Energy correlations in multi-particle states

Gregory Korchemsky IPhT, Saclay and IHES

Based on work with Dmitry Chicherin, Emeri Sokatchev and Alexander Zhiboedov

Amplitudes 23 August 9, 2023

Why multi-particle states

Final states at LHC:

- ✓ A lot of particles produced
- Energy of particles is deposit at the calorimeters
- ✓ Admit description in terms of the energy distribution on the celestial sphere

Energy-energy correlation

✓ Function of the angle $0 \le \chi \le \pi$ between detected particles [Basham,Brown,Ellis,Love'78]

$$EEC(\chi) = \sum_{a,b} \int d\sigma_{a+b+X} \frac{E_a E_b}{Q^2} \delta(\cos\theta_{ab} - \cos\chi)$$

Total energy $\sum_a E_a = Q$

- ✓ EEC in e^+e^- final states (1978 today):
 - × Very precise experimental data
 - Slow progress on the theory side

$$\operatorname{EEC}(\chi) = \underbrace{\alpha_s(Q)A(\chi)}_{\text{Basham et al'78}} + \underbrace{\alpha_s^2(Q)B(\chi)}_{\text{Dixon et al'18}} + O(\alpha_s^3)$$

Much faster progress in MSYM theory (3 loops + strong coupling)

Recent analysis of CMS Open Data

[Komiske,Moult,Thaler,Zhu'23]

For small angle χ , the EEC describes the correlation between particles belonging to the same jet Behaves differently at small angles depending on how χ compares with $\Lambda_{\rm QCD}/Q$

Flat : EEC ~ const, **OPE** : EEC ~ $1/\chi^{2-\gamma}$

What is physics mechanism of the transitioning between the two regimes?

Warm up example: free scalar theory

Multi-particle final state containing *K* massless scalar particles

$$|H(q)\rangle = \int d^4x \, e^{iqx} O_K(x)|0\rangle \,, \qquad O_K(x) = \phi^K(x)$$

Energy correlations at finite K (= new parameter of the expansion)

$$\langle \mathcal{E}(n_1) \dots \mathcal{E}(n_k) \rangle = - \stackrel{q}{\longrightarrow} \stackrel{q}{\longleftarrow} \stackrel{\otimes \mathcal{E}(n_1)}{\underset{\otimes}{\leftarrow} \mathcal{E}(n_2)} = \int d\sigma_K w_{n_1}(p_1) \dots w_{n_k}(p_k)$$

The weight factor $w_n(p)$ selects the particle in the final state moving along $n^{\mu} = (1, \vec{n})$

$$w_n(p) = p^0 \delta^{(2)} \left(\frac{\vec{p}}{p^0} - \vec{n}\right)$$

The differential cross-section

$$d\sigma_K = (2\pi)^4 \delta^{(4)}(q - \sum_{i=1}^K p_i) \prod_{n=1}^K d\text{LIPS}(p_n), \qquad d\text{LIPS}(p) = \frac{d^4 p}{(2\pi)^4} 2\pi \delta_+(p^2)$$

Large *K* limit in a free theory

Energies of detected particle scale as $p_i^0/Q = \varepsilon_i/K$

$$\langle \mathcal{E}(n_1) \dots \mathcal{E}(n_k) \rangle = Q^k \int_0^\infty \prod_{i=1}^k \frac{d\varepsilon_i \,\varepsilon_i^2}{8\pi} \, e^{-\varepsilon_i} \left[1 - \frac{1}{K} \sum_{i < j} \varepsilon_i \varepsilon_j (1 - z_{ij}) + \dots \right]$$

Ensemble of k noninteracting particles with energies distributed according to $dP(\varepsilon) = d\varepsilon \varepsilon^2 e^{-\varepsilon}$ Dimensionless angular variables

$$z_{ij} = \frac{q^2(n_i n_j)}{2(qn_i)(qn_j)} = \frac{1}{2}(1 - \cos\theta_{ij}), \qquad q^{\mu} = (Q, \vec{0})$$

The leading term is independent of the angular variables

$$\langle \mathcal{E}(n_1) \dots \mathcal{E}(n_k) \rangle_{\text{free}} = \left(\frac{Q}{4\pi}\right)^K \left[1 + \frac{1}{K} \sum_{1 \le i < j \le k} 9z_{ij} + \dots\right]$$

Homogeneous distribution of the energy, the angular dependence is suppressed by 1/K

✓ The same behaviour was observed in $\mathcal{N} = 4$ SYM at strong coupling $\lambda \to \infty$ [Hofman,Maldacena]

$$\langle \mathcal{E}(n_1) \dots \mathcal{E}(n_k) \rangle_{\mathcal{N}=4} = \left(\frac{Q}{4\pi}\right)^K \left[1 + O(1/\lambda)\right]$$

In both cases, the flat regime is associated with a large number of soft particles in the final state

Large *K* limit in interacting theory

Energy correlation in multi-particle final state is flat in a free theory

How does the interaction between the particles in the final state affect this result?

Consider the EEC in $\mathcal{N} = 4$ SYM in the final state created by a half-BPS operator $O_K = tr[Z^K(x)]$

Energy-energy correlation

Sum over all possible final states containing many on-shell particles

Depends on 't Hooft coupling λ and angle between the detectors

$$z = \frac{q^2(n_1 n_2)}{2(q n_1)(q n_2)} = \frac{1}{2}(1 - (\vec{n}_1 \vec{n}_2)) = \frac{1}{2}(1 - \cos \theta_{12})$$

What we expect for $\mathcal{F}_K(z,\lambda)$

For K = 2 the EEC is peaked around z = 0 and z = 1 at weak coupling (two jet final state!)

