Towards Gravitational Scattering at the Fifth Order in G

Michael Ruf Amplitudes, CERN, Aug 8 2023

Based on work in collaboration w/ [Bern, Herrmann, Parra-Martinez, Roiban, A. Smirnov, V. Smirnov, Solon, Shen, Zeng]

UCLA Mani L. Bhaumik Institute for Theoretical Physics

Motivation

- GW abundant, important source: compact binary systems
- Physics goals:

. . .

- Strong-field tests of GR, new physics
- BH properties, abundance etc.
- Ultra-dense matter (neutron star equation of state)
- Multi-messenger astronomy

[GW190521, LIGO]

lext Gen Networ

Motivation

- Present detectors (LIGO/VIRGO/KAGRA): - >100 events. O4: 150 events/year
- Next-gen. experiments (ca. 2035):

 - Extreme corners of parameter space, e.g. EMRI

- More precision 10-100 x improved S/N, wider frequency band - More data (bigger reach + sensitivity), 20-60 events/day \rightarrow pileup!

Need high-precision wave-form modelling!

Motivation

- Numerical waveform from Einstein eqn $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \bigwedge \bigvee \bigvee$
- Significant resource requirements:
 - $O(10^5)$ CPU h/ NR template
 - GW150914: 250k templates
 - Challenging in PS-corners: $m_1 \ll m_2, v \rightarrow c, |\vec{L}|/m \rightarrow 1$
- Solution: analytic and hybrid models (GW150914: post-Newtonian + effective-one-body)
- Corrections to Newton's potential to high orders

$$V(r) = -\frac{G\mu M}{r} + \frac{1}{c^2} \left[-\frac{3G\mu M v^2}{2r} + \frac{G^2}{r} \right]$$

 $\left|\frac{2M^2}{r^2}\right| + \dots$

VS

Process of interest: <u>scattering</u> of compact massive objects

Hard to observe in GW observatories. Why bother?

- Why bother?
 - Clean, determined by initial data $\{b, p_i\}$, no gauge dependence
 - Close relation to bound process
 - Relativistic treatment exposes structures, e.g. mass polynomiality [Damour]
 - Amplitudes
- Classical GR community is very interested in scattering Yunes, ...]

[Barack, Berti, Bini, Buonanno, Cardoso, Damour, East, Geralico, Gralla, Guercilena, Hinder, Hinderer, Hopper, Khalil, Lobo, Long, van de Meent, Nagar, Pfeiffer, Pratten Pretorious, Pretorius, Rettegno, Rezzolla, Schmidt, Sperhake, Steinhoff, Thomas, Vines, Whittall,

- Collaborative effort: weak field ($G \ll 1$) vs. 'gravitational self-force' ($m_1 \ll m_2$) [Barack, Bern, Herrmann, Long, Roiban, Parra-Martinez, MSR, Shen, Solon, Teng, Zeng]
- Complementary:
 - PM in weak field
 - SF/NR in strong field
- Goals:
 - Hybrid models
 - Resummations
 - Benchmarking
- Percent-level agreement! Scalar toy model: physical effects enter at lower orders!
 - Finite size effects at $\mathcal{O}(Q^2G^3)/3$ -loops!

• Exiting prospects: Higher precision, Higher perturbative orders, comparisons in GR

^{1PM}
$$G \times (1 + v^2 + v^4 + v^6 + v^6)$$

^{2PM} $G^2 \times (1 + v^2 + v^4 + v^6 + v)$
^{3PM} $G^3 \times (1 + v^2 + v^4 + v^6 + v)$
^{4PM} $G^4 \times (1 + v^2 + v^4 + v^6 + v)$
^{5PM} $G^5 \times (1 + v^2 + v^4 + v^6 + v)$

* conservative only

Every order exposes interesting features/puzzles!

1PM & 2PM fixed by geodesic (zeroth-order self-force; 0SF)!

