients depend on ⇣(odd), there is no way they could have been
fixed by the monodromy relations which only “know” ⇡.

5.2 Numerical Analysis

The authors of [18] found numerical evidence that the coefficients unfixed by monodromy
were closed to the values (5.3) when the monodromy constraints were combined with a
select subset of kmax = 6 EFT-hedron bounds.
To reproduce and extend the results of [18], we include the monodromy constraints in Table
1 as null conditions in the formulation of the linearized optimization problem (3.1)-(3.2).
Also, we rescale the normalization of a0,0 to be the monodromy value ⇡2/6.
Our results for a3,0 vs. a1,0 Figure ??. The SDPB results are shown for kmax = 8 JB:
Someone to add kmax = 4, 6 results? and `max = 500, 800; The values (5.3) for the Veneziano
amplitude are indicated with the red dot in each plot.
By kmax = 8, bounds on the Wilson coefficients with `max = 800 are as follows
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To reproduce and extend the results of [18], we include the monodromy constraints in Table
1 as null conditions in the formulation of the linearized optimization problem (3.1)-(3.2).
Also, we rescale the normalization of a0,0 to be the monodromy value ⇡2/6.
Our results for a3,0 vs. a1,0 Figure ??. The SDPB results are shown for kmax = 8 JB:
Someone to add kmax = 4, 6 results? and `max = 500, 800; The values (5.3) for the Veneziano
amplitude are indicated with the red dot in each plot.
By kmax = 8, bounds on the Wilson coefficients with `max = 800 are as follows
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Recall string monodromies
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“Monovariables”



Monovariables

Then construct theories that obey the positivity bounds 

Subtract off massless poles

“(1,1) theory”

Veneziano

e.g. picking                                                       gives    
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⇢(1)m2 = ⇢(2)m2 =
1

2
�(m2 � 1)
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ak,q =
1

2

�
astrk,q + a(1,1)0,0

�

Generally, we can pick the densities to be sums over delta-functions at various masses. 
These will be the “test theories”. 

have Wilson coefficients with values such that their monovariables are fixed to a specific
set of constants is exactly the monodromy space shifted in some direction in the space of
Wilson coefficients without rotation. The new constraints on theories no longer necessarily
correspond to some relationship between color-ordered amplitudes, so they represent some
nonphysical constraints on the Wilson coefficients of amplitudes.
For example, at kmax = 4, upon setting Mgap to one and the monovariables to the values
of the (1, 1) corner theory, we find.

r0 = r1 = r2 = r4 = �r5 = 1

r3 =
⇡2

6
� 1,

(6.2)

If we intersect the space of theories satisfying these conditions with the kmax = 4 EFThe-
dron, we find that the non-monovariables are in fact uniquely fixed to 1, showing that the
(1,1) corner theory is on the boundary of the EFThedron as we would expect.
It is interesting to examine the ratio of the number of monovariables to the total number
of Wilson coefficients unrelated by crossing symmetry. At a given value of kmax, we can
determine the number of Wilson coefficients unrelated by crossing symmetry is O(k2max/2)

at large kmax. On the other hand, at large kmax, the number of monovariables unrelated by
crossing is O(k2max/6) In the limit that we take kmax to infinity, we find a third of Wilson
coefficients are unfixed by monodromy (5.2). Therefore, the emergent codimension conjec-
ture implies that a finite fraction of Wilson coefficients are fixed by positivity constraints
in the infinite dimensional limit.

6.2 Evidence for the Emergent Codimension Conjecture

Numerically checking this conjecture for generic theories is difficult because we have to find
values of the monovariables that are inside the EFThedron. To generate such monovari-
ables, we considered linear combinations of the corner theories in Section ?? and Veneziano
amplitudes with varying mass gap. To be specific, we considered an ansatz of the form

A[zzz̄z̄] =
�s

u
+ s2

 Z 1

M2
gap

dm2⇢(1)m2


1

(m2 � s)(m2 � u)

�

Z 1

M2
gap

dm2 ⇢
(2)
m2

m4


m4

su
�

�(�s/m2)�(�u/m2)

�(1 + t/m2)

�! (6.3)

where ⇢(1)m2 , ⇢
(2)
m2 � 0. Crucially, Eq. (6.3) manifestly obeys crossing symmetry and positivity

constraints for any value of ⇢(a)m2 . Therefore, we can easily generate values of ri which lie
within the EFThedron. Furthermore, the ansatz in Eq. (6.3) spans a full dimensional
subregion of the EFThedron for kmax  6. Starting at kmax = 7, the ansatz in Eq. (6.3) is
not sufficient to span a codimension zero subregion.
We choose ⇢(1)m2and ⇢(2)m2 � 0 to be a randomzized sum over � functions by taking one
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A(s, u)

+



Test theories

For a given test-theory, we compute the  corresponding  ak,q and 
thus the monovariables ri. 

