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Motivation

• GW abundant, important source: 
compact binary systems


• Physics goals:

- Strong-field tests of GR, new physics

- BH properties, abundance etc.

- Ultra-dense matter (neutron star  

equation of state)

- Multi-messenger astronomy

- …

[GW190521, LIGO]
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• Present detectors (LIGO/VIRGO/KAGRA): 

- >100 events. O4: 150 events/year


• Next-gen. experiments (ca. 2035): 

- More precision 10-100 x improved S/N, wider frequency band


- More data (bigger reach + sensitivity), 20-60 events/day pileup!


- Extreme corners of parameter space, e.g. EMRI
→

aLIGO/

VIRGO/KAGRA

LISA
Einstein

Cosmic ExplorerDECIGO
TianQinIndiGO

Next gen Space based

203520302025Present

Motivation
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Need high-precision wave-form modelling!



• Numerical waveform from Einstein eqn 


• Significant resource requirements:


-  CPU h/ NR template


- GW150914: 250k templates


- Challenging in PS-corners: 


• Solution: analytic and hybrid models 
(GW150914: post-Newtonian + effective-one-body)


• Corrections to Newton’s potential to high orders  

Gμν =
8πG
c4

Tμν

O(105)

m1 ≪ m2, v → c, | ⃗L | /m → 1

[GW150914, LIGO]

Motivation

[1610.03567]
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Gravitational Scattering
Process of interest: scattering of compact massive objects

Hard to observe in GW observatories. Why bother?

vs
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Gravitational Scattering
• Why bother? 


- Clean, determined by initial data , no gauge dependence


- Close relation to bound process

- Relativistic treatment exposes structures, e.g. mass polynomiality [Damour]

- Amplitudes


• Classical GR community is very interested in scattering  
[Barack, Berti, Bini, Buonanno, Cardoso, Damour, East, Geralico, Gralla, Guercilena, Hinder, Hinderer, Hopper, Khalil, Lobo, Long, van 
de Meent, Nagar, Pfeiffer, Pratten Pretorious, Pretorius, Rettegno, Rezzolla, Schmidt, Sperhake, Steinhoff, Thomas, Vines, Whittall, 
Yunes,. . . ]

{b, pi}

p1
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Gravitational Scattering

• Collaborative effort: weak field ( ) vs. ‘gravitational self-force’ ( ) 
[Barack, Bern, Herrmann, Long, Roiban, Parra-Martinez, MSR, Shen, Solon, Teng, Zeng]


• Complementary:

- PM in weak field 


- SF/NR in strong field  


• Goals:

- Hybrid models


- Resummations


- Benchmarking


• Scalar toy model: physical effects enter at lower orders!

- Finite size effects at /3-loops!


• Exiting prospects: Higher precision, Higher perturbative orders, comparisons in GR

G ≪ 1 m1 ≪ m2

𝒪(Q2G3)

7

Percent-level agreement!



Gravitational Scattering
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G × (1 + v2 + v4 + v6 + v8 + …)1PM 

2PM 
1985

3PM 
2019*

4PM 
2021*

5PM 
WIP

G2 × (1 + v2 + v4 + v6 + v8 + …)

G × (1 + v2 + v4 + v6 + v8 + …)

G3 × (1 + v2 + v4 + v6 + v8 + …)

G4 × (1 + v2 + v4 + v6 + v8 + …)

G5 × (1 + v2 + v4 + v6 + v8 + …)

Bern, Parra-Martinez, Roiban, 

MSR, Shen, Solon, Zeng

Bern, Cheung, Roiban, 

Shen, Solon, Zeng

* conservative only

 Important 4PM results: [Dlapa, Kalin, Liu, Neef, Porto; Bjerrum-
Bohr, Plante, Vanhove; Jakobsen, Mogull, Plefka, Sauer, Xu]

Westphal

-th post-Minkowskian order  
   PM   loops  

n
= 𝒪(Gn) = n = n − 1



Every order exposes interesting features/puzzles!


1PM & 2PM fixed by geodesic (zeroth-order self-force; 0SF)! 
 
