Cuts in Feynman Parameter Space

Trinity College Dublin & Institute for Advanced Study

arXiv:2305.15369

Trinity College Dublin oláiste na Tríonóide. Baile Átha Cliath The University of Dublin

Ruth Britto

Amplitudes 2023

A Feynman integral is represented sch

- $\alpha = \{\alpha_1, \dots, \alpha_E\}$ are the Feynman parameters.
- \mathscr{U} and \mathscr{F} are homogeneous graph polynomials in α .
- loop order.
- All kinematic dependence is in \mathcal{F} .

hematically as
$$I = \int_{\Gamma} \frac{\mathrm{d}\alpha}{\mathrm{GL}(1)} \, \mathscr{U}^{\kappa}(\alpha) \, \mathscr{F}^{\lambda}(\alpha) \, .$$

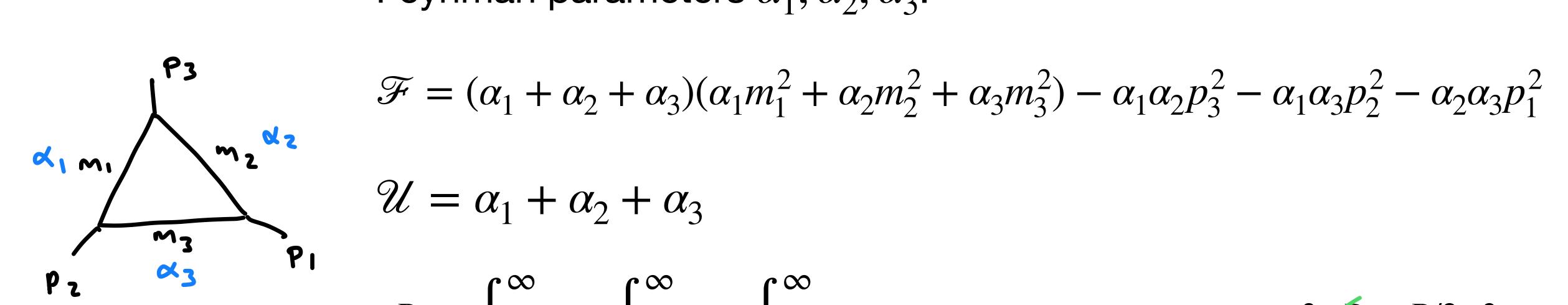
• Prefactors and exponents κ, λ depend on dimensions, multiplicity of propagators,

• The integration domain Γ is $\{\alpha_i \geq 0\}$. It is bounded by coordinate hyperplanes.

Claim: cut integrals are obtained by changing the boundaries of Γ to include $\mathcal{F} = 0$.

Let's look at the triangle integral.

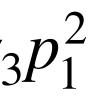
Feynman parameters $\alpha_1, \alpha_2, \alpha_3$.



$$\mathcal{F} = (\alpha_1 + \alpha_2 + \alpha_3)(\alpha_1$$
$$\mathcal{U} = \alpha_1 + \alpha_2 + \alpha_3$$

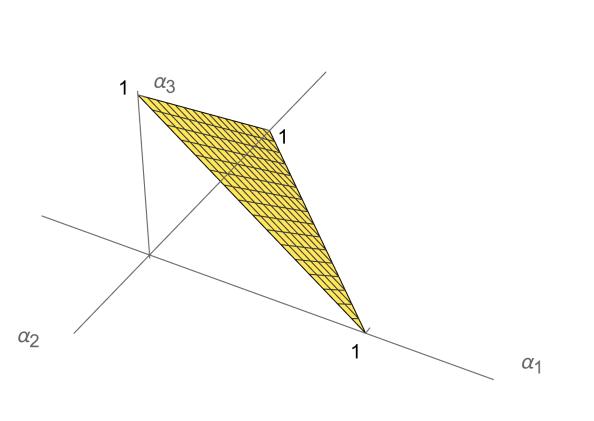
$$I_{3}^{D} = \int_{0}^{\infty} d\alpha_{1} \int_{0}^{\infty} d\alpha_{2}$$
$$\equiv \int_{\Gamma} d\alpha \, \mathscr{U}^{\kappa} \, \mathscr{F}^{\lambda}$$

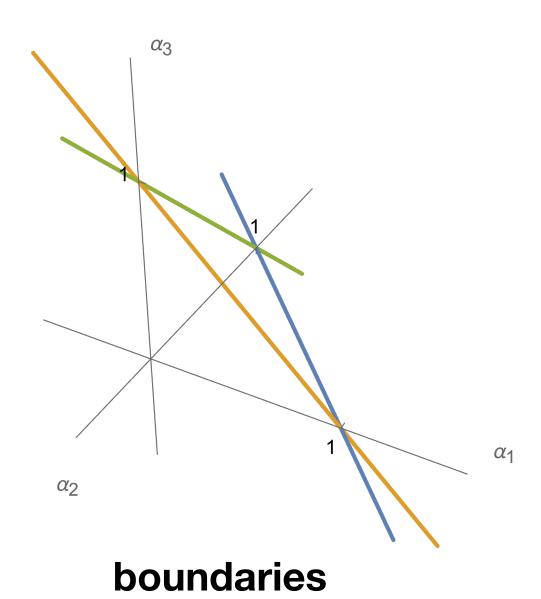
 $I_3^D = \int_{-\infty}^{\infty} d\alpha_1 \int_{-\infty}^{\infty} d\alpha_2 \int_{-\infty}^{\infty} d\alpha_3 \,\delta(1 - \alpha_1 - \alpha_2 - \alpha_3) \,\mathcal{U}^{3-D} \mathcal{F}^{D/2-3}$