Monovariable constraints are null constraints for SDPB/CPLEX.

We test if SDPB/CPLEX narrows in on the Wilson coefficients unfixed by
the monovariable constraints (just as it did for Veneziano). 

Because we know all ak,q by construction, we know if SDPB/CPLEX gets it right.

Example    ->



Test theory example
Known (by construction) values of a1,0 and a3,0

Similarly to the string: closing in on narrower and narrower allowed regions, shrinking toward the point of the 
constructed (known) values of the Wilson coefficients. 



Test Theory: ranges shrinking with increasing kmax

Theory 3

– 15 –

Known value



Three sample theories

Figure 8: SDPB interval lengths for given Wilson coefficients of three random theories at
various kmax with `max = 500 compared to the string.

with a nonempty intersection with the EFThedron.
As a simple example, we can consider the following setup JB: I need to rerun this example
with SDPB and not including (1,0) theory:

4⇢(1)m2 = 4⇢(2)m2 = 2
1

2
⇢(3)m2 = �(m2

� 1) (6.4)

The Wilson coefficients for this theory have the following form

ak,q =
1

2
astr
k,q +

1

4

⇣
a(1,0)k,q + a(1,1)k,q

⌘
, (6.5)

where a(1,0)k,q and a(1,1)k,q are the coefficients for the corner theory corresponding to their
superscript. With this choice, we normalize by a0,0 and fix the monovariables up to kmax = 4
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Lk,q = max

✓
ak,q
a0,0

◆
�min

✓
ak,q
a0,0

◆

Intervals shrink towards zero as power laws 
or faster.



Flattening of the EFT-hedron

This indicates that as kmax grows, the allowed convex region flattens in certain directions 

Figure 9: Cartoon of how monodromy line (blue) could intersect with the EFThedron in
three dimensions with codimension zero (left) or nonzero (right).

Figure 10: The EFThedron projected in two different ways with the projection of the
monodromy space given as a dashed gray line.

Looking at projections of these higher dimensional spaces is misleading as the intersection of
the projections of spaces is not the same as the projection of the intersection. The right hand
side of Fig. 10 shows how, by looking in a slightly different projection of the EFThedron
that includes more Wilson coefficients, the intersection of the projections becomes much
thinner.

5 Flattening of the EFT-hedron

We use the monodromy results to motivate the emergent codimension conjecture which
states that any valid low energy amplitude, not just the string amplitude, is uniquely fixed
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conjecture



Flattening of the EFT-hedron

To do:

• Higher kmax with monovariables and other ways of testing 
      the flattening conjecture

• Understand how the flattening happens. Which directions? How
      generic is this (also for other S-matrix bootstraps?)

• Flattening => correlations between linear combinations of EFT 
coefficients. Can this be exploited to extract information about the UV 
theory?



Flattening of the EFT-hedron

• Also, assuming as stringy a relation as the monodromy to isolate
the string is not quite satisfactory. It would be interesting to understand
what minimal conditions (purely field theoretical) can be used 
instead to isolate the string in the space of EFTs.

• Note: string monodromies do show up in low-energy physics as shown in for 
       the bi-adjoint scalar with higerh-derivative interactions and
       in the context of generalizing the double copy.

[Alan (S-K) Chen, Aidan Herderschee, HE 2212.13998 + 2302.04895]

But that’s another story for another time.



Thank you

Justin Berman Aidan Herderschee



Extras



Example of dependence of on lmax   (kmax = 10 for a2,0 = 0.7)

Orange:  kmax = 10 lower bound on a21 min vs lmax
Blue: fit to A/(lmax)c + B 
Green: asymptotic fit value B = 0.17485…
 lmax=300 value: 0.17493..

Difference between lmax 300 and
fitted asymptotic value is ~ 8 x10-5

=> OK for plots 
But for precision bounds, need higher lmax