 


3PM: Excursions into high-energy limit  
 

4PM: Elliptic functions, IR divergences/‘tail’ effect (analytic continuation?) 
 

5PM: New functions? ’memory’ contributions? Second-order self-force, … 
 

6PM: UV divergences, finite size effects, distinguish BH and NS!

Gravitational Scattering
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ds2 = − (1 −
2M
r ) dt2 +

1

1 − 2M
r

dr2 + r2dθ2 + r2 sin2(θ) dϕ2

∼ arcsinh ( σ − 1
2 ) → log(E2/m1m2)

∼ K2 ( σ − 1
σ + 1 ) ∼

1
ϵ

←

∼ ?



Gravitational Scattering
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• Other important directions besides higher orders:

- Spin ~ higher spin particles  [talk by Jan Plefka] 

[Alessio, Aoude, Bautista, Bern, Cangemi, Chiodaroli, Chung, Damgaard, Di Vecchia, Febres Cordero, Guevara, 
Haddad, Helset, Hoogeveen, Huang, Jakobsen, Kim, Kosmopoulos, Krauss, Lee, Levi, Lin, Liu, Luna, Maybee, Mogull, 
MSR, Ochirov, O’Connel, Pichini, Plefka, Porto, Roiban, Sauer, Shen, Skvortsov, Steinhoff, Vines, Yang, Zeng,…]


- Wave-forms ~ higher-point amplitudes  [talk by Donal O’Connell] 
[Brandhuber, Brown Chen, Christofoli, DeAngelis, Elkhidir, Georgoudis, Gonzo, Gowdy, Heissenberg, Herderschee, 
Kosower, OConnel, Roiban, Sergola, Teng, Travaglini, Vazquez-Holm,…]


- Finite size effects ~ higher-dimensional operators 
[Bern, Cheung, Parra-Martinez, Roiban, Sawyer, Shen, Solon,…]


- Radiation ~ interesting relation to soft theorems 
[Di Vecchia, Dlapa, Heissenberg, Herrman, Jakobsen, Källin, Liu, Manohar, Mogull, Neef, ParraMartinez, Plefka, Porto, 
Ridgway, MSR, Russo, Sauer, Shen, Veneziano, Zeng,…]

→

→



From Amplitudes to Observables
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Integrand

Quantum field theory \

Amplitude

Classical observable

Scattering angle , .…
χ

Feynman rules,

Generalised unitarity


Expansion in classical limit

IBP reduction


Evaluation of master integrals

Which field theory?

Algebraic complexity

Series expansions

Large IBP systems


Special functions beyond GPL’s

Subtracting singular pieces

Stationary phase arguments,

Direct computation (KMOC), 


Matching computations 

(Non rel. EFT/Schrödinger)



From Amplitudes to Observables
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Integrand

Quantum field theory \

Amplitude

Classical observable

Scattering angle , .…
χ

Feynman rules,

Generalized unitarity


Expansion in classical limit

IBP reduction


Evaluation of master integrals

Stationary phase arguments,

Direct computation (KMOC), 


Matching computations 

(Non rel. EFT/Schrödinger)

Which field theory?

Algebraic complexity

Series expansions

Large IBP systems


Special functions beyond GPL’s

Subtracting singular pieces


Hard

Easy

Easy

Surprisingly, gravity interactions complicated but no bottleneck!



Integrand — Generalized unitarity
• Construct integrand from 51 unitary cuts (+images)





• Drastically simplified in classical limit!

- No graviton loops, self energies, matter contacts

- 1 matter line per loop 13

Blobs = tree amplitudes

Lines = on-shell gravitons 

6PM/5-loops straightforward too!