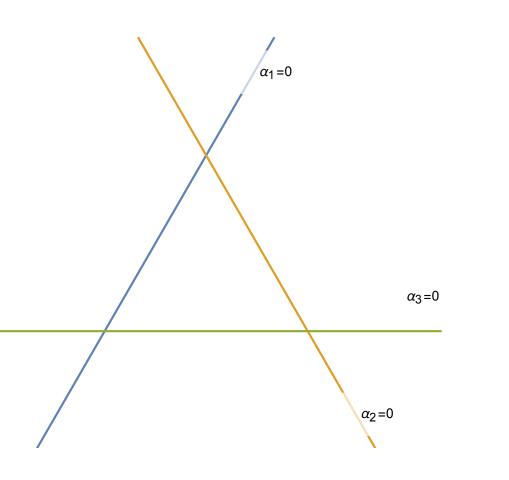
$I_{3}^{D} = \int_{\Gamma} \mathrm{d}\alpha \, \mathcal{U}^{\kappa} \, \mathcal{F}^{\lambda}$

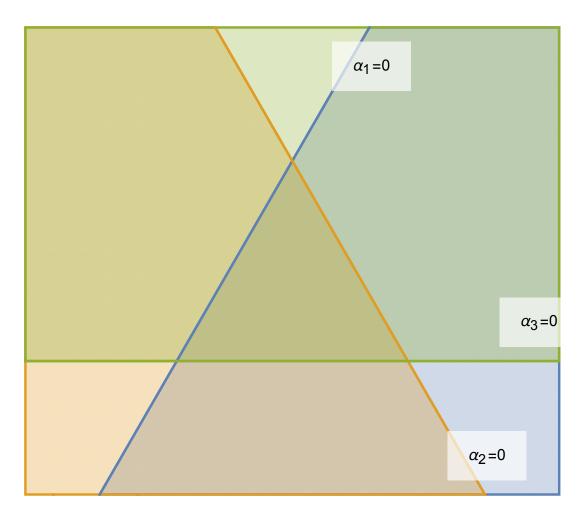
$\Gamma = \{ \alpha_i \ge 0, \sum \alpha_i = 1 \}$





standard simplex

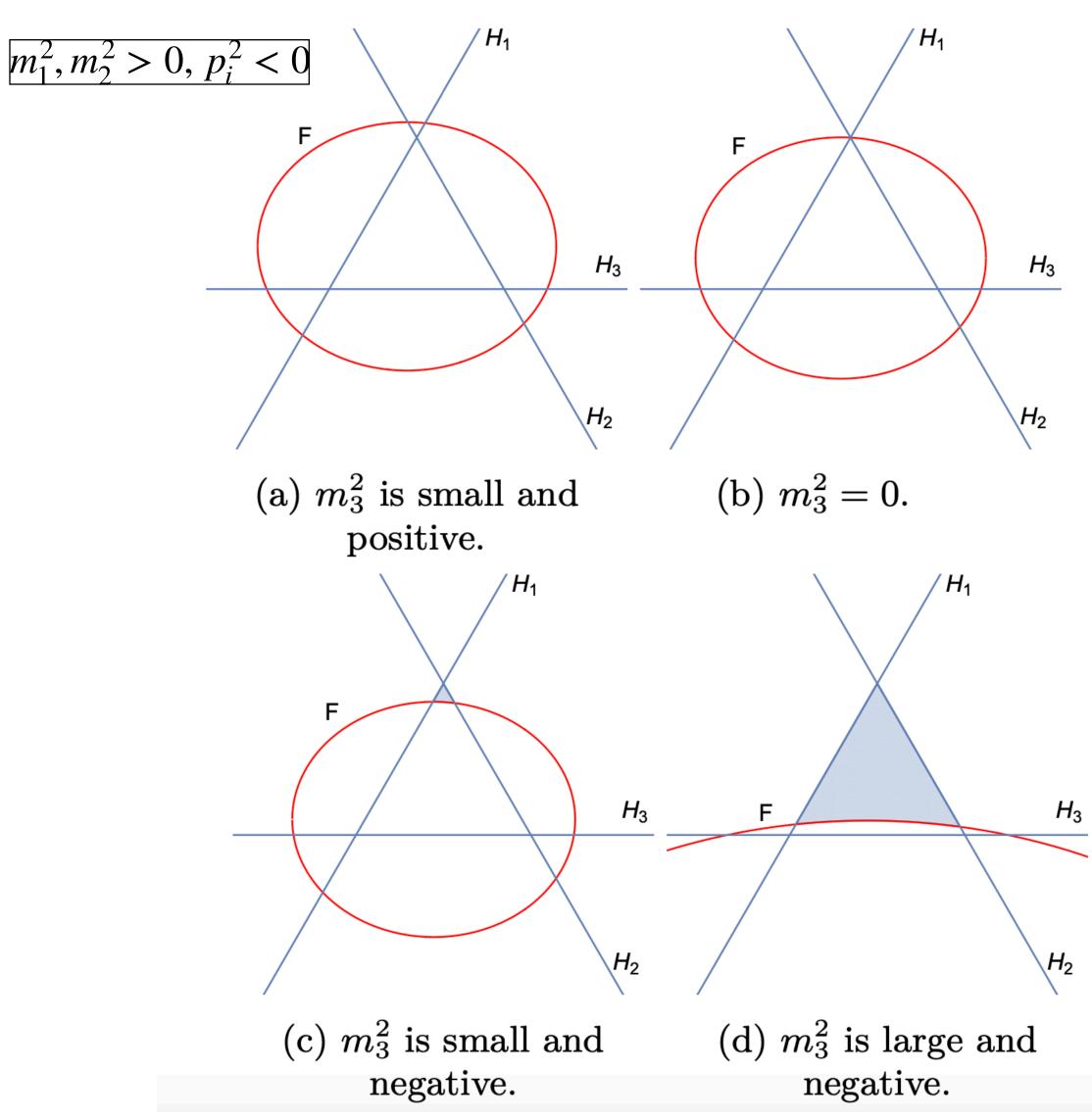




What about cuts?