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \frac{1}{1 - \frac{2M}{r}}dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}(\theta) d\phi^{2}$$

$$\rightarrow \log(E^2/m_1m_2)$$

- Other important directions besides higher orders:
 - Spin ~ higher spin particles \rightarrow [talk by Jan Plefka]

[Alessio, Aoude, Bautista, Bern, Cangemi, Chiodaroli, Chung, Damgaard, Di Vecchia, Febres Cordero, Guevara, Haddad, Helset, Hoogeveen, Huang, Jakobsen, Kim, Kosmopoulos, Krauss, Lee, Levi, Lin, Liu, Luna, Maybee, Mogull, **MSR**, Ochirov, O'Connel, Pichini, Plefka, Porto, Roiban, Sauer, Shen, Skvortsov, Steinhoff, Vines, Yang, Zeng,...]

[Brandhuber, Brown Chen, Christofoli, DeAngelis, Elkhidir, Georgoudis, Gonzo, Gowdy, Heissenberg, Herderschee, Kosower, OConnel, Roiban, Sergola, Teng, Travaglini, Vazquez-Holm,...]

- Finite size effects ~ higher-dimensional operators [Bern, Cheung, Parra-Martinez, Roiban, Sawyer, Shen, Solon,...]
- Radiation ~ interesting relation to soft theorems

[Di Vecchia, Dlapa, Heissenberg, Herrman, Jakobsen, Källin, Liu, Manohar, Mogull, Neef, ParraMartinez, Plefka, Porto, Ridgway, **MSR**, Russo, Sauer, Shen, Veneziano, Zeng,...]

- Wave-forms ~ higher-point amplitudes \rightarrow [talk by Donal O'Connell]

From Amplitudes to Observables

Feynman rules, Generalised unitarity

Expansion in classical limit **IBP** reduction Evaluation of master integrals

Stationary phase arguments, Direct computation (KMOC), Matching computations (Non rel. EFT/Schrödinger)

Scattering angle χ ,

Which field theory? Algebraic complexity

Series expansions Large IBP systems Special functions beyond GPL's

Subtracting singular pieces

11

From Amplitudes to Observables

Feynman rules, Generalized unitarity

Expansion in classical limit IBP reduction Evaluation of master integrals

Stationary phase arguments, Direct computation (KMOC), Matching computations (Non rel. EFT/Schrödinger)

Surprisingly, gravity interactions complicated but no bottleneck!

Quantum field theory Easy Integrand Hard Amplitude Easy

Classical observable

Which field theory? Algebraic complexity

Series expansions Large IBP systems Special functions beyond GPL's

Subtracting singular pieces

12

Integrand — Generalized unitarity

- Drastically simplified in classical limit!
 - No graviton loops, self energies, matter contacts
 - 1 matter line per loop

6PM/5-loops straightforward too!

13

Integrand

- Avoid construction of an off-shell integrand
 - High power-counting (large ansatz)
 - Need to impose additional constraints, e.g. scaling in classical limit
- Cut merging after IBP: determine individual master coefficients directly from cuts
- Expansion in classical/soft limit ($q \rightarrow 0$), efficient e.g. through shift operators • Resulting in large number of HQET type integrals

$$= \int d^D \ell \frac{1}{\ell^2} \frac{1}{(\ell-q)^2} \frac{1}{2u_1 \cdot \ell} \frac{1}{2u_2} \frac{1}$$

Single-variable problem! $\cdot \ell$ $\sigma = u_1 \cdot u_2 = 1/\sqrt{1 - v^2}$

Integral reduction

Integral reduction using Laporta algorithm

- Tensor rank up to $a_i = 8 + four$ doubled proagators
- 394 families of integrals
- 4000 master integrals
- Up to 48 master integrals on maximal cut
- Explosion in the number of equations

IBP reduction is the main bottleneck of the 5PM computation!

- 22 'indices': 13 propagators and 9 irreducible scalar products

 $= \int \frac{\mathrm{d}^{4D}k\,[u_2\cdot k_1]^{a_{-14}}[u_2\cdot k_4]^{a_{-15}}[u_1\cdot k_2]^{a_{-16}}[u_1\cdot k_3]^{a_{-17}}[k_1\cdot q]^{a_{-18}}[k_2\cdot q]^{a_{-19}}[k_1\cdot k_2]^{a_{-20}}[k_1\cdot k_4]^{a_{-21}}[k_2\cdot k_3]^{a_{-22}}}{[-2u_2\cdot k_2]^{a_1}[-2u_2\cdot k_{123}]^{a_2}[2u_1\cdot k_{234}]^{a_3}[2u_1\cdot k_{1234}]^{a_4}[k_1^2]^{a_5}[k_2^2]^{a_6}[k_3^2]^{a_7}[k_{13}^2]^{a_8}[k_4^2]^{a_9}[k_{34}^2]^{a_{10}}[k_{234}^2]^{a_{11}}[(k_{123}-q)^2]^{a_{12}}[(k_{1234}-q)^2]^{a_{13}}}$