Integrand
• Avoid construction of an off-shell integrand


- High power-counting (large ansatz)

- Need to impose additional constraints, e.g. scaling in classical limit


• Cut merging after IBP: determine individual master coefficients directly from 
cuts


• Expansion in classical/soft limit ( ), efficient e.g. through shift operators


• Resulting in large number of HQET type integrals


                            

q → 0
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= ∫ dDℓ
1
ℓ2

1
(ℓ − q)2

1
2u1 ⋅ ℓ

1
2u2 ⋅ ℓ

Single-variable problem! 
σ = u1 ⋅ u2 = 1/ 1 − v2



• Integral reduction using Laporta algorithm

- 22 ‘indices’: 13 propagators and 9 irreducible scalar products





- Tensor rank up to  + four doubled proagators


- 394 families of integrals

- 4000 master integrals 

- Up to 48 master integrals on maximal cut


• Explosion in the number of equations

= ∫
d4Dk [u2 ⋅ k1]a−14[u2 ⋅ k4]a−15[u1 ⋅ k2]a−16[u1 ⋅ k3]a−17[k1 ⋅ q]a−18[k2 ⋅ q]a−19[k1 ⋅ k2]a−20[k1 ⋅ k4]a−21[k2 ⋅ k3]a−22

[−2u2 ⋅ k2]a1[−2u2 ⋅ k123]a2[2u1 ⋅ k234]a3[2u1 ⋅ k1234]a4[k2
1]a5[k2

2]a6[k2
3]a7[k2

13]a8[k2
4]a9[k2

34]a10[k2
234]a11[(k123 − q)2]a12[(k1234 − q)2]a13

ai = 8

Integral reduction
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IBP reduction is the main bottleneck of the 5PM computation!



• Many straightforward improvements:

- Filtering redundant equations (parity)

- Choosing better basis of master integrals [Smirnov; Usovitch]


- Identification of identical sectors/symmetries

- Finite fields and functional reconstruction

- Code improvements (upcoming version of FIRE)


• Improvement of several orders of magnitude!


• Reduction of low-rank tensors and simpler families feasible, 
especially differential equations!

Integral reduction
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Integration [Parra-Martinez, MSR, Zeng ‘20]

• Master integrals satisfy Fuchsian differential equations (DE) [Kotikov ’91]





• Change of basis  to canonical form [Henn ‘13]





• Order-by-order solution in terms of (generalized) polylogarithms





• Boundary conditions: Regularity/scaling fixes most. Rest computed in the static limit 

d
dx

⃗I = ∑
k

d log(wk)
dx

Ak(ϵ) ⃗I , wk ∈ {x,1 ± x,1 + x2, …} , ⃗I = (I1, …, I3943)T , Ak(ϵ) ∈ M3943(ℚ)[ϵ]

⃗I → ⃗J = T ⃗I
d
dx

⃗J = ϵ∑
k

d log(wk)
dx

Bk ⃗J

⃗J = ∑
n

ϵn ⃗Jn ⃗Jn+1 = ∑
k

Ak ∫
x

0
dz [ d

dz
log(wk(z))] ⃗Jn

σ → 1

17

σ =
1 + x2

2x
1 < σ ↔ x ∈ (0,1)



Integration — Elliptic sector
• Some cases: no canonical form 





• 4PM: Elliptics only in the potential region  hardest for integration!


• Strategy 1 [Bern, Parra-Martinez, Roiban, MSR, Shen, Solon, Zeng]: 


- Split amplitude 


- Solve  through DE


- For  compute series to high orders and match to ansatz


• Strategy 2 [Dlapa et al.]:  form with generalized kernels instead of , 

→

ℳ = ℳpoly + ℳelliptic

ℳpoly

ℳelliptic

ϵ d log(wk)
dx

18

=
1
ϵ2

8
σ + 1

K2 ( 1 − σ
1 + σ ) + 𝒪(ϵ−1)



Integration — Elliptic sector
• Ansatz from contact integrals integrals


                                                 


• Expand integrals/amplitude in  using DE and match





• 60 orders to fix , 400 to check 


• Avoids complicated integrals (elliptic polylogs) in intermediate steps 


• (Pre-)Canonical form useful to make series expansion efficient

v

ℳ4,elliptic ∼ − π2 ( 41
16

+
33601v2

3072
+ … + #v400) = r4π2 + r5K ( 1 − σ

1 + σ )
2

+ r6E ( 1 − σ
1 + σ ) K ( 1 − σ

1 + σ ) + r7E ( 1 − σ
1 + σ )

2

ri

19

∼ {K2 ( 1 − σ
1 + σ ), E ( 1 − σ

1 + σ ) K ( 1 − σ
1 + σ ), E2 ( 1 − σ

1 + σ )}
Not allowed to collapse any line!