- Generalized cuts: propagators on shell
- Usually implemented by delta functions / residues
- Now: change contour Γ in parameter space
- Motivation from kinematic discontinuities in dimensional regularization $I = \int_{\Gamma} d\alpha \, \mathcal{U}^{\kappa} \, \mathcal{F}^{\lambda}$ $\text{Disc}[I] = \int_{\Gamma} d\alpha \, \mathcal{U}^{\kappa} \, \text{Disc}[\mathcal{F}^{\lambda}]$ $\text{Disc}[\mathcal{F}^{\lambda}] = (\mathcal{F} - i0)^{\lambda} - (\mathcal{F} + i0)^{\lambda}$ $= -\theta[-\mathcal{F}] [-\mathcal{F}]^{\lambda} \, 2i \sin(\pi \lambda)$

m_3^2 discontinuity of the triangle

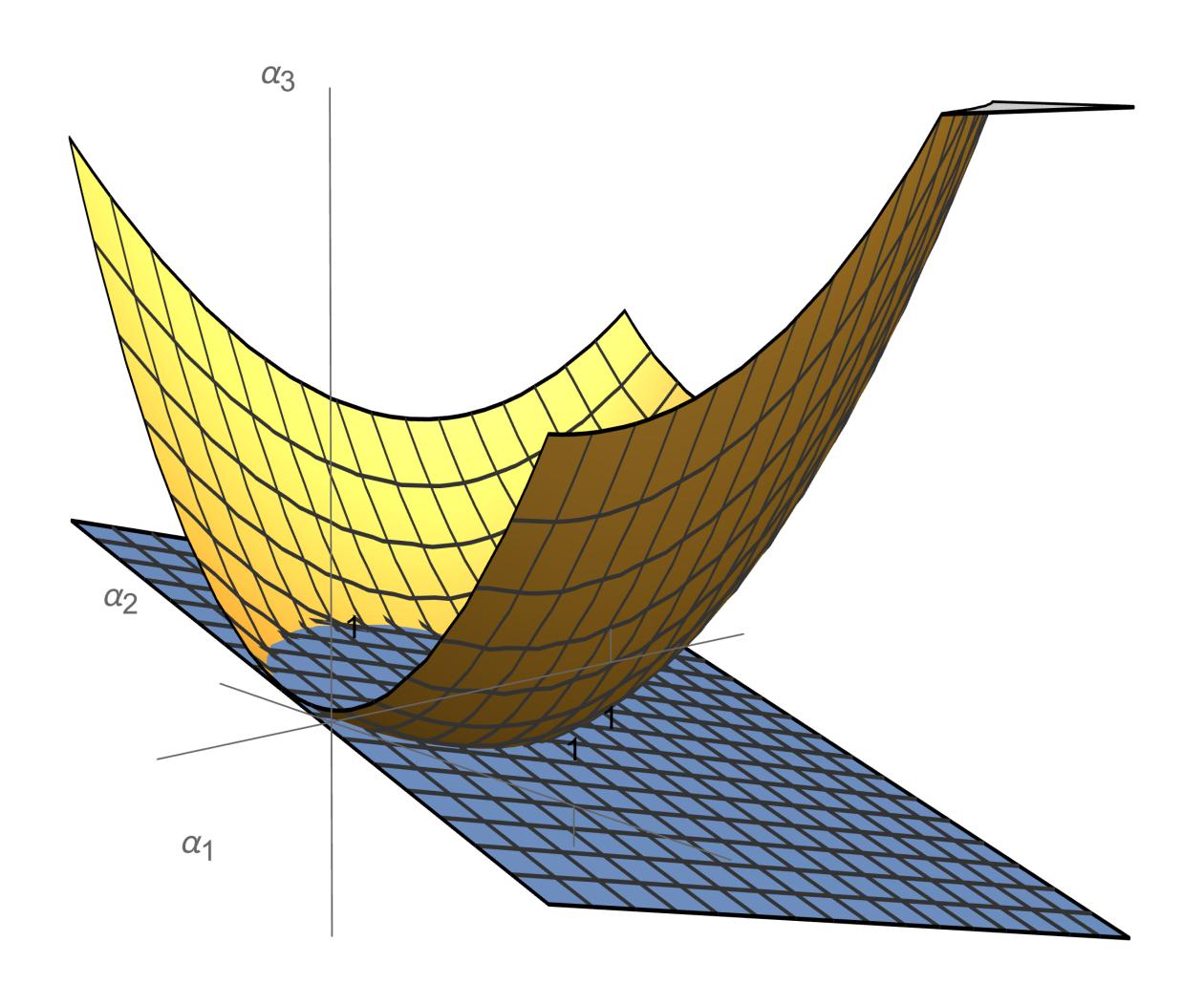


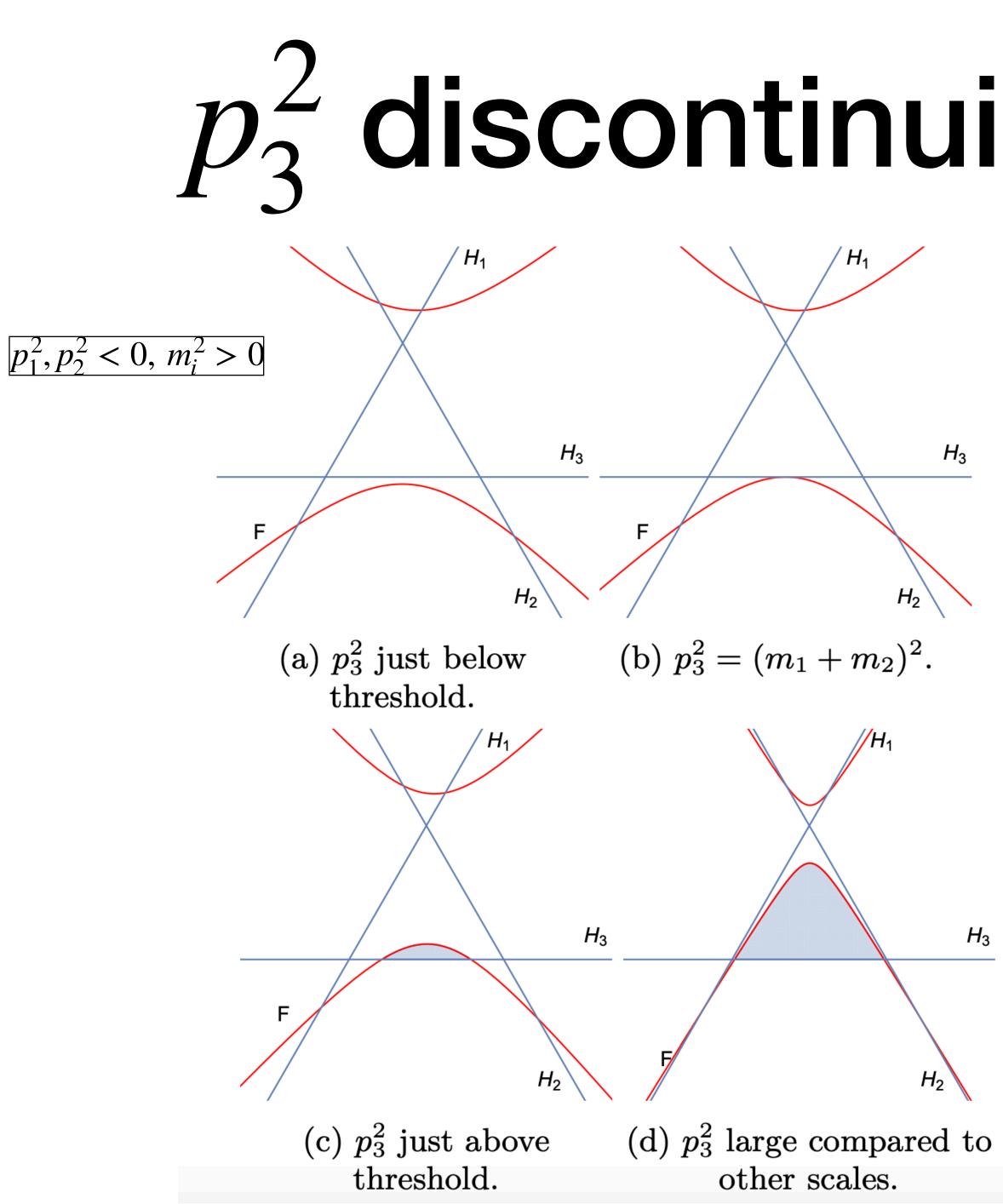