Integral reduction

- Many straightforward improvements:
 - Filtering redundant equations (parity)
 - Choosing better basis of master integrals [Smirnov; Usovitch]
 - Identification of identical sectors/symmetries
 - Finite fields and functional reconstruction
 - Code improvements (upcoming version of FIRE)
- Improvement of several orders of magnitude!
- Reduction of low-rank tensors and simpler families feasible, especially differential equations!

Integration [Parra-Martinez, MSR, Zeng '20]

Master integrals satisfy Fuchsian differential equations (DE) [Kotikov '91] \bullet

$$\frac{\mathrm{d}}{\mathrm{d}x}\vec{I} = \sum_{k} \frac{\mathrm{d}\log(w_k)}{\mathrm{d}x} A_k(\epsilon)\vec{I}, \quad w_k \in \{x, 1 \pm x, 1\}$$

• Change of basis $\vec{I} \rightarrow \vec{J} = T\vec{I}$ to canonical form [Henn '13]

$$\frac{\mathrm{d}}{\mathrm{d}x}\vec{J} = \epsilon$$

Order-by-order solution in terms of (generalized) polylogarithms

$$\vec{J} = \sum_{n} \epsilon^{n} \vec{J}_{n} \quad \vec{J}_{n+1} = \sum_{k} A_{k} \int_{0}^{x} dz \left[\frac{d}{dz} \log(w_{k}(z)) \right] \vec{J}_{n}$$

 $+x^2, \dots\}, \quad \vec{I} = (I_1, \dots, I_{3943})^T, \quad A_k(\epsilon) \in M_{3943}(\mathbb{Q})[\epsilon]$

$$\sum_{k} \frac{\mathrm{d}\log(w_k)}{\mathrm{d}x} B_k \vec{J}$$

$$\sigma = \frac{1 + x^2}{2x}$$

 $1 < \sigma \leftrightarrow x \in (0,1)$

• Boundary conditions: Regularity/scaling fixes most. Rest computed in the static limit $\sigma \to 1$

Integration — Elliptic sector

Some cases: no canonical form

- **4PM**: Elliptics only in the potential region \rightarrow hardest for integration!
- Strategy 1 [Bern, Parra-Martinez, Roiban, MSR, Shen, Solon, Zeng]: •
 - Split amplitude $\mathcal{M} = \mathcal{M}_{poly} + \mathcal{M}_{elliptic}$
 - Solve *M*_{poly} through DE
 - For $\mathcal{M}_{elliptic}$ compute series to high orders and match to ansatz
- Strategy 2 [Diapa et al.]: ϵ form with generalized kernels instead of $\frac{d \log(w_k)}{d w_k}$,

$$\left(\frac{1-\sigma}{1+\sigma}\right) + \mathcal{O}(\epsilon^{-1})$$

Integration — Elliptic sector

Ansatz from contact integrals integrals

$$\sim \left\{ K^2 \left(\frac{1-\sigma}{1+\sigma} \right), E \left(\frac{1-\sigma}{1+\sigma} \right) K \left(\frac{1-\sigma}{1+\sigma} \right), E^2 \left(\frac{1-\sigma}{1+\sigma} \right) \right\}$$

Not allowed to collapse any line!

