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Main Questions

Nima Arkani-Hamed:

▶ “Half of the integrals are useless”

▶ “The integrals are one-dimensional”

Why is this true?



More precise formulation

▶ ∫
ddlk∏
prop

= π⌈ dl
2
⌉ × P × T⌊ dl

2
⌋,

with a prefactor P of weight zero and Tw a transcendental
function of weight w and d is an integer dimension. We have
⌊x⌋+ ⌈x⌉ = x .

▶

Tw =
∑∫

0<t1···<tw<1
f1(t1)dt1 · · · fw (tw )dtw .



Why are half of the integrals “useless”?

Together with Matt Schwartz, Hofie Hannesdóttir and Andrew
McLeod: Landau singularities would not have the required
asymptotic behavior otherwise. Can be shown rigorously when the
integrals are finite (no regularization) and the kinematics
(including masses) is generic.
At non-generic kinematics more complicated behavior, such as
weight drop, but weight can not increase.
The asymptotics of Feynman integrals was studied by Landau,
Leray, Polkinghorne & Screaton (reviewed by Pham).



Integrate “useless” integrals

Can we do the “useless” integrals? Previous work (direct
integration) by Brown, Panzer, Bogner, Schnetz. Some difficulties
having to do with field extensions which sometimes result in high
degree extensions which eventually cancel out. We have found
extensions of degrees up to 16, containing nested square roots
which eventually cancel out completely (Bourjaily, McLeod, CV,
Volk, von Hippel, Wilhelm).
Algorithmic way which avoids un-necessary field extensions?



Cutkosky representation

I =

∫ b1

a1

dq21
q21 −m2

1

∫ b2

a2

dq22
q22 −m2

2

· · ·
∫ bn

an

dq2n
q2n −m2

n

∫
Nddl−nξ

J
.

Two types of integrals:

▶
∫ bi
ai

dq2i
q2i −m2

i

▶
∫ Nddl−nξ

J (“angular” integral in Cutkosky’s terminology).

J is the Jacobian of the change of coordinates
(qµ1

1 , . . . , qµn
n ) → (q21 , . . . , q

2
n, ξ) and N a possible numerator.

The numerator N may vanish while J may factorize so sometimes
we don’t get a nowhere vanishing holomorphic top-form as in the
Calabi-Yau case.
In lorentzian signature integral over (−∞, ai ] ∪ [bi ,∞) and in
euclidean signature over [ai , bi ].



“Angular” integrals

In the polylogarithmic case the “angular” integral over ξ is either
zero-dimensional or it can be computed in simple terms. For
elliptic or Calabi-Yau cases the last integral is often the period
integral of the holomorphic top-form along a distinguished real
cycle. For Calabi-Yau varieties these cycle of integration is
higher-dimensional.
No reason to expect a coproduct/coaction in general.
One way to make progress: keep the ξ integrals for last, but
non-trivial since the moduli of the variety depend on the values of
q2i . Can be done but, in the elliptic case transforms complete
elliptic integrals to incomplete elliptic integrals.



Remarks on Cutkosky representation

▶ Works for non-planar, for Euclidean and Lorentzian signatures

▶ Canonical parameterization for the loop momenta (contrast to
issues with loop momentum routing in non-planar integrals).

▶ dq2i
q2i −m2

i
= d log(q2i −mi ) (d-log forms)

▶ The integrals in q2i are one-dimensional.

▶ Obvious choice of complexification and compactification1

(necessary for technical reasons) where (q21 , q
2
2 , . . . , q

2
n) ∈ Rn

gets embedded in P1 × · · · × P1. The space of ξ is already
compact.

1Does not respect dual conformal symmetry when present.



Main idea

The discontinuities across branch cuts corresponding to a Landau
singularity involving loop momenta q1, . . . , qr are obtained by
replacing the first r integrals in the Cutkosky representation by∫
dq21(−2πi)δ(q21 −m2

1) · · ·
∫
dq2r (−2πi)δ(q2r −m2

r ).
Since all the cuts are computable in terms of polylogarithms, we
can do the integrals in one variable q2i at a time without ever
encountering an obstruction.
There are two types of of singularities: logarithms and square
roots. We should be able to do the square root singularity integrals
while introducing only a factor of π.



Example: massive bubble in 3D

∫
d3q1

(q21 +m2
1)(q

2
2 +m2

2)
=

∫ ∞

0

dq21
q21 +m2

1

∫ b2

a2

dq22
q22 +m2

2

∫
d3q1

dq21 ∧ dq22
,

where a2 = (∥p∥ − ∥q1∥)2 and b2 = (∥p∥ − ∥q1∥)2. The third
integral yields − π

2∥p∥ and can be pulled out of all integrals.
We have

∫ b2

a2

dq22
q22 +m2

2

= log

(∥p∥+
√

q21)
2 +m2

2

(∥p∥ −
√

q21)
2 +m2

2

 .

Put the branch cut along R+

F2(q
2
1) = log

(∥p∥ − i
√
−q21)

2 +m2
2

(∥p∥+ i
√
−q21)

2 +m2
2

 .



Massive bubble in 3D, continued

−m2

∫ ∞

0

dq21
q21 +m2

2

F2(q
2
1),

with F2 having a square root branch cut along R+.



−m2

1

2
lim
ϵ→0

lim
R→∞

∮
γ1+γ2+γ3

dq21
q21 +m2

1

F2(q
2
1).