Disc has support where $\mathcal{F} < 0$.

 $\mathcal{F} = 0$ becomes a new boundary.

Some original boundaries are lost.

Implement this idea systematically.





p_3^2 discontinuity of the triangle

Disc has support where $\mathcal{F} < 0$.

 $\mathcal{F} = 0$ becomes a new boundary.

Some original boundaries are lost.

Implement this idea systematically.

Cuts change boundaries in parameter space

Justification from Landau conditions required for a singularity to occur.

Inverse propagators: $A_i = m_i^2 - q_i^2 - i0$.

Landau conditions: $\alpha_i A_i = 0$ for each *i*, and

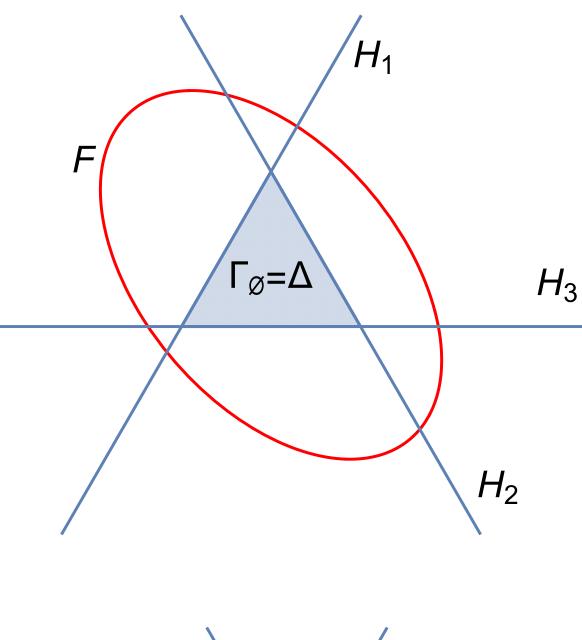
First condition: $A_j = 0, j \in J$ for some subset of edges J, and $\alpha_k = 0$ for $k \notin J$.