• Expand integrals/amplitude in v using DE and match

$$\mathcal{M}_{4,\text{elliptic}} \sim -\pi^2 \left(\frac{41}{16} + \frac{33601v^2}{3072} + \dots + \#v^{400} \right) = r_4 \pi^2 + r_5 K \left(\frac{1-\sigma}{1+\sigma} \right)^2 + r_6 E \left(\frac{1-\sigma}{1+\sigma} \right) K \left(\frac{1-\sigma}{1+\sigma} \right) + r_7 E \left(\frac{1-\sigma}{1+\sigma} \right) K \left(\frac{1-\sigma}{1+\sigma} \right) + r_7 E \left(\frac{1-\sigma}{1+\sigma} \right) K \left(\frac{1-\sigma}{1+\sigma} \right) + r_7 E \left(\frac{1-\sigma}{1+\sigma} \right) K \left(\frac{1-\sigma}{1+\sigma} \right) + r_7 E \left(\frac{1-\sigma}{1+\sigma} \right) K \left(\frac{1-\sigma}{1+\sigma} \right) + r_7 E \left(\frac{1-\sigma}{1+\sigma} \right) K \left(\frac{1-\sigma}{1+\sigma} \right) + r_7 E \left(\frac{1-\sigma}{1+\sigma} \right) K \left(\frac{1-\sigma}{1+\sigma} \right) + r_7 E \left(\frac{1-\sigma}{1+\sigma} \right) K \left(\frac{1-\sigma}{1+\sigma} \right)$$

- 60 orders to fix r_i , 400 to check
- Avoids complicated integrals (elliptic polylogs) in intermediate steps
- (Pre-)Canonical form useful to make series expansion efficient

↑ 3 loop cuts

A First Glimpse at Integration at $\mathcal{O}(G^5)$

- Differential equations for all but a few sectors (completed soon)
- First step: study function space, 51 contact topologies first
- Integrals related to 3 loop elliptic sector

 $\sim \left\{ K^2 \left(\frac{1-\sigma}{1+\sigma} \right), E \left(\frac{1-\sigma}{1+\sigma} \right) K \left(\frac{1-\sigma}{1+\sigma} \right), E^2 \left(\frac{1-\sigma}{1+\sigma} \right) \right\}$

A First Glimpse at Integration at $\mathcal{O}(G^5)$

Example 1

Evaluates to generalized Polylogs

A First Glimpse at Integration at $\mathcal{O}(G^{5})$

 A_k eigenvalues $1/2 + a\epsilon$, $a \in \mathbb{Z}$ suggest elliptic (or more complicated) integrals, roots cannot be rationalized Beyond cyclotomic alphabet

$$x = 3 - 2\sqrt{2} = 0.171... \in [0,1] \to \sigma = 3$$

 $x = -i\sqrt{3 - 2\sqrt{2}} \to \sigma = i$

Inside the scattering region $\sigma > 1!$

A First Glimpse at Integration at $\mathcal{O}(G^5)$

• Equivalently solve 9th order ODE — hard

$$d\begin{pmatrix}f_1\\\vdots\\f_9\end{pmatrix} = \epsilon \sum_k d\log(w_k)A_k\begin{pmatrix}f_1\\\vdots\\f_9\end{pmatrix}, \quad 0 = \sum_{k=0}^9 p_k(x,\epsilon)\frac{d^k}{d^k x}f_1$$

- Need detailed study of the geometry
- Might need to resort to series expansion

xpansion

Amplitude computation

- Amplitude computation comes in parts

 - Integral reduction ?
 - Evaluation of master integrals ?
- Integral reduction:
 - linear algebra problem, exponential growth in # eqns.
 - Intractable without major improvements
- Evaluating integrals:
 - DE's for almost all families
 - Series soon, analytic results harder

The 5PM problem is hard, don't try to swallow it whole!

- Constructing the integrand $\sqrt{51}$ cuts for 5PM, 6PM straightforward

Can we eat our cake one piece at a time? Expansions?

- PN expansion $v \rightarrow 0$
 - Complicated topologies suppressed
 - Important for phenomenology
- High-energy expansion $v \rightarrow 1$
 - Less well understood, important conceptual questions
- Numerics in v for masters (need numeric IBP) or amplitude (too many integrals?)
- Loose information on functional structure

 $M_{5PM}(v, m_1, m_2)$

Can we eat our cake one piece at a time? Expansions?

