Positivity made simple Amplitudes 2023

2304.02550 [B. Bellazzini, GI, F. Riva, S. Ricossa] 2211.00085 [B. Bellazzini, GI, M. Riva] 2108.05896 [B. Bellazzini, GI, M. Lewandowski, F. Sgarlata]

Giulia Isabella

universite **PARIS-SACLAY**

- Lorentz Invariance
- Unitarity
- Crossing Symmetry
- Micro-causality/Analyticity
- Polynomial boundedness

Assumptions

- Lorentz Invariance
- Unitarity

Scattering amplitudes

- $t = (p_1 p_3)^2$
- Crossing Symmetry
- Micro-causality/Analyticity
- Polynomial boundedness

S

- Lorentz Invariance
- Unitarity $S^{\dagger}S = 1 \iff M M^{\dagger} = iMM^{\dagger}$
- Crossing Symmetry
- Micro-causality/Analyticity
- Polynomial boundedness

S

- Lorentz Invariance
- Unitarity
- Crossing Symmetry
- Micro-causality/Analyticity
- Polynomial boundedness

- Lorentz Invariance
- Unitarity
- Crossing Symmetry
- Micro-causality/Analyticity
- Polynomial boundedness

- Lorentz Invariance
- Unitarity
- Crossing Symmetry
- Micro-causality/Analyticity
- Polynomial boundedness

- Lorentz Invariance
- Unitarity
- Crossing Symmetry
- Micro-causality/Analyticity
- Polynomial boundedness

Assumptions

- Lorentz Invariance
- Unitarity
- Crossing Symmetry
- Micro-causality/Analyticity
- Polynomial boundedness

$$\frac{M}{|s|^2} \xrightarrow[s \to \infty]{} 0$$

Froissart bound

Assumptions

- Lorentz Invariance
- Unitarity
- Crossing Symmetry
- Micro-causality/Analyticity
- Polynomial boundedness

$$\frac{M}{|s|^2} \xrightarrow[s \to \infty]{} 0$$

Froissart bound

Crossing Symmetry M(u, t = 0) = M(s, t = 0)

Crossing Symmetry M(u, t = 0) = M(s, t = 0)

 $\frac{ds \ M(\alpha \to \alpha)}{2\pi i} > 0$

 $|\beta\rangle = R(\theta) |\alpha\rangle$

Challenges

• Crossing for massive spinning states

 $M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Crossing Symmetry

M(u,t) = M(s,t)

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Non-forward discontinuities are not positive

 $\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

Crossing Symmetry

M(u,t) = M(s,t)

$$= 2 \times \int_{\Lambda^2}^{\infty} \frac{ds}{2\pi} \frac{\langle \alpha | M^{\dagger}M | \beta \rangle}{|s|^n} \ge 0$$

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

• Non-forward discontinuities are not positive

$\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Non-forward discontinuities are not positive

 $\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

Solutions

Consider all helicities contributions

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Non-forward discontinuities are not positive

 $\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

Solutions

Consider all helicities contributions

Spin 1: 17 amplitudes Spin 2: 97 amplitudes

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Non-forward discontinuities are not positive

$\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

Solutions

Consider all helicities contributions

Spin 1: 17 amplitudes Spin 2: 97 amplitudes

• Find positive functional to obtain positivity and convergence

 $dt \Psi(t) \langle \alpha | M^{\dagger}M | \beta \rangle \geq 0$

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Non-forward discontinuities are not positive

$\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

Solutions

Spin 1: 17 amplitudes Spin 2: 97 amplitudes

• Find positive functional to obtain positivity and convergence

 $dt \Psi(t) \langle \alpha | M^{\dagger}M | \beta \rangle \geq 0$

SDPB heavy numerics

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Non-forward discontinuities are not positive

$\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

Solutions

Spin 1: 17 amplitudes Spin 2: 97 amplitudes

• Find positive functional to obtain positivity and convergence

 $dt \Psi(t) \langle \alpha | M^{\dagger}M | \beta \rangle \geq 0$

SDPB heavy numerics

Great and optimal bounds!

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Non-forward discontinuities are not positive

$\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

Simpler solutions?