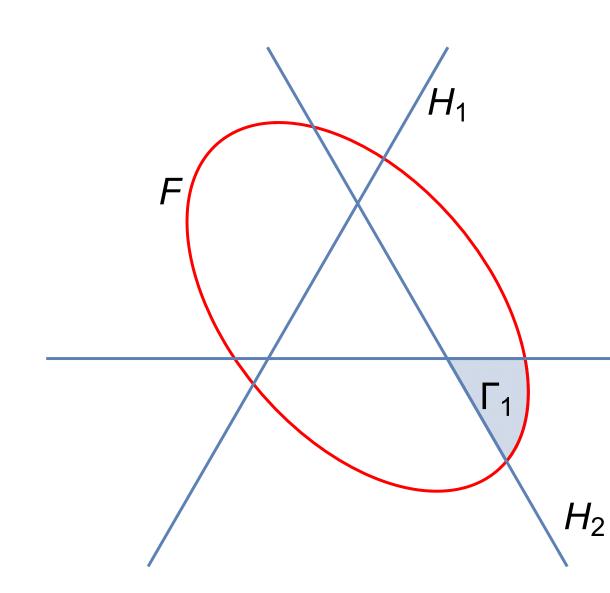
Parametrically: $\mathcal{F} = 0$, $\alpha_k = 0$ for $k \notin J$

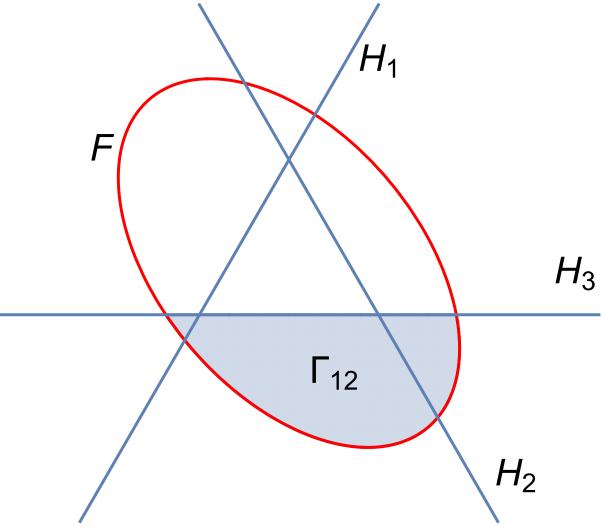
Interpret the parametric condition in terms of boundaries!

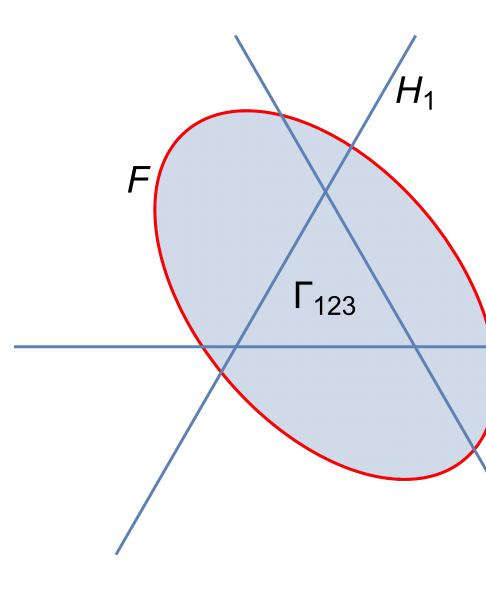
$$\Delta \sum_{i} \alpha_{i} \frac{\partial A_{i}}{\partial k_{\ell}} = 0.$$

,
$$\frac{\partial \mathcal{F}}{\partial \alpha_i} = 0$$
 for $j \in J$.









