Energy correlations in multi-particle states

Gregory KorchemskyIPhT, Saclay and IHES

Based on work with <mark>Dmitry Chicherin, Emeri Sokatchev</mark> and <mark>Alexander Zhiboedov</mark>

Amplitudes 23August 9, 2023

Why multi-particle states

Final states at LHC:

- \blacktriangleright A lot of particles produced
- \blacktriangleright Energy of particles is deposit at the calorimeters
- \blacktriangleright Admit description in terms of the energy distribution on the celestial sphere

Energy-energy correlation

 \blacktriangleright Function of the angle $0 \leq \chi \leq \pi$ between detected particles [Basham,Brown,Ellis,Love'78]

$$
EEC(\chi) = \sum_{a,b} \int d\sigma_{a+b+X} \frac{E_a E_b}{Q^2} \delta(\cos \theta_{ab} - \cos \chi)
$$

Total energy $\sum_a E_a = Q$

- ✔ EEC in e^+e^- final states (1978 today):
	- ✗ Very precise experimental data
	- *x* Slow progress on the theory side

$$
EEC(\chi) = \underbrace{\alpha_s(Q)A(\chi)}_{\text{Basham et al'78}} + \underbrace{\alpha_s^2(Q)B(\chi)}_{\text{Dixon et al'18}} + O(\alpha_s^3)
$$

 $\boldsymbol{\mathsf{x}}$ Much faster progress in MSYM theory (3 loops + strong coupling)

Recent analysis of CMS Open Data

[Komiske,Moult,Thaler,Zhu'23]

For small angle χ , the EEC describes the correlation between particles belonging to the same jet Behaves differently at small angles depending on how χ compares with $\Lambda_{\rm QCD}/Q$

> Flat : EEC \sim **OPE** : EEC $\sim 1/\chi^{2-\gamma}$

What is physics mechanism of the transitioning between the two regimes?

Warm up example: free scalar theory

Multi-particle final state containing K massless scalar particles

$$
|H(q)\rangle = \int d^4x \, e^{iqx} O_K(x)|0\rangle \,, \qquad O_K(x) = \phi^K(x)
$$

Energy correlations at finite K (= new parameter of the expansion)

$$
\langle \mathcal{E}(n_1) \dots \mathcal{E}(n_k) \rangle = \begin{array}{c} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \end{array} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \end{array} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{matrix} \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end
$$

The weight factor $w_n(p)$ selects the particle in the final state moving along $n^\mu = (1,\vec{n})$

$$
w_n(p) = p^0 \delta^{(2)} \left(\frac{\vec{p}}{p^0} - \vec{n} \right)
$$

The differential cross-section

$$
d\sigma_K = (2\pi)^4 \delta^{(4)}(q - \sum_{i=1}^K p_i) \prod_{n=1}^K dLIPS(p_n), \qquad dLIPS(p) = \frac{d^4p}{(2\pi)^4} 2\pi \delta_+(p^2)
$$

Large ^K **limit in ^a free theory**

Energies of detected particle scale as $p_i^0/Q=\varepsilon_i/K$

$$
\langle \mathcal{E}(n_1) \dots \mathcal{E}(n_k) \rangle = Q^k \int_0^\infty \prod_{i=1}^k \frac{d\varepsilon_i \,\varepsilon_i^2}{8\pi} \, e^{-\varepsilon_i} \Bigg[1 - \frac{1}{K} \sum_{i < j} \varepsilon_i \varepsilon_j (1 - z_{ij}) + \dots \Bigg]
$$

Ensemble of k noninteracting particles with energies distributed according to $dP(\varepsilon)=d\varepsilon\,\varepsilon^2e^{-\varepsilon}$ Dimensionless angular variables

$$
z_{ij} = \frac{q^2(n_i n_j)}{2(qn_i)(qn_j)} = \frac{1}{2}(1 - \cos \theta_{ij}), \qquad q^{\mu} = (Q, \vec{0})
$$

