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• A Feynman integral is represented schematically as  .


•  are the Feynman parameters.


•   and  are homogeneous graph polynomials in .


• Prefactors and exponents  depend on dimensions, multiplicity of propagators, 
loop order.


• All kinematic dependence is in .


• The integration domain  is . It is bounded by coordinate hyperplanes.


• Claim: cut integrals are obtained by changing the boundaries of  to include 
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Let’s look at the triangle integral.
Feynman parameters .
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What about cuts?
• Generalized cuts: propagators on shell


• Usually implemented by delta functions / residues


• Now: change contour  in parameter space


• Motivation from kinematic discontinuities in dimensional regularization 
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Disc has support where .


 becomes a new boundary.


Some original boundaries are lost.


Implement this idea systematically.
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Cuts change boundaries in parameter space

Justification from Landau conditions required for a singularity to occur.


Inverse propagators: .


Landau conditions:  for each , and 


First condition:  for some subset of edges , and  for 


Parametrically: .


Interpret the parametric condition in terms of boundaries!
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•  is the domain of integration for 
the cut of propagators 


•  is bounded by the coordinate 
hyperplanes  for , and by .


• (  is , and  is ).


• Plotted here in the Euclidean 
region.
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Maximal cut domains are bounded only by !ℱ = 0
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Linear relation among cuts
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Originally derived from decomposition theorem in homology. 
Normalization of cuts explains , signs, terms dropped modulo . 
Domain relations provide an exact version of the relation.

ϵ iπ

[Abreu, RB, Duhr, Gardi]



General Feynman integrals

• Parametric representation of an -loop Feynman integral with  edges in 
 dimensions:   

 

where  is a subset of edges.


• Parametric Landau equations (for ):    

.

L E
D

I = Γ (ν −
LD
2 ) ∫αi≥0

dEα δ (1 − ∑
i∈S

αi) (
E

∏
i=1

ανi−1
i ) 𝒰ν−(L+1)D/2

ℱν−LD/2

S

𝒰 ≠ 0
ℱ = 0 , αk = 0 for k ∉ J ,

∂ℱ
∂αj

= 0 for j ∈ J



Simple 2-loop example

Here  has two components: a variable parabola, and the 
coordinate hyperplane .
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S = {1,2} : α1 = x, α2 = 1 − x, α3 = y
𝒰 = x(1 − x) + y
ℱ = y [m2y + (m2 − p2)x(1 − x)]
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Generic sunrise
ℱ = − p2α1α2α3 + (α1α2 + α1α3 + α2α3)(m2

1α1 + m2
2α2 + m2

3α3) .
α1 = x, α2 = y, α3 = 1 − x − y .

4 independent regions bounded by .ℱ



Summary
• Proposal: cuts of Feynman integrals are obtained by integrating the 

parametric integrand over a region with certain boundaries. The 
boundaries are , along with the subset of the coordinate 
hyperplanes complementary to the cut propagators.


• Consistent with discontinuities and Landau conditions.


• Evidence from simpler integrals. Agreement with some known results and 
with discontinuities.


• Relations among cuts are visible at 1-loop. Some 2-loop cases also.

ℱ = 0



Future explorations
• Can we generate/predict linear relations among multiloop cut integrals?


• Cuts as hypergeometric functions and in coactions; cf. period matrix .


• Exploit graphical properties of  and  in multiloop applications.


• Useful for (numerical) parametric computation? 


• Cuts in related parametrizations: Schwinger, Lee-Pomeransky, Baikov, etc. with  as a 
boundary.


• What about full amplitudes? Cuts as volumes in certain geometries?
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