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Why multi-particle states

Final states at LHC:

✔ A lot of particles produced

✔ Energy of particles is deposit at the calorimeters

✔ Admit description in terms of the energy distribution on the celestial sphere
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Energy-energy correlation

✔ Function of the angle 0 ≤ χ ≤ π between detected particles
[Basham,Brown,Ellis,Love’78]

EEC(χ) =
∑

a,b

∫

dσa+b+X
EaEb

Q2
δ(cos θab − cosχ)

Total energy
∑

a Ea = Q

(Ea,~pa)
(Eb,~pb)

χ

✔ EEC in e+e− final states (1978 – today):

✗ Very precise experimental data

✗ Slow progress on the theory side

EEC(χ) = αs(Q)A(χ)
︸ ︷︷ ︸

Basham et al’78

+ α2
s(Q)B(χ)

︸ ︷︷ ︸

Dixon et al’18

+O(α3
s)

✗ Much faster progress in MSYM theory (3 loops + strong
coupling)
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Energy correlations at LHC

Recent analysis of CMS Open Data [Komiske,Moult,Thaler,Zhu’23]

χ2EEC(χ) versus χ

For small angle χ, the EEC describes the correlation between particles belonging to the same jet

Behaves differently at small angles depending on how χ compares with ΛQCD/Q

Flat : EEC ∼ const, OPE : EEC ∼ 1/χ2−γ

What is physics mechanism of the transitioning between the two regimes?
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Warm up example: free scalar theory

Multi-particle final state containing K massless scalar particles

|H(q)〉 =
∫

d4x eiqxOK(x)|0〉 , OK(x) = φK(x)

Energy correlations at finite K (= new parameter of the expansion)

〈E(n1) . . . E(nk)〉 = =

∫

dσK wn1
(p1) . . . wnk

(pk)

The weight factor wn(p) selects the particle in the final state moving along nµ = (1, ~n)

wn(p) = p0δ(2)
(

~p

p0
− ~n

)

The differential cross-section

dσK = (2π)4δ(4)(q −
K∑

i=1

pi)

K∏

n=1

dLIPS(pn) , dLIPS(p) =
d4p

(2π)4
2πδ+(p2)
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Large K limit in a free theory

Energies of detected particle scale as p0i /Q = εi/K

〈E(n1) . . . E(nk)〉 = Qk

∫ ∞

0

k∏

i=1

dεi ε
2
i

8π
e−εi



1− 1

K

∑

i<j

εiεj(1− zij) + . . .





Ensemble of k noninteracting particles with energies distributed according to dP (ε) = dε ε2e−ε

Dimensionless angular variables

zij =
q2(ninj)

2(qni)(qnj)
=

1

2
(1− cos θij) , qµ = (Q,~0)

✔ The leading term is independent of the angular variables

〈E(n1) . . . E(nk)〉free =

(
Q

4π

)K


1 +
1

K

∑

1≤i<j≤k

9zij + . . .





Homogeneous distribution of the energy, the angular dependence is suppressed by 1/K

✔ The same behaviour was observed in N = 4 SYM at strong coupling λ → ∞ [Hofman,Maldacena]

〈E(n1) . . . E(nk)〉N=4 =

(
Q

4π

)K

[1 +O(1/λ)]

In both cases, the flat regime is associated with a large number of soft particles in the final state
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Large K limit in interacting theory

Energy correlation in multi-particle final state is flat in a free theory

How does the interaction between the particles in the final state affect this result?

Consider the EEC in N = 4 SYM in the final state created by a half-BPS operator OK = tr[ZK(x)]

|H(q)〉 =
∫

d4x eiqxOK(x)|0〉 = qqq

Z

g
+++ . . .