 $\mathcal{M}_{5\mathrm{PM}}(\mathrm{V},$

• Hierarchical limit (SF) $m_1 \ll m_2$ - Organization into gauge-invariant objects

- Complicated integrals suppressed

$$m_1, m_2$$
)
 $\nu = \frac{\mu}{M} = m_1 m_2 / (m_1 + m_2)^2 \le 1$

- $\mathcal{M}_{5PM} = \mathcal{M}_{5PM}^{0SF} + \nu \mathcal{M}_{5PM}^{1SF} + \nu^2 \mathcal{M}_{5PM}^{2SF} \leftarrow \text{trivial from amplitudes!}$
- _ Useful expansion for equal-mass case! Similar to QCD $\frac{1}{N_{e}} = \frac{1}{3}$

Can we eat our cake one piece at a time? Expansions?

+ $\mathcal{O}(10^4)$ more

Can we eat our cake one piece at a time? Expansions?

Fixed by geodesic!

+ $\mathcal{O}(10^4)$ more

Can we eat our cake one piece at a time? Expansions?

 $-\mathcal{U}(10^{-})$ more + (

Can we eat our cake one piece at a time? Expansions?

+ $\mathcal{O}(10^{-1})$ more

- Work on 1SF in progress
- Use a simpler model without approximations: - Maximal SUSY, scalar toy model,... - Electrodynamics
- Main criteria:
 - Sizeable overlap with GR
 - Significantly more complicated than 4PM
 - Real world system, applications to phenomenology

Electrodynamics checks all the boxes!

Can we eat our cake one piece at a time?

As complicated as in GR! 2SF graphs

 $\mathcal{O}(10^{-})$ more + 0

Classical scattering a

- QED integrand trivial: ~1000 Fey
- Deep expansion in the classical
- Integral reduction: 10^6 integrals \rightarrow 1107 masters, 23 families
- Improved version of FIRE+LiteRed for IBP reduction
- Reduction takes O(3 weeks) on Hoffman2 cluster

Classical scattering at $O(\alpha^5)$ – Integration

- No elliptic integrals for QED!
- Differential equations in canonical form

$$\partial_x \vec{I} = \epsilon \sum_{k,n} f_k^n(x) A_{k,n} \vec{I}, \quad \vec{I} = (I_1$$

• In terms of cyclotomic kernels

$$f_n^k(x) = \frac{x^k}{\Phi_n(x)}, \quad \Phi_{1,2} = x \pm$$

1, $\Phi_4 = 1 + x^2$, $\Phi_{3,6} = 1 \pm x + x^2$

Classical scattering at $O(\alpha^5)$

- Cyclotomic harmonic polylogs introduced in [Ablinger, Blumelein, Schneider 2011] - Manifestly real $C_4^0(x) = \int \frac{dx}{1+x^2} = \frac{i}{2} \int dx \left[\frac{1}{x+i} - \frac{1}{x-i} \right] = \frac{i}{2} (\log(x+i) - \log(x-i)) = \arctan(x)$ - Shuffle algebra (minimal basis)

 - Integration and differential rules
 - Series expansion & numerics
- Special combinations (amplitude) in terms of real Li's

$$C_{400}^{100}(x) - C_{000}^{200}(x) = -\frac{\text{Li}_3(x^6)}{18} + \frac{1}{6}\text{Li}_2(x^6)\log(x) + \frac{4\text{Li}_3(x^3)}{9} - \frac{2}{3}\text{Li}_2(x^3)\log(x) + \frac{\text{Li}_3(x^2)}{2} - \frac{1}{2}\text{Li}_2(1 - x^2)\log(x) - 4\text{Li}_3(x) - 2\text{Li}_2(-x)\log(x) - \log(1 - x^2)\log^2(x) + \frac{1}{4}\pi^2\log(x) + \frac{707}{32}\frac{1$$

 $\chi_{\text{pot}}^{\text{5PL}} = \frac{\alpha^5 (m_1 + m_2)^4}{30J^5 E^4 (\sigma^2 - 1)^{5/2}} \times \left[r_0^{(0)} + \sum_{k=1}^{12} \left(\nu r_k^{(1)} + \nu^2 r_k^{(2)} \right) f_k \right]$

 $\chi_{\text{pot}}^{\text{5PL}} = \frac{\overset{\bullet}{\alpha}{}^{5}(m_{1} + m_{2})^{4}}{30J^{5}E^{4}(\sigma^{2} - 1)^{5/2}} \times \left[r_{0}^{(0)} + \sum_{k=1}^{12} \left(\nu r_{k}^{(1)} + \nu^{2} r_{k}^{(2)} \right) f_{k} \right]$