Consider all helicities contributions

Spin 1: 17 amplitudes Spin 2: 97 amplitudes

• Find positive functional to obtain positivity and convergence

 $dt \Psi(t) \langle \alpha | M^{\dagger}M | \beta \rangle \geq 0$

SDPB heavy numerics

Great and optimal bounds! ...but a lot of hard work

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Non-forward discontinuities are not positive

 $\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

Large *t* : **Bounding Massive Gravity**

Part I

 $S = \frac{M_{Pl}^2}{2} \int d^4x \sqrt{-g} \left[R \right]$

 M_{Pl}

Gravity as an EFT

2 d.o.f $\mathcal{M}(hh \to hh) \sim \frac{s}{M_{Pl}^2}$

 H_0

Massive Gravity as an EFT

 Λ_3

dRGT gravity

2 d.o.f

2 + 3

 $\mathcal{M}(hh \to hh) \sim \frac{s}{M_{Pl}^2} \sim \frac{s^3}{\Lambda_3^6} f(c_3, d_5)$

 $\Lambda_3 = \left(m^2 M_{Pl}\right)^{1/3}$

 H_0

m

Massive Gravity as an EFT

 Λ_3

dRGT gravity

2 d.o.f

2 + 3

 $\mathcal{M}(hh \to hh) \sim \frac{s}{M_{Pl}^2} \sim \frac{s^3}{\Lambda_3^6} f(c_3, d_5)$

 $\Lambda_3 = \left(m^2 M_{Pl}\right)^{1/3}$

 H_0

m

Massive Gravity as an EFT

Positivity to constrain

dRGT gravity

2 d.o.f

2 + 3

 $\mathcal{M}(hh \to hh) \sim \frac{s}{M_{Pl}^2} \sim \frac{s^3}{\Lambda_3^6} f(c_3, d_5)$

 $\Lambda_3 = \left(m^2 M_{Pl}\right)^{1/3}$

 $\frac{1}{\Lambda_3} \qquad \frac{1}{\Lambda} \stackrel{?}{\sim} \qquad \frac{1}{H_0} \stackrel{?}{\sim} \frac{1}{m}$

 $\left\{ \begin{array}{ll} \text{Phase-space of} & (c_3, d_5) \\ \\ \text{Physical cutoff} & \Lambda \end{array} \right.$

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Non-forward discontinuities are not positive

 $\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Non-forward discontinuities are not positive

 $\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Non-forward discontinuities are not positive

 $\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

Key Ideas

• $m^2 \ll |t| \ll s$ Crossing simplifies! $M_{\lambda_1\lambda_2}(u,t) = M_{-\lambda_1\lambda_2}(s,t) + O\left(\sqrt{tm/s}\right)$

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Non-forward discontinuities are not positive

$\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

Key Ideas

• $m^2 \ll |t| \ll s$ Crossing simplifies! $M_{\lambda_1\lambda_2}(u,t) = M_{-\lambda_1\lambda_2}(s,t) + O\left(\sqrt{tm/s}\right)$

Unitarity is more than forward positivity!

 $|\langle 1^{\lambda_1} 2^{\lambda_2} | M^{\dagger} M | 3^{\lambda_1} 4^{\lambda_2} \rangle| \leq \langle 1^{\lambda_1} 2^{\lambda_2} | M^{\dagger} M | 1^{\lambda_1} 2^{\lambda_2} \rangle$

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

• Non-forward discontinuities are not positive

 $\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

Key Ideas

• $m^2 \ll |t| \ll s$ Crossing simplifies! $M_{\lambda_1\lambda_2}(u,t) = M_{-\lambda_1\lambda_2}(s,t) + O\left(\sqrt{tm/s}\right)$

Unitarity is more than forward positivity!