 H_3

 H_3

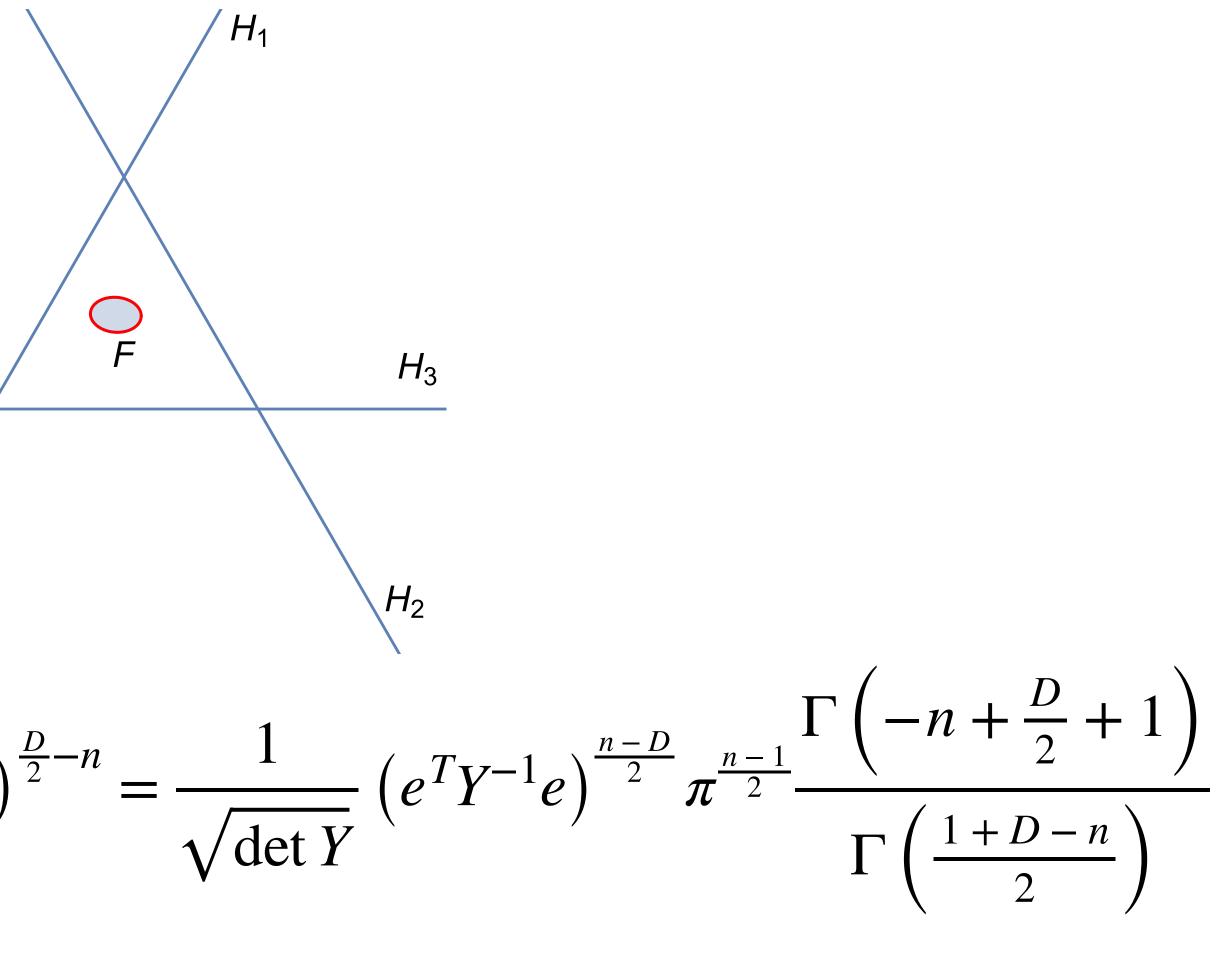
 H_2

- Γ_J is the domain of integration for the cut of propagators $j \in J$.
- Γ_J is bounded by the coordinate hyperplanes H_i for $i \notin J$, and by F.
- $(H_i \text{ is } \alpha_i = 0, \text{ and } F \text{ is } \mathcal{F} = 0).$
- Plotted here in the Euclidean region.

Maximal cut domains are bounded only by $\mathcal{F} = 0!$

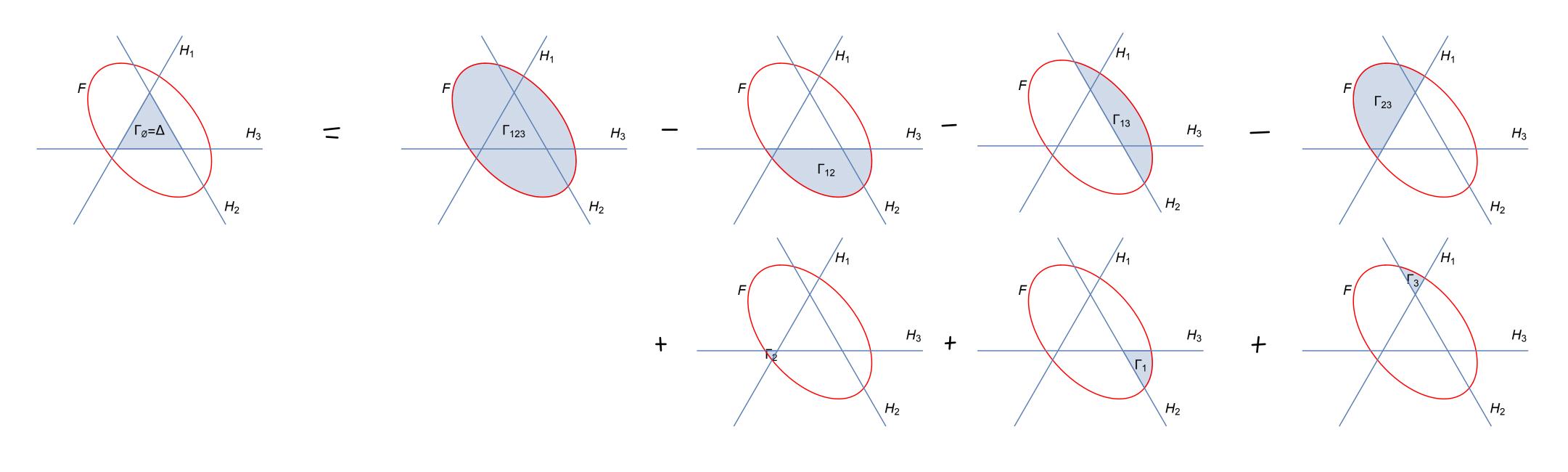
$$\int_{\alpha^T Y \alpha > 0} \mathrm{d}^n \alpha \, \delta(1 - e^T \alpha) \big(\alpha^T Y \alpha \big)^{\frac{L}{2}}$$

 $\alpha = (\alpha_1, ..., \alpha_n)^T, e = (1, ..., 1)^T,$



$$Y_{ij} = \frac{1}{2} \left(m_i^2 + m_j^2 - q_{ij}^2 \right), \quad e^T Y^{-1} e = \frac{\text{Gram}_n}{\det Y}.$$

Linear relation among cuts



$$\sum_{j=1}^{n} \mathcal{C}_{\{j\}} \mathcal{I} + \sum_{\{j,k\} \subseteq [n]} \mathcal{C}_{\{j\}}$$

Originally derived from decomposition theorem in homology. Normalization of cuts explains ϵ , signs, terms dropped modulo $i\pi$. Domain relations provide an exact version of the relation.

 $\mathcal{I}_{\{j,k\}}\mathcal{I} \equiv -\epsilon \mathcal{I} \mod i\pi$. [Abreu, RB, Duhr, Gardi]

General Feynman integrals

D dimensions:

$$I = \Gamma \left(\nu - \frac{LD}{2} \right) \int_{\alpha_i \ge 0} d^E \alpha \, \delta \left(\int_{\alpha_i \ge 0} d^E \alpha \,$$

where S is a subset of edges.

• Parametric Landau equations (for $\mathcal{U} \neq 0$): $\mathscr{F} = 0$, $\alpha_k = 0$ for $k \notin J$, $\frac{\partial \mathscr{F}}{\partial \alpha} = 0$ for $j \in J$.