 $\chi_{\text{pot}}^{\text{5PL}} = \frac{\alpha^5 (m_1 + m_2)^4}{30J^5 E^4 (\sigma^2 - 1)^{5/2}} \times \left[r_0^{(0)} + \sum_{k=1}^{12} \left(\nu r_k^{(1)} + \nu^2 r_k^{(2)} \right) f_k \right]$

Second order E&M self-force!

$$\chi_{\rm pot}^{\rm 5PL} =$$

$$\begin{split} r_{9}^{(1)} &= r_{12}^{(1)} = 240(\sigma^{2} - 1)^{2}, \\ r_{11}^{(1)} &= 120(\sigma^{2} - 1)(\sigma^{2} + 2\sigma - 1), \\ r_{6}^{(1)} &= r_{7}^{(1)} = r_{10}^{(1)} = 0, \\ r_{1}^{(2)} &= \frac{405\sigma \left(15 - 44\sigma^{2}\right)}{16\left(1 - 4\sigma^{2}\right)^{2}} \frac{15\left(10\sigma^{2} + 2\sigma - 3\right)}{\sigma^{3}} \\ &+ \frac{-2048\sigma^{7} + 6656\sigma^{6} + 17872\sigma^{5} + 20000\sigma^{4}}{16} \\ &+ \frac{-7740\sigma^{3} - 22560\sigma^{2} - 6635\sigma - 2080}{16}, \\ r_{2}^{(2)} &= \sqrt{\sigma^{2} - 1} \left[\frac{45\left(1232\sigma^{4} - 1168\sigma^{2} + 287\right)}{16\left(4\sigma^{2} - 1\right)^{3}} \\ &+ \frac{30\left(20\sigma^{3} - 9\sigma^{2} - 4\sigma + 3\right)}{\sigma^{4}} \\ &+ \frac{5}{16}\left(1776\sigma^{4} + 8192\sigma^{3} + 10820\sigma^{2} + 11776\sigma + 322\sigma^{4}\right) \\ r_{3}^{(2)} &= -\frac{30\left(16\sigma^{4} + 36\sigma^{3} - 11\sigma^{2} - 6\sigma + 3\right)}{\sigma^{5}} \\ &+ 20\left(212\sigma^{3} + 350\sigma^{2} + 328\sigma + 319\right), \\ r_{4}^{(2)} &= \frac{2880(\sigma + 1)(3\sigma + 1)}{\sqrt{\sigma^{2} - 1}}, \\ r_{6}^{(2)} &= 480\left(\sigma^{2} - 1\right)^{3/2}\left(2\sigma^{2} - 1\right), \\ r_{7}^{(2)} &= -480\left(\sigma^{2} - 1\right)\left(\sigma^{2} - \sigma - 1\right), \\ r_{10}^{(2)} &= -135\left(\sigma^{2} - 1\right)^{2}, \\ r_{12}^{(2)} &= -480\left(\sigma^{2} - 1\right)\left(\sigma^{2} - 2\sigma - 1\right), \\ r_{5}^{(2)} &= r_{8}^{(2)} = r_{11}^{(2)} = 0. \end{split}$$

- Poles at $\sigma = 0, \pm 1/2, \pm 1$
- Outside of the scattering region $1 < \sigma$ Implications for bound state?