 $|\langle 1^{\lambda_1} 2^{\lambda_2} | M^{\dagger} M | 3^{\lambda_1} 4^{\lambda_2} \rangle| \leq \langle 1^{\lambda_1} 2^{\lambda_2} | M^{\dagger} M | 1^{\lambda_1} 2^{\lambda_2} \rangle$

Phase-space constraints at t = 0

 $m^2 \ll |t| \ll s$

 $\frac{|A_{\lambda_1\lambda_2}(t)|}{A_{\lambda_1\lambda_2}(0)} < 1 + \mathcal{O}\left(\frac{\sqrt{tm}}{s}\right)$

 $m^2 \ll |t| \ll s$

 $\frac{|A_{\lambda_1\lambda_2}(t)|}{A_{\lambda_1\lambda_2}(0)} < 1 + \mathcal{O}\left(\frac{\sqrt{tm}}{s}\right)$

$$\begin{split} A_{\lambda_1\lambda_2}(t) &\longrightarrow \frac{t}{\Lambda_3^6} g_{\lambda_1\lambda_2}(c_3, d_5) \\ A_{\lambda_1\lambda_2}(0) &\longrightarrow \frac{m^2}{\Lambda_3^6} f_{\lambda_1\lambda_2}(c_3, d_5) > 0 \end{split}$$

 $m^2 \ll |t| \ll s$

 $A_{\lambda_1\lambda_2}(t) \longrightarrow \frac{t}{\Lambda_3^6} g_{\lambda_1\lambda_2}(c_3, d_5)$ $A_{\lambda_1\lambda_2}(0) \longrightarrow \frac{m^2}{\Lambda_2^6} f_{\lambda_1\lambda_2}(c_3, d_5) > 0$

--- 00 — 0+

 $m^2 \ll |t| \ll s$

$$\Lambda \leq 30 \, m \left(\frac{0.1}{-t/\Lambda^2}\right)^{1/2}$$

What is the regime of validity of dRGT gravity?

$$S = \frac{M_{Pl}^2}{2} \int d^4 x \sqrt{-g} \left[R + m^2 V \right]$$

Positivity to constrain

dRGT gravity

2d.o.f

2 + 3

 $\mathcal{M}(hh \to hh) \sim \frac{s}{M_{Pl}^2} \sim \frac{s^3}{\Lambda_3^6} f(c_3, d_5)$

 $\Lambda_3 = \left(m^2 M_{Pl}\right)^{1/3}$

Phase-space of (c_3, d_5) Physical cutoff Λ

What is the regime of validity of dRGT gravity?

$$S = \frac{M_{Pl}^2}{2} \int d^4 x \sqrt{-g} \left[R + m^2 V \right]$$

Positivity to constrain

dRGT gravity

2d.o.f

2 + 3

 $\mathcal{M}(hh \to hh) \sim \frac{s}{M_{Pl}^2} \sim \frac{s^3}{\Lambda_3^6} f(c_3, d_5)$

 $\Lambda_3 = \left(m^2 M_{Pl}\right)^{1/3}$

L

 H_0

 $\begin{cases} Phase-space of (c_3, d_5) \\ Physical cutoff & \Lambda \leq O(10)m \end{cases}$

"Massive gravity does not exist!"

Discussion at Strings 2023 "The future of the S-matrix" Simon Caron-Huot and Sebastian Mizera

"Massive gravity does not exist!"

Discussion at Strings 2023 "The future of the S-matrix" Simon Caron-Huot and Sebastian Mizera

Large ℓ : Bounding classical observables

Part II

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Non-forward discontinuities are not positive

 $\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

 ϵ_{u}

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Non-forward discontinuities are not positive

 $\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

 ϵ_{u}

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

• Non-forward discontinuities are not positive

 $\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

Key Ideas

• Large ℓ limit of partial waves

 $\langle \alpha | M^{\dagger}M | \beta \rangle = \mathcal{N} \sum (2\ell + 1) \langle \ell \alpha | M^{\dagger}M | \ell \beta \rangle d_{\ell}^{\alpha\beta}(\theta)$

 ϵ_{μ}

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Non-forward discontinuities are not positive

 $\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

Key Ideas

Large *l* limit of partial waves

 $\langle \alpha | M^{\dagger}M | \beta \rangle = \mathcal{N} \sum (2\ell + 1) \langle \ell \alpha | M^{\dagger}M | \ell \beta \rangle d_{\ell}^{\alpha\beta}(\theta)$

Φ

Recover long distance semi-classical scattering

 $\ell \sim b\sqrt{s}$

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Non-forward discontinuities are not positive