 3 loop cuts↑



A First Glimpse at Integration at 𝒪(G5)

• Differential equations for all but a few sectors (completed soon)


• First step: study function space, 51 contact topologies first


• Integrals related to 3 loop elliptic sector  

20

∼ {K2 ( 1 − σ
1 + σ ), E ( 1 − σ

1 + σ ) K ( 1 − σ
1 + σ ), E2 ( 1 − σ

1 + σ )} ∼ {?}



A First Glimpse at Integration at 𝒪(G5)
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Example 1


d
f1
⋮
f5

= ϵ∑
k

d log(wk)Ak

f1
⋮
f5

, wk ∈ {x,1 ± x,1 + x2}

Same as at 3 loop

Evaluates to generalized Polylogs



A First Glimpse at Integration at 𝒪(G5)

22

Example 2


d
f1
⋮
f9

= ∑
k

d log(wk)Ak

f1
⋮
f9

, wk = {x,1 ± x,1 ± x + x2, 1 ± 6x + x2, 1 + 6x2 + x4}

x = 3 − 2 2 = 0.171... ∈ [0,1] → σ = 3

 eigenvalues  
suggest elliptic (or more complicated) 
integrals, roots cannot be rationalized

Ak 1/2 + aϵ , a ∈ ℤ

x = − i 3 − 2 2 → σ = i

Inside the scattering region ! σ > 1

Beyond cyclotomic alphabet



A First Glimpse at Integration at 𝒪(G5)
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• Equivalently solve 9th order ODE — hard





• Need detailed study of the geometry


• Might need to resort to series expansion

d
f1
⋮
f9

= ϵ∑
k

d log(wk)Ak

f1
⋮
f9

, 0 =
9

∑
k=0

pk(x, ϵ)
dk

dkx
f1



Amplitude computation
• Amplitude computation comes in parts


- Constructing the integrand  51 cuts for 5PM, 6PM straightforward


- Integral reduction ?

- Evaluation of master integrals ? 


• Integral reduction:

- linear algebra problem, exponential growth in # eqns. 

- Intractable without major improvements


• Evaluating integrals:

- DE’s for almost all families

- Series soon, analytic results harder 

✓

24The 5PM problem is hard, don’t try to swallow it whole! 



Slicing the 5PM problem
Can we eat our cake one piece at a time? Expansions?


 


• PN expansion 


- Complicated topologies suppressed

- Important for phenomenology


• High-energy expansion 


- Less well understood, important conceptual questions


• Numerics in  for masters (need numeric IBP) or amplitude (too many integrals?)


• Loose information on functional structure 

ℳ5PM(v, m1, m2)
v → 0

v → 1

v

25



Slicing the 5PM problem

Can we eat our cake one piece at a time? Expansions?





• Hierarchical limit (SF) 


- Organization into gauge-invariant objects

trivial from amplitudes!


- Useful expansion for equal-mass case! Similar to QCD 


- Complicated integrals suppressed

ℳ5PM(v, m1, m2)
m1 ≪ m2

ℳ5PM = ℳ0SF
5PM+νℳ1SF

5PM+ν2ℳ2SF
5PM ←

1
Nc

=
1
3

26

ν =
μ
M

= m1m2/(m1 + m2)2 ≤ 1/4



Slicing the 5PM problem

Can we eat our cake one piece at a time? Expansions?

27

ℳ5PM =

+  more𝒪(104)



Slicing the 5PM problem

Can we eat our cake one piece at a time? Expansions?

28

+  more𝒪(104)

ℳ0SF
5PM =

Fixed by geodesic!



Slicing the 5PM problem

Can we eat our cake one piece at a time? Expansions?
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+  more𝒪(104)

ℳ1SF
5PM =



Slicing the 5PM problem

Can we eat our cake one piece at a time? Expansions?
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+  more𝒪(104)

ℳ2SF
5PM =



Slicing the 5PM problem
• Work on 1SF in progress


• Use a simpler model without approximations:

- Maximal SUSY, scalar toy model,…

- Electrodynamics


• Main criteria:

- Sizeable overlap with GR 

- Significantly more complicated than 4PM

- Real world system, applications to phenomenology 

31

New calculations New structures

New tools

Electrodynamics checks all the boxes!