$$Y = 1, \ f_{2} = C_{0}^{0}(x), \ f_{3} = C_{0,0}^{0,0}(x), \ f_{4} = C_{0,0,0}^{0,0,0}(x), f_{5} = -C_{1,0}^{0,0}(x) + C_{2,0}^{0,0}(x) + \frac{\pi^{2}}{4}, f_{6} = -C_{2,0}^{0,0}(x) + C_{4,0}^{1,0}(x) - \frac{\pi^{2}}{16}, f_{7} = C_{3,0}^{0,0}(x) + 2C_{3,0}^{1,0}(x) + C_{6,0}^{0,0}(x) - 2C_{6,0}^{1,0}(x) + \frac{\pi^{2}}{6}, f_{8} = -C_{0,1,0}^{0,0,0}(x) + C_{0,2,0}^{0,0,0}(x) + \frac{\pi^{2}}{4}C_{0}^{0}(x) + \frac{7\zeta_{3}}{2}, f_{9} = -C_{0,2,0}^{0,0,0}(x) + C_{0,4,0}^{0,1,0}(x) - \frac{\pi^{2}}{16}C_{0}^{0}(x) - \frac{21\zeta_{3}}{16}, f_{10} = C_{0,3,0}^{0,0,0}(x) + 2C_{0,3,0}^{0,1,0}(x) + C_{0,6,0}^{0,0,0}(x) - 2C_{0,6,0}^{0,1,0}(x) + \frac{1}{6}\pi^{2}C_{0}^{0}(x) + \frac{28\zeta_{3}}{9}, f_{11} = -C_{1,0,0}^{0,0,0}(x) + C_{2,0,0}^{0,0,0}(x) - \frac{7\zeta_{3}}{4}, f_{12} = -C_{2,0,0}^{0,0,0}(x) + C_{4,0,0}^{1,0,0}(x) + \frac{21\zeta_{3}}{32}.$$
 (15)

Transcendental functions

$$\left[r_{0}^{(0)} + \sum_{k=1}^{12} \left(\nu r_{k}^{(1)} + \nu^{2} r_{k}^{(2)}\right) f_{k}\right]$$

Functions are special:

No
$$\zeta$$
-values $f_k = \sum_{n,r} \log^r (1-x) a_n^r (1-x)^n$, $a_n^r \in$

Only specific contributions of indices (symbology)

Alternative form: polylogs with <u>real</u> arguments

Conclusion

- Amplitudes program for GR observables to high perturbative orders: loops \rightarrow precision
- Scattering in QED at α^5 important case study
 - Proof of principle computation, potential phone applications
 - Large overlap with GR computation ~25% of the master integrals, including 2SF integrals
 - Identified bottlenecks and improved setup in integral reduction
- Progress towards scattering at G^5
 - Integrand constructed
 - Differential equations for all but a few families (hopefully completed soon) 🗸
- Eventually reconnect with the bound problem

Optimistic on near-term progress — 5PM hard but doable!

– Integral reduction challenging ? New ideas from collider physics/amplitudes could help!

• Slice the problem into digestible pieces, gauge-invariant organisation by self-force (cf. $1/N_c$ expansion)

Backup

Symbology

$$f_{1} = 1, \ f_{2} = C_{0}^{0}(x), \ f_{3} = C_{0,0}^{0,0}(x), \ f_{4} = C_{0,0,0}^{0,0,0}(x),$$

$$f_{5} = -C_{1,0}^{0,0}(x) + C_{2,0}^{0,0}(x) + \frac{\pi^{2}}{4},$$

$$f_{6} = -C_{2,0}^{0,0}(x) + C_{4,0}^{1,0}(x) - \frac{\pi^{2}}{16},$$

$$f_{7} = C_{3,0}^{0,0}(x) + 2C_{3,0}^{1,0}(x) + C_{6,0}^{0,0}(x) - 2C_{6,0}^{1,0}(x) + \frac{\pi^{2}}{6},$$

$$f_{8} = -C_{0,1,0}^{0,0,0}(x) + C_{0,2,0}^{0,0,0}(x) + \frac{\pi^{2}}{4}C_{0}^{0}(x) + \frac{7\zeta_{3}}{2},$$

$$f_{9} = -C_{0,2,0}^{0,0,0}(x) + C_{0,4,0}^{0,1,0}(x) - \frac{\pi^{2}}{16}C_{0}^{0}(x) - \frac{21\zeta_{3}}{16},$$

$$f_{10} = C_{0,3,0}^{0,0,0}(x) + 2C_{0,3,0}^{0,1,0}(x) + C_{0,6,0}^{0,0,0}(x) - 2C_{0,6,0}^{0,1,0}(x) + \frac{1}{6}\pi^{2}C_{0}^{0}(x) + \frac{28\zeta_{3}}{9},$$