$\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

Key Ideas

• Large ℓ limit of partial waves

 $\langle \alpha | M^{\dagger}M | \beta \rangle = \mathcal{N} \sum (2\ell + 1) \langle \ell \alpha | M^{\dagger}M | \ell \beta \rangle d_{\ell}^{\alpha\beta}(\theta)$

Φ

Recover long distance semi-classical scattering

Fourier transform \sim Smearing in t

Challenges

• Crossing for massive spinning states

$M_{\lambda_1\lambda_2}(u,t) = \sum X_{\lambda_1\lambda_2\lambda_3\lambda_4}^{\lambda_1'\lambda_2'\lambda_3'\lambda_4'}(s,t) M_{\lambda_1'\lambda_2'}^{\lambda_3'\lambda_4'}(s,t)$

Non-forward discontinuities are not positive

$\langle \alpha | M^{\dagger}M | \beta \rangle \neq 0$

• Arcs diverging at t = 0

Key Ideas

• Large ℓ limit of partial waves

 $\langle \alpha | M^{\dagger}M | \beta \rangle = \mathcal{N} \sum (2\ell + 1) \langle \ell \alpha | M^{\dagger}M | \ell \beta \rangle d_{\ell}^{\alpha\beta}(\theta)$

Φ

Recover long distance semi-classical scattering

Fourier transform \sim Smearing in t

'22, Caron-Huot, Li, Parra-Martinez, Simons-Duffins

Project on definite angular momentum

 $\int dt \Psi_{\ell}(t) \int = \int dt \Psi_{\ell}(t) \int$

 λ_1

Project on definite angular momentum

 $\ell \to \infty$

 $\int dt \Psi_{\ell}(t) \int = \int dt \Psi_{\ell}(t) \int$

 λ_1

Project on definite angular momentum

$$\int dt \Psi_{\ell}(t) \int$$

$$\int \frac{ds}{(s-m^2)^n} \int d^2q M_{\lambda_1\lambda_3}(s,q^2) d^2q M_{\lambda_1\lambda_3}(s,q^2)$$

$$t = q^2$$
$$\ell = b\sqrt{s}$$

 $\ell \to \infty$

 $= \int dt \Psi_{\ell}(t) \int$

eiqb

 λ_1

Project on definite angular momentum

 $\int dt \Psi_{\ell}(t) \int = \int dt \Psi_{\ell}(t) \int$

Amplitude in the eikonal regime

 $\frac{M_{\lambda_1\lambda_3}(s,b)}{(s-m^2)^n}$

 $\ell \to \infty$

 λ_1

Project on definite angular momentum

 $\int dt \, \Psi_{\ell}(t) \int$ $\int dt \Psi_{\ell}(t)$ =

Amplitude in the eikonal regime

 $\frac{M_{\lambda_1\lambda_3}(s,b)}{(s-m^2)^n}$

 $\ell \to \infty$

> 0

 λ_1

Positive Eikonal arcs

 $\int \frac{M_{\lambda_1\lambda_3}(s,b)}{\left(s-m^2\right)^n} > 0$

 λ_1

Positive Eikonal arcs

 $M(s,b) \sim e^{2i\delta(s,b)} - 1$

$$\frac{M_{\lambda_1\lambda_3}(s,b)}{(s-m^2)^n} > 0$$

 λ_1

Positive Eikonal arcs

 $M(s,b) \sim e$

n = 2 :