 \blacktriangleright The leading term is independent of the angular variables

$$
\langle \mathcal{E}(n_1) \dots \mathcal{E}(n_k) \rangle_{\text{free}} = \left(\frac{Q}{4\pi}\right)^K \left[1 + \frac{1}{K} \sum_{1 \leq i < j \leq k} 9z_{ij} + \dots\right]
$$

Homogeneous distribution of the energy, the angular dependence is suppressed by $1/K$

 \blacktriangleright The same behaviour was observed in $\mathcal{N}=4$ SYM at strong coupling $\lambda\to\infty$ [Hofman,Maldacena]

$$
\langle \mathcal{E}(n_1) \dots \mathcal{E}(n_k) \rangle_{\mathcal{N}=4} = \left(\frac{Q}{4\pi}\right)^K [1 + O(1/\lambda)]
$$

- p. 6/12In both cases, the flat regime is associated with ^a large number of soft particles in the final state

Large ^K **limit in interacting theory**

Energy correlation in multi-particle final state is flat in ^a free theory

How does the interaction between the particles in the final state affect this result?

Consider the EEC in ${\cal N}=4$ SYM in the final state created by a half-BPS operator $O_K = \mathrm{tr}[Z^K(x)]$

$$
|H(q)\rangle = \int d^4x \, e^{iqx} O_K(x) |0\rangle = -\frac{q}{\sqrt{2\pi}} \int_{-\infty}^{\infty} + \frac{q}{\sqrt{2\pi}} \int_{-\infty}^{\infty} + \frac{q}{\sqrt{2\pi}} \int_{-\infty}^{\infty} + \frac{q}{\sqrt{2\pi}} \int_{-\infty}^{\infty} + \cdots
$$

Energy-energy correlation

$$
\langle \mathcal{E}(n_1)\mathcal{E}(n_2)\rangle_K = \frac{(q^2)^4}{2(qn_1)^3(qn_2)^3} \frac{\mathcal{F}_K(z)}{(4\pi)^2} = -\frac{q}{2\pi} \sqrt{\frac{\mathcal{E}(n_2)}{\mathcal{E}(n_1)}} \frac{q}{\mathcal{E}(n_1)}
$$

Sum over all possible final states containing many on-shell particles

Depends on 't Hooft coupling λ and angle between the detectors

$$
z = \frac{q^2(n_1n_2)}{2(qn_1)(qn_2)} = \frac{1}{2}(1 - (\vec{n}_1\vec{n}_2)) = \frac{1}{2}(1 - \cos\theta_{12})
$$

- p. 7/12

\boldsymbol{W} hat we expect for $\mathcal{F}_K(z,\lambda)$

For $K=2$ the EEC is peaked around $z=0$ and $z=1$ at weak coupling (two jet final state!)

The EEC becomes flat at strong coupling $\lambda \to \infty$

[Hofman,Maldacena]

$$
\mathcal{F}_K(z) \stackrel{\lambda \to \infty}{\sim} 2 + \frac{4\pi^2}{\lambda} (1 - 6z(1 - z)) + O(\lambda^{-3/2})
$$

For $K \gg 1$ and finite λ we expect the EEC to be flat as well $[{\sf Chicherin,GK,Sokatchev,Zhiboedov}]$

$$
\mathcal{F}_{K\gg1}(z) = 2 + O(1/K)
$$

Examine the transition from $K=2$ to $K\rightarrow\infty$ at weak coupling

Weak coupling

$$
\mathcal{F}_K(z,\lambda)=\mathcal{F}_K^{(0)}(z)+\sum_{\ell=1}^\infty\left(\frac{\lambda}{4\pi^2}\right)^\ell\mathcal{F}_K^{(\ell)}(z)=\left(\begin{matrix}z\\z\\z\end{matrix}\right)_{\mathcal{E}_{\mathcal{E}_{(n)}}}^{\mathcal{E}_{(n)}}.
$$

Born approximation for arbitrary weight K

$$
\mathcal{F}_{K}^{(0)}(z)=\frac{2(K-2)(K-1)}{(K+1)(K+2)}\, {}_{2}F_{1}\left(3,3;K+3|z\right)=\left(\begin{matrix} \frac{\mathcal{E}(n_{2})}{\mathcal{E}(n_{1})} \\ 0 \\ 0 \\ 0 \\ \end{matrix}\right)_{0}
$$