λ

Energy-energy correlation

〈E(n1)E(n2)〉K =
(q2)4

2(qn1)3(qn2)3
FK(z)

(4π)2
=

qq

E(n1)

E(n2)

Sum over all possible final states containing many on-shell particles

Depends on ’t Hooft coupling λ and angle between the detectors

z =
q2(n1n2)

2(qn1)(qn2)
=

1

2
(1− (~n1~n2)) =

1

2
(1− cos θ12)
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What we expect for FK(z, λ)

For K = 2 the EEC is peaked around z = 0 and z = 1 at weak coupling (two jet final state!)

cosχ

The EEC becomes flat at strong coupling λ → ∞ and K fixed [Hofman,Maldacena]

FK (z)
λ→∞∼ 2 +

4π2

λ
(1− 6z(1− z)) +O(λ−3/2)

For K ≫ 1 and finite λ we expect the EEC to be flat as well [Chicherin,GK,Sokatchev,Zhiboedov]

FK≫1(z) = 2 +O(1/K)

Examine the transition from K = 2 to K → ∞ at weak coupling
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Weak coupling

FK(z, λ) = F(0)
K (z) +

∞∑

ℓ=1

(
λ

4π2

)ℓ

F(ℓ)
K (z) =

Born approximation for arbitrary weight K

F(0)
K (z) =

2(K − 2)(K − 1)

(K + 1)(K + 2)
2F1 (3, 3;K + 3|z) =

The angular dependence flattens out for K → ∞

F(0)
K (z)

K≫1
= 2 +

6

K
(3z − 2) +O(1/K2)
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One and two loops

F(1)
K (z) =

1

zK+2

[

c
[K]
1 (z)L(z) + c

[K]
2 (z)Li2(z) + c

[K]
3 (z) log(z) log(1− z)

+ c
[K]
4 (z) log2(1− z) + c

[K]
5 (z) log(1− z) + c

[K]
6 (z) log(z) + c

[K]
7 (z)

]

F(2)
K (z) =

1

zK+2

[

Multi-linear combinations of HPLs with argument
√
z of weight w ≤ 5

]

c
[K]
m (z) are polynomials of degree K − 1

L(z) := Li3(1− z) +
1

2
Li2(z) log(1− z)− 1

12
log3(1− z) +

1

2
log2(1− z) log(z)− ζ2 log(1− z)− ζ3

The angular dependence of (K + 1)zF(ℓ)
K (z) flattens out for K → ∞

F(2)
K≫1(z) = O(1/K)
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Back to LHC

Energy correlations for small angles z → 0 and weak coupling a = λ/(4π2) < 1

FK(z) = F(0)
K (z) + aF(1)

K (z) + a2F(2)
K (z) + . . .

= 2 +
3

K

[
a

z
+

a2

z
log z + . . .

]

= 2 +
3a

K
z−1+a

Agrees with the leading OPE contribution at small angles z = sin2(χ/2) ≪ 1 [Kologlu et al]

〈E(n1)E(n2)〉 ∼ 1 +
〈O+

3 〉H
z1−γ+

3
/2

, 〈O+
3 〉H = O(1/K)

O
+
3 is the spin three light-ray operator of positive signature with anomalous dimension γ+

3

Two regimes at small z / large K:

For fixed z and K → ∞ : 〈E(n1)E(n2)〉 = 1 +O(1/K) Flat regime

For z → 0 and fixed K : 〈E(n1)E(n2)〉 ∼
1

z1−γ+

3
/2

OPE regime

The transition happens for K ∼ 1/z1−γ+
3

/2
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Conclusions

✔ The energy correlations in multi-particle states exhibit two characteristic regimes:

Flat : EEC ∼ const, OPE : EEC ∼ 1/χ2−γ

✔ The transition between the two regimes is controlled by the particle multiplicity K and the

dynamics of the theory

EEC ∼ 1 +
C

Kχ2−γ

✔ An analogous transition was previously observed in QCD in the measurement of the angular

energy distribution of particles belonging to the same energetic jet

✔ Scattering amplitudes/cross sections have interesting properties in the limit of large number of

particles/legs
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