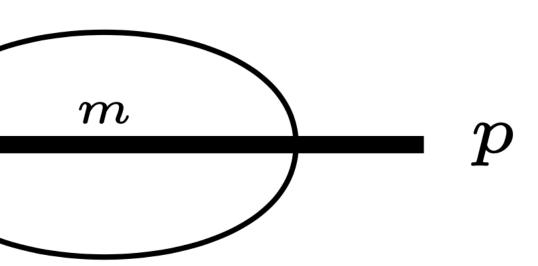
• Parametric representation of an L-loop Feynman integral with E edges in

 $\left(1-\sum_{i\in S}\alpha_i\right)\left(\prod_{i=1}^E\alpha_i^{\nu_i-1}\right)\frac{\mathscr{U}^{\nu-(L+1)D/2}}{\mathscr{F}^{\nu-LD/2}}$

 $\partial \alpha_i$

Simple 2-loop example

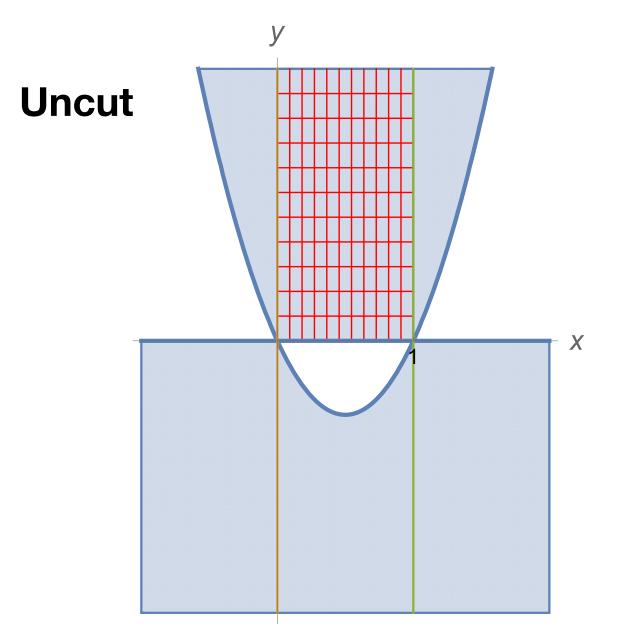
- $S = \{1, 2\}$: α $\mathcal{U} = x(1 - x) +$ $\mathcal{F} = y \left[m^2 y + (m^2 y +$
- coordinate hyperplane y = 0.



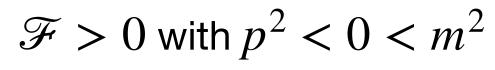
$$\alpha_1 = x, \ \alpha_2 = 1 - x, \ \alpha_3 = y$$

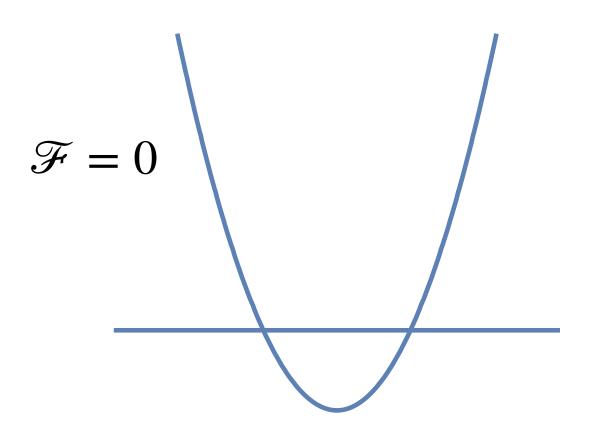
- y
 $(m^2 - p^2)x(1 - x)]$

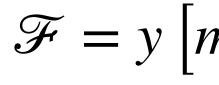
Here $\mathcal{F} = 0$ has two components: a variable parabola, and the