The EEC becomes flat at strong coupling $\lambda \to \infty$ and K fixed

[Hofman, Maldacena]

$$\mathcal{F}_K(z) \stackrel{\lambda \to \infty}{\sim} 2 + \frac{4\pi^2}{\lambda} \left(1 - 6z(1-z)\right) + O(\lambda^{-3/2})$$

For $K \gg 1$ and finite λ we expect the EEC to be flat as well

[Chicherin,GK,Sokatchev,Zhiboedov]

$$\mathcal{F}_{K\gg1}(z) = 2 + O(1/K)$$

Examine the transition from K = 2 to $K \rightarrow \infty$ at weak coupling

Weak coupling

$$\mathcal{F}_{K}(z,\lambda) = \mathcal{F}_{K}^{(0)}(z) + \sum_{\ell=1}^{\infty} \left(\frac{\lambda}{4\pi^{2}}\right)^{\ell} \mathcal{F}_{K}^{(\ell)}(z) = \int_{x}^{x-\ell-1} \mathcal{F}_{K}^{(\ell)}(z) dz$$

Born approximation for arbitrary weight K

$$\mathcal{F}_{K}^{(0)}(z) = \frac{2(K-2)(K-1)}{(K+1)(K+2)} \, {}_{2}F_{1}\left(3,3;K+3|z\right) = \int_{x}^{\varepsilon(n_{2})} \int_{\varepsilon(n_{1})}^{\varepsilon(n_{2})} dz$$

The angular dependence flattens out for $K \to \infty$

$$\mathcal{F}_{K}^{(0)}(z) \stackrel{K \gg 1}{=} 2 + \frac{6}{K}(3z - 2) + O(1/K^{2})$$

One and two loops

$$\begin{aligned} \mathcal{F}_{K}^{(1)}(z) &= \frac{1}{z^{K+2}} \Big[c_{1}^{[K]}(z)L(z) + c_{2}^{[K]}(z)\mathsf{Li}_{2}(z) + c_{3}^{[K]}(z)\log(z)\log(1-z) \\ &+ c_{4}^{[K]}(z)\log^{2}(1-z) + c_{5}^{[K]}(z)\log(1-z) + c_{6}^{[K]}(z)\log(z) + c_{7}^{[K]}(z) \Big] \\ \mathcal{F}_{K}^{(2)}(z) &= \frac{1}{z^{K+2}} \Big[\text{Multi-linear combinations of HPLs with argument } \sqrt{z} \text{ of weight } w \leq 5 \Big] \end{aligned}$$

 $c_m^{[K]}(z)$ are polynomials of degree K-1

$$L(z) := \mathsf{Li}_3(1-z) + \frac{1}{2}\mathsf{Li}_2(z)\log(1-z) - \frac{1}{12}\log^3(1-z) + \frac{1}{2}\log^2(1-z)\log(z) - \zeta_2\log(1-z) - \zeta_3$$

The angular dependence of $(K+1)z\mathcal{F}_{K}^{(\ell)}(z)$ flattens out for $K\to\infty$

$$\mathcal{F}_{K\gg1}^{(2)}(z) = O(1/K)$$

Back to LHC

Energy correlations for small angles $z \to 0$ and weak coupling $a = \lambda/(4\pi^2) < 1$

$$\mathcal{F}_{K}(z) = \mathcal{F}_{K}^{(0)}(z) + a\mathcal{F}_{K}^{(1)}(z) + a^{2}\mathcal{F}_{K}^{(2)}(z) + \dots$$
$$= 2 + \frac{3}{K} \left[\frac{a}{z} + \frac{a^{2}}{z} \log z + \dots \right]$$
$$= 2 + \frac{3a}{K} z^{-1+a}$$

Agrees with the leading OPE contribution at small angles $z = \sin^2(\chi/2) \ll 1$

[Kologlu et al]

$$\langle \mathcal{E}(n_1)\mathcal{E}(n_2)\rangle \sim 1 + \frac{\langle \mathbb{O}_3^+ \rangle_H}{z^{1-\gamma_3^+/2}}, \qquad \langle \mathbb{O}_3^+ \rangle_H = O(1/K)$$

 \mathbb{O}_3^+ is the spin three light-ray operator of positive signature with anomalous dimension γ_3^+ Two regimes at small *z* / large *K*:

For fixed z and
$$K \to \infty$$
: $\langle \mathcal{E}(n_1)\mathcal{E}(n_2) \rangle = 1 + O(1/K)$ Flat regimeFor $z \to 0$ and fixed K : $\langle \mathcal{E}(n_1)\mathcal{E}(n_2) \rangle \sim \frac{1}{z^{1-\gamma_3^+/2}}$ OPE regime

The transition happens for $K \sim 1/z^{1-\gamma_3^+/2}$

Conclusions

✓ The energy correlations in multi-particle states exhibit two characteristic regimes:

Flat : EEC ~ const, $OPE : EEC \sim 1/\chi^{2-\gamma}$

The transition between the two regimes is controlled by the particle multiplicity K and the dynamics of the theory

$$\Xi \mathsf{EC} \sim 1 + \frac{C}{K\chi^{2-\gamma}}$$

- An analogous transition was previously observed in QCD in the measurement of the angular energy distribution of particles belonging to the same energetic jet
- Scattering amplitudes/cross sections have interesting properties in the limit of large number of particles/legs