Slicing the 5PM problem

Can we eat our cake one piece at a time?

32

+  more𝒪(104)

ℳQED
5PL =

As complicated as in GR! 2SF graphs



Classical scattering at O(α5)

• QED integrand trivial: ~1000 Feynman diagrams


• Deep expansion in the classical limit 


• Integral reduction:  integrals  1107 masters, 23 families


• Improved version of FIRE+LiteRed for IBP reduction


• Reduction takes O(3 weeks) on Hoffman2 cluster

ℳ4 ∼
1
ℏ5

+ … +
1
ℏ

106 →
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Classical scattering at  — IntegrationO(α5)

• No elliptic integrals for QED!


• Differential equations in canonical form





• In terms of cyclotomic kernels


∂x ⃗I = ϵ∑
k,n

f n
k (x)Ak,n ⃗I, ⃗I = (I1, …, I1107)T

fk
n(x) =

xk

Φn(x)
, Φ1,2 = x ± 1 , Φ4 = 1 + x2 , Φ3,6 = 1 ± x + x2

34



Classical scattering at O(α5)

• Cyclotomic harmonic polylogs introduced in [Ablinger, Blumelein, Schneider 2011]

- Manifestly real

- Shuffle algebra (minimal basis)

- Integration and differential rules

- Series expansion & numerics


• Special combinations (amplitude) in terms of real ’s
Li

C1
4

0
0

0
0(x) − C2

0
0
0

0
0(x) = −

Li3 (x6)
18

+
1
6

Li2 (x6) log(x) +
4 Li3 (x3)

9
−

2
3

Li2 (x3) log(x) +
Li3 (x2)

2

−
1
2

Li2 (1 − x2) log(x) − 4 Li3(x) − 2 Li2(−x)log(x) − log (1 − x2) log2(x) +
1
4

π2 log(x) +
707
32

ζ3

35

C0
4(x) = ∫

dx
1 + x2

=
i
2 ∫ dx [ 1

x + i
−

1
x − i ] =

i
2

(log(x + i) − log(x − i)) = arctan(x)



Classical scattering at  —ResultsO(α5)
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χ5PL
pot =

α5(m1 + m2)4

30J5E4 (σ2 − 1)5/2
× [r(0)

0 +
12

∑
k=1

(νr(1)
k + ν2r(2)

k ) fk]



Classical scattering at  —ResultsO(α5)
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χ5PL
pot =

α5(m1 + m2)4

30J5E4 (σ2 − 1)5/2
× [r(0)

0 +
12

∑
k=1

(νr(1)
k + ν2r(2)

k ) fk]

Fifth post-Lorentzian order



Classical scattering at  —ResultsO(α5)
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χ5PL
pot =

α5(m1 + m2)4

30J5E4 (σ2 − 1)5/2
× [r(0)

0 +
12

∑
k=1

(νr(1)
k + ν2r(2)

k ) fk]
Contribution from potential 
modes well-defined! No tail!



Classical scattering at  —ResultsO(α5)
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χ5PL
pot =

α5(m1 + m2)4

30J5E4 (σ2 − 1)5/2
× [r(0)

0 +
12

∑
k=1

(νr(1)
k + ν2r(2)

k ) fk]
Mass polynomiality

Second order E&M self-force!