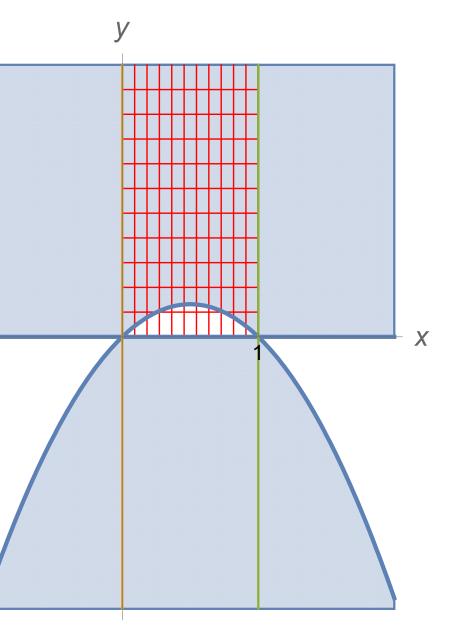


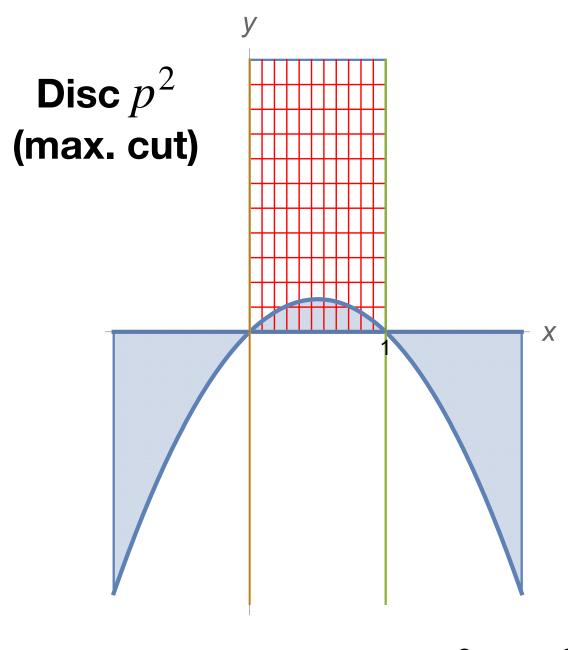
Disc m^2



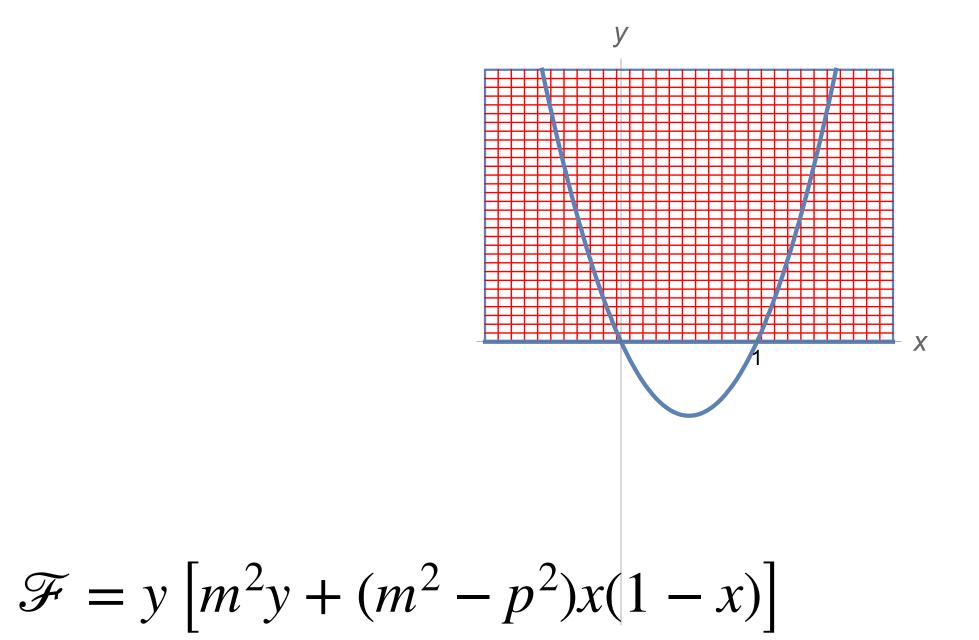








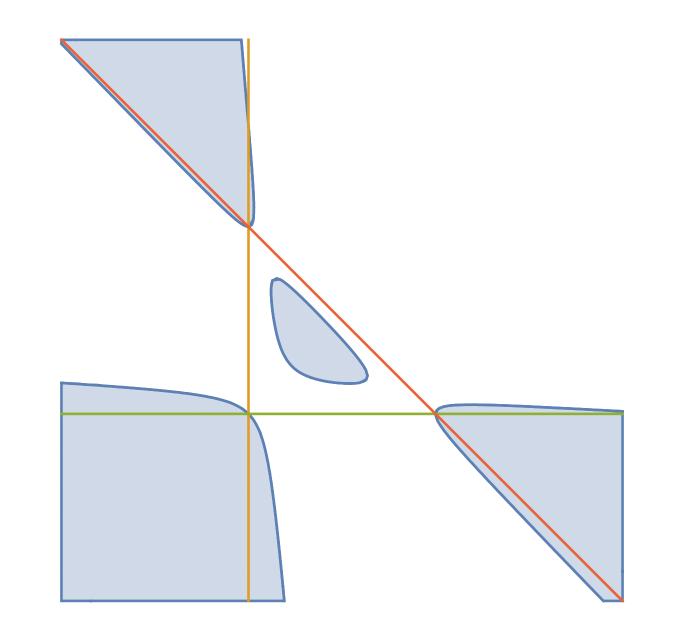
 $\mathcal{F} < 0$ with $p^2 < m^2 < 0$



Second maximal cut

Generic sunrise

$\mathcal{F} = -p^{2}\alpha_{1}\alpha_{2}\alpha_{3} + (\alpha_{1}\alpha_{2} + \alpha_{1}\alpha_{3})$ $\alpha_{1} = x, \ \alpha_{2} = y, \ \alpha_{3} = 1 - x - y.$



4 independent regions bounded by \mathcal{F} .

 $\mathcal{F} = -p^2 \alpha_1 \alpha_2 \alpha_3 + (\alpha_1 \alpha_2 + \alpha_1 \alpha_3 + \alpha_2 \alpha_3)(m_1^2 \alpha_1 + m_2^2 \alpha_2 + m_3^2 \alpha_3).$

Summary

- Proposal: cuts of Feynman integrals are obtained by integrating the parametric integrand over a region with certain boundaries. The boundaries are $\mathscr{F} = 0$, along with the subset of the coordinate hyperplanes complementary to the cut propagators.
- Consistent with discontinuities and Landau conditions.
- Evidence from simpler integrals. Agreement with some known results and with discontinuities.
- Relations among cuts are visible at 1-loop. Some 2-loop cases also.

Future explorations

- Can we generate/predict linear relations among multiloop cut integrals?

- Exploit graphical properties of \mathcal{U} and \mathcal{F} in multiloop applications.
- Useful for (numerical) parametric computation?
- boundary.
- What about full amplitudes? Cuts as volumes in certain geometries?

Cuts as hypergeometric functions and in coactions; cf. period matrix $P_{ij} = \bigcup_{i=1}^{n} \omega_i$.

Cuts in related parametrizations: Schwinger, Lee-Pomeransky, Baikov, etc. with $\mathscr{F}=0$ as a