 $T_{\lambda_1\lambda_3}(\omega,b) = 2\frac{\partial}{\partial\omega}\delta$

S-Matrix principles \triangleleft Asymptotic Causality Analyticity + Unitarity

$$\frac{M_{\lambda_1\lambda_3}(s,b)}{(s-m^2)^n} > 0$$

$$2i\delta(s,b) - 1$$

$$\delta_{\lambda_1\lambda_3}(s,b) > 0$$

Positivity of the time-delay

 λ_1

Example: asymptotic causality at tree level

 $1/\Lambda$

 R_{s}

1_{Pl}

1,s

$$T_{\pm}(s,b) \sim GM\left(-\log\frac{b}{b_{IR}}\pm\frac{\beta}{b^2}\right)$$

Causality violation at : $b \sim 1/\Lambda$

Bound on β : $|\beta| \leq 1/\Lambda^2 \log \frac{1/\Lambda}{b_{IR}}$

> 0

'14, Camanho, Edelstein, Maldacena, Zhiboedov

Example: asymptotic causality at tree level

h

 $1/\Lambda$

 R_{s}

1_{Pl}

1,s

$$T_{\pm}(s,b) \sim GM\left(-\log\frac{b}{b_{IR}}\pm\frac{\beta}{b^2}\right)$$

Causality violation at : $b \sim 1/\Lambda$

Bound on β : $|\beta| \leq 1/\Lambda^2 \log \frac{1/\Lambda}{b_{IR}}$

> 0

'14, Camanho, Edelstein, Maldacena, Zhiboedov

Example: asymptotic causality at tree level

> 0

 $1/\Lambda$

 R_{s}

1_{Pl}

$$T_{\pm}(s,b) \sim GM\left(-\log\frac{b}{b_{IR}}\pm\frac{\beta}{b^2}\right)$$

Causality violation at : $b \sim 1/\Lambda$

Bound on β : $|\beta| \lesssim 1/\Lambda^2 \log \frac{1/\Lambda}{b_{IR}}$

Tree-level solution to causality violation requires tower of higher spin

'14, Camanho, Edelstein, Maldacena, Zhiboedov

QED docet

QED docet

QED docet

QED docet

What could we learn?

Positive Eikonal arcs

Non optimal bounds, but a much cheaper lunch...

$$\int \frac{M_{\lambda_1\lambda_3}(s,b)}{\left(s-m^2\right)^n} > 0$$

 $M(s,b) \sim e^{2i\delta(s,b)} - 1$

Many phase-shifts are known for tidal/spins effects in the context of GW

What could we learn?

Positive Eikonal arcs

Non optimal bounds, but a much cheaper lunch...

Can we learn something about neutron stars physics?

 $\int \frac{M_{\lambda_1\lambda_3}(s,b)}{\left(s-m^2\right)^n} > 0$

 $M(s,b) \sim e^{2i\delta(s,b)} - 1$

Many phase-shifts are known for tidal/spins effects in the context of GW

Part III Conclusions

Positivity is hard, but there are limits where things simplify!

• The cutoff of massive gravity must satisfy $\Lambda < O(10)m$ Higher spins? -

 $|t| \gg m^2$

 $\ell \gg 1$

• Example: positivity of the time delay (asymptotic causality)

 $|t| \gg m^2$

$\ell \gg 1$

Example: positivity of the time delay (asymptotic causality)

 $|t| \gg m^2$

$\ell \gg 1$

Example: positivity of the time delay (asymptotic causality)

Backup

Beyond dRGT

In the decoupling limit

),

$$\begin{aligned} \langle 3^{0}4^{0} | \mathcal{M} | 1^{0}2^{0} \rangle &= H(s,t), \\ \langle 3^{+}4^{-} | \mathcal{M} | 1^{+}2^{-} \rangle &= \langle 32 \rangle^{2} [14]^{2} G_{+-}(s,t), \\ \langle 3^{0}4^{+} | \mathcal{M} | 1^{0}2^{+} \rangle &= \langle 41 \rangle^{2} [12]^{2} G_{0+}(s,t), \end{aligned}$$

 $-8h_0 \le h_1 M$ $-f_0 \leq f_1 M^2$ $-\frac{5}{2}g_0 \le g_1 M^2$

Same conclusion, independent of higher derivatives

$$H(s,t) = h_0(s^2 + t^2 + u^2)/2 + h_1stu + \dots$$

$$G_{+-}(s,t) = f_0 + f_1(s+t) + f_2(s^2 + t^2) + \dots$$

$$G_{0+}(s,t) = g_0 + g_1t + g_2(s^2 + u^2) + g'_2su + \dots$$

Emergence of classical ℓ

 $d_{\lambda,\lambda'}^{\ell}(\theta) \qquad \qquad \int_{0}^{2\pi} \frac{d\varphi}{2\pi} e^{i(\lambda'-\lambda)\varphi} e^{i\theta\ell} \sin\varphi$

 $\begin{array}{ll} SO(3) & \Rightarrow & ISO(2) \\ \ell \to \infty \end{array}$

Compact Finite dim irreps

Non-compact Continuous irreps