The angular dependence flattens out for $K\to\infty$

$$
\mathcal{F}_K^{(0)}(z) \stackrel{K \geq 1}{=} 2 + \frac{6}{K}(3z - 2) + O(1/K^2)
$$

One and two loops

$$
\mathcal{F}_K^{(1)}(z) = \frac{1}{z^{K+2}} \Big[c_1^{[K]}(z) L(z) + c_2^{[K]}(z) \text{Li}_2(z) + c_3^{[K]}(z) \log(z) \log(1-z) + c_4^{[K]}(z) \log^2(1-z) + c_5^{[K]}(z) \log(1-z) + c_6^{[K]}(z) \log(z) + c_7^{[K]}(z) \Big]
$$

$$
\mathcal{F}_K^{(2)}(z) = \frac{1}{z^{K+2}} \Big[\text{Multi-linear combinations of HPLs with argument } \sqrt{z} \text{ of weight } w \le 5 \Big]
$$

 $c_{m}^{[K]}(z)$ are polynomials of degree $K-1$

$$
L(z) := \text{Li}_3(1-z) + \frac{1}{2}\text{Li}_2(z)\log(1-z) - \frac{1}{12}\log^3(1-z) + \frac{1}{2}\log^2(1-z)\log(z) - \zeta_2\log(1-z) - \zeta_3
$$

The angular dependence of $(K+1)z\mathcal{F}^{(\ell)}_K(z)$ flattens out for $K\to\infty$

$$
\mathcal{F}_{K\gg 1}^{(2)}(z) = O(1/K)
$$

Back to LHC

Energy correlations for small angles $z\rightarrow 0$ and weak coupling $a=\lambda/(4\pi^2)< 1$

$$
\mathcal{F}_K(z) = \mathcal{F}_K^{(0)}(z) + a\mathcal{F}_K^{(1)}(z) + a^2 \mathcal{F}_K^{(2)}(z) + \dots
$$

$$
= 2 + \frac{3}{K} \left[\frac{a}{z} + \frac{a^2}{z} \log z + \dots \right]
$$

$$
= 2 + \frac{3a}{K} z^{-1+a}
$$

Agrees with the leading OPE contribution at small angles $z=\sin^2(\chi/2)\ll$

[Kologlu et al]

$$
\langle \mathcal{E}(n_1)\mathcal{E}(n_2)\rangle \sim 1 + \frac{\langle \mathbb{O}_3^+\rangle_H}{z^{1-\gamma_3^+/2}}, \qquad \langle \mathbb{O}_3^+\rangle_H = O(1/K)
$$

 \mathbb{O}^{+}_{3} is the spin three light-ray operator of positive signature with anomalous dimension γ^{+}_{3} Two regimes at small z / large K :

For fixed z and
$$
K \to \infty
$$
:
\n $\langle \mathcal{E}(n_1)\mathcal{E}(n_2) \rangle = 1 + O(1/K)$ *Flat regime*
\nFor $z \to 0$ and fixed K: $\langle \mathcal{E}(n_1)\mathcal{E}(n_2) \rangle \sim \frac{1}{z^{1-\gamma_3^+/2}}$ *OPE regime*

The transition happens for K $K \sim 1/z^{1-\gamma_3^+/2}$

Conclusions

 \blacktriangleright The energy correlations in multi-particle states exhibit two characteristic regimes:

Flat : EEC \sim const, OPE : EEC $\sim 1/\chi^{2-\gamma}$

 \blacktriangleright The transition between the two regimes is controlled by the particle multiplicity K and the dynamics of the theory

$$
\text{EEC} \sim 1 + \frac{C}{K\chi^{2-\gamma}}
$$

- \blacktriangleright An analogous transition was previously observed in QCD in the measurement of the angular energy distribution of particles belonging to the same energetic jet
- \blacktriangleright Scattering amplitudes/cross sections have interesting properties in the limit of large number of particles/legs