Classical scattering at  —ResultsO(α5)
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χ5PL
pot =

α5(m1 + m2)4

30J5E4 (σ2 − 1)5/2
× [r(0)

0 +
12

∑
k=1

(νr(1)
k + ν2r(2)

k ) fk]
Rational coefficients

Poles at σ = 0, ± 1/2, ± 1
Outside of the scattering region 


Implications for bound state?
1 < σ



Classical scattering at  —ResultsO(α5)
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χ5PL
pot =

α5(m1 + m2)4

30J5E4 (σ2 − 1)5/2
× [r(0)

0 +
12

∑
k=1

(νr(1)
k + ν2r(2)

k ) fk]

Transcendental functions

No -values ζ fk = ∑
n,r

logr(1 − x)ar
n(1 − x)n , ar

n ∈ ℚ

Functions are special:

Only specific contributions of indices (symbology)

Alternative form: polylogs with real arguments



Conclusion
• Amplitudes program for GR observables to high perturbative orders: loops  precision


• Scattering in QED at  important case study


- Proof of principle computation, potential phone applications

- Large overlap with GR computation ~25% of the master integrals, including 2SF integrals

- Identified bottlenecks and improved setup in integral reduction 


• Progress towards scattering at 


- Integrand constructed 


- Differential equations for all but a few families (hopefully completed soon) 


- Integral reduction challenging ? New ideas from collider physics/amplitudes could help!


• Slice the problem into digestible pieces, gauge-invariant organisation by self-force (cf.  expansion)


• Eventually reconnect with the bound problem 

→

α5

G5

✓
✓

1/Nc

42Optimistic on near-term progress — 5PM hard but doable! 



Backup
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Symbology
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Classical scattering at  —LessonsO(α5)
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• Computations at fifth order in perturbation theory are possible!


• E&M scattering at large impact parameter — heavy ion scattering


• First glimpse at the function space, organization in terms of CHPL useful 


• Understand which parts of the computation are hardest  2SF graphs 


• QED is an useful playground for bootstrap ideas

- High post-Coulombian orders from Fokker action

- Simple space of transcendental function

- Additional relation to energy loss


• Performed lots of checks of the result 

→



Classical scattering at  — IntegrationO(α5)

• DE has additional structure: sparse, top sectors don’t talk to bottom 


• Canonical DE invariant under rational transformation: factorize





                      


• Bonus relations between integrals, linked to special structure of eikonal integrals

ϵ∑
k,n

f n
k (x)Ak,n → ϵ∑

k,n

f n
k (x)A′ k,n

46

→
T ∈ M(ℚ)



Amplitudes to observables
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• Amplitude not observable: 


• Observables through

- Direct computation [Kosower, Maybee, O’Connell; Damgaard, Hansen, Planté, Vanhove (4PM)]


- Hamiltonian (Schrödinger eqn. or EFT matching [Rothstein,Neill; Cheung, Solon, Rothstein])


- Stationary phase/generating functionals (eikonal, partial waves, heavy particle phase,…)


• Amplitude ↔ radial action [Bern, Parra-Martinez, Roiban, MSR, Shen, Solon, Zeng]

ℳL−loop ∼
1

ℏL+1
, ℳL−loop ∼

1
ϵL

ℳ = i∫J
(eiIr(J)/ℏ − 1) , Ir(J, E) = ∫trajectory

pr(J, E)dr χ(J, E) = − ∂JIr(J, E)

Gauge invariants Very efficient extraction that meshes with relativistic integration 



Classical Limit
• Classical physics: Large number of soft exchanges 


                           


• Relativistic regions: 


- Hard (h):   UV, quantum 


- Soft (s):   long range 


• Threshold expansion: 


- Potential (p):   instantaneous


- Radiation (r): 


• Classical physics (p)+(r), not well-defined separately


• Formally , resumption to 

q = ℏq

1 ≪ J2 ∼
s

q2
∼

m2
i

q2
→ q2 ≪ m2

i ∼ s lcompton ∼
1
M

≪ RS ∼ GM ≪ b

ℓ ∼ m ← λcompton ∼ b

ℓ ∼ q ← λcompton ≪ b

v ∼ | ⃗pCOM | / s

(ω, ⃗ℓ ) ∼ ( |q |v, |q | ) ←
(ω, ⃗ℓ ) ∼ ( |q |v, |q |v)

v ≪ 1 v ∼ 𝒪(1)

48v +
v3

3
+

v5

5
+ … = arctanh(v)

[Benecke, Smirnov]



• Cb1,…,bn
a1,…,an

(x) = ∫
x

0
dz f b1

a1
(z) Cb2,…,bn

a2,…,an
(z) , f1

4 =
x

1 + x2
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