$$f_{11} = -C_{1,0,0}^{0,0,0}(x) + C_{2,0,0}^{0,0,0}(x) - \frac{7\zeta_{3}}{4},$$

$$f_{12} = -C_{2,0,0}^{0,0,0}(x) + C_{4,0,0}^{1,0,0}(x) + \frac{21\zeta_{3}}{32}.$$
(15)

$$\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} = \left\{ x, \frac{(1+x)^2}{(1-x)^2}, \frac{1+x^2}{(1+x)^2}, \frac{1+x+x^2}{1-x+x^2} \right\}$$
$$= \left\{ x, \frac{\sigma+1}{\sigma-1}, \frac{\sigma}{\sigma+1}, \frac{2\sigma+1}{2\sigma-1} \right\}.$$

Classical scattering at $O(\alpha^5)$ **–Lessons**

- Computations at fifth order in perturbation theory are possible!
- E&M scattering at large impact parameter heavy ion scattering
- First glimpse at the function space, organization in terms of CHPL useful
- Understand which parts of the computation are hardest \rightarrow 2SF graphs
- QED is an useful playground for bootstrap ideas
 - High post-Coulombian orders from Fokker action
 - Simple space of transcendental function
 - Additional relation to energy loss
- Performed lots of checks of the result

Classical scattering at $O(\alpha^5)$ – Integration

- DE has additional structure: sparse, top sectors don't talk to bottom
- Canonical DE invariant under rational transformation: factorize

• Bonus relations between integrals, linked to special structure of eikonal integrals

$$k,n \to \epsilon \sum_{k,n} f_k^n(x) A'_{k,n}$$

Amplitudes to observables

- Observables through

$$\mathcal{M} = i \int_{J} (e^{iI_r(J)/\hbar} - 1), \quad I_r(J, E) = \int_{\text{trajectory}} p_r(J, E) dr \qquad \chi(J, E) = -\partial_J I_r(J, E)$$

Gauge invariants

Very efficient extraction that meshes with relativistic integration

Direct computation [Kosower, Maybee, O'Connell; Damgaard, Hansen, Planté, Vanhove (4PM)] - Hamiltonian (Schrödinger eqn. or EFT matching [Rothstein, Neill; Cheung, Solon, Rothstein]) - Stationary phase/generating functionals (eikonal, partial waves, heavy particle phase,...)

• Amplitude \leftrightarrow radial action [Bern, Parra-Martinez, Roiban, MSR, Shen, Solon, Zeng]

Classical Limit

• Classical physics: Large number of soft exchanges $q = \hbar \overline{q}$

$$1 \ll J^2 \sim \frac{s}{q^2} \sim \frac{m_i^2}{q^2} \to q^2 \ll m_i^2 \sim s$$

[Benecke, Smirnov] • Relativistic regions: - Hard (h): $\ell \sim m \leftarrow UV$, quantum $\lambda_{\text{compton}} \sim b$ - Soft (s): $\ell \sim q \leftarrow \text{long range } \lambda_{\text{compton}} \ll b$ • Threshold expansion: $v \sim |\vec{p}_{COM}|/\sqrt{s}$ - Potential (p): $(\omega, \vec{\ell}) \sim (|q|v, |q|) \leftarrow \text{instantaneous}$

- Radiation (r): $(\omega, \vec{\ell}) \sim (|q|v, |q|v)$
- Classical physics (p)+(r), not well-defined separately
- Formally $v \ll 1$, resumption to $v \sim \mathcal{O}(1)$ $v + \frac{v^3}{3} + \frac{v^5}{5} + \dots = \operatorname{arctanh}(v)$

•
$$C^{b_1,\ldots,b_n}_{a_1,\ldots,a_n}(x) = \int_0^x \mathrm{d}z f^{b_1}_{a_1}(z) C^{b_2,\ldots}_{a_2,\ldots}$$

$$\mathbb{W} = \left\{\frac{1}{x}, \frac{1}{1+x}, \frac{1}{x-1}, \frac{2x}{1+x^2}, \frac{1+2x}{1+x+x^2}, \frac{2x}{1-x}\right\}$$

 $\dots, a_n(z), \quad f_4^1 = \frac{x}{1+x^2}$

 $\left\{ \frac{x-1}{x+x^2} \right\}$