Several contributions:

▶ The pole at q21 = −m2
1, has the effect of setting q21 = −m2

1

▶ The integral along the branch cut, doubles the original integral

▶ Integral along the logarithmic branch cuts. The discontinuity
is 2πi .

▶ Integrals along the large and small circles vanish.



Massive bubble in 3D, final answer

∫ ∞

0

dq21
q21 +m2

1

F2(q
2
1) = πi

(
log

(∥p∥ − im1)
2 +m2

2

(∥p∥+ im1)2 +m2
2

+ (m1 ↔ m2)

)
.

Symmetry arises non-trivially: one of the terms arises from the
residue at q21 = −m2

1 while the other from the integration along
the logarithmic cuts.
The final answer can be rewritten as

π2

i ∥p∥
log

m1 +m2 + i ∥p∥
m1 +m2 − i ∥p∥

=
2π2

∥p∥
arctan

∥p∥
m1 +m2

.

These forms assume m1,m2 > 0.



Triangle in 3D

∫
d3q1

(q21 +m2
1)(q

2
2 +m2

2)(q
2
3 +m2

3)
=

∫ ∞

0

dq21
q21 +m2

1

∫ b2

a2

dq22
q22 +m2

2∫ b3

a3

dq23
q23 +m2

3

d3q1
dq21 ∧ dq22 ∧ dq23

. (1)

We have

d3q1
dq21 ∧ dq22 ∧ dq23

=
1

8
√
det(qi · qj)i ,j=1,2,3

.

Denote det(qi · qj)i ,j=1,2,3 = P3(q
2
3) = α3(q

2
3)

2 + β3q
2
3 + γ3. We

have P3(a3) = P3(b3) = 0. Then,∫ b3

a3

dq23
q23 +m2

3

1√
P3(q23)

=
π√

−α3m4
3 + β3m2

3 − γ3

.



Triangle in 3D, geometry

To determine the range of integration for
q23 ∈ [a3(q

2
1 , q

2
2), b3(q

2
1 , q

2
2)], use a constrained extremization

approach (Lagrange multipliers). Define

F (q23 , α1, α2) = q23 − α1(q
2
1 − z1)− α2(q

2
2 − z2).

Then ∂q3F = 2(q3 − α1q1 − α2q2) = 0 is similar to a Landau loop
equation (with one non-vanishing α and modified on-shell
conditions q22 = z2 and q23 = z3).
To determine the nature of these extrema, use the bordered
Hessian. In Lorentzian signature the integration domain is rather
(−∞, a3] ∪ [b3,∞).



Denote −P3(−m2
3) = P2(q

2
2) = α2(q

2
2)

2 + β2q
2
2 + γ2. Then∫ b2

a2

dq22
q22 +m2

2

1√
P2(q22)

=
1√

P2(−m2
2)

[

log

(−b2 −m2
2 +

√
P2(b2)−

√
P2(−m2

2)

−b2 −m2
2 +

√
P2(b2) +

√
P2(−m2

2)

)
− (b2 → a2)

]
(2)

There are unwanted potential square root singularities in ∥q1∥ at
P2(b2) = 0 and P2(a2) = 0. But P2(b2) and P2(a2) are actually
perfect squares. Indeed,

P2(a2) =
1

64p23
×

(√
−4m2

3p
2
3+(p21)

2−2p21p
2
2−2p21p

2
3+(p22)

2−2p22p
2
3+(p23)

2−p21+p22+p23−2∥p3∥∥q1∥
)2

(√
−4m2

3p
2
3+(p21)

2−2p21p
2
2−2p21p

2
3+(p22)

2−2p22p
2
3+(p23)

2+p21−p22−p23+2∥p3∥∥q1∥
)2
.

(3)



Square root singularities

The integrals which yield square root singularities can be done
while producing only factors of π. For the contour trick to work,
the only square root singularity should be along the integration
contour. There are other square roots in the formulas, but they do
not produce square root branch points. For example, quantities
such as

1√
P
log

Q +
√
P

Q −
√
P

do not have a square root singularity at P = 0 (on the main sheet
where we do not cross the logarithmic branch cut starting at
Q2 − P = 0).
Indeed, under P → e2πiP we have

√
P → −

√
P so the sign of the

prefactor cancels the sign from the logarithm

log Q+
√
P

Q−
√
P
→ log Q−

√
P

Q+
√
P
= − log Q+

√
P

Q−
√
P
.

Including the prefactor makes the function nicer!



Weight vs depth

The number of integrals in an iterated integral can not be reduced
if the integrand is algebraic. It can be reduced for more
complicated integrands

Lin(z) =
1

(n − 1)!

∫ ∞

0

un−1du

z−1eu − 1
,

obtained by change of variable ti = eui so dti
ti

= dui then most of
the u-integrals can be done.
Depth is more important than the weight if we are willing to
reduce the number of integrals at the cost of an integrand which
itself contains transcendental functions (exponentials).



Goncharov depth conjecture

Theorem (Goncharov 2001, Rudenko 2020)

Any multiple polylog of weight n ≥ 2 can be expressed as a linear
combination of multiple polylogs of depth at most ⌊n2⌋ and
products of polylogs of lower weight.

Rudenko’s approach is algorithmic and involves quadrangular
polylogarithms (see talk by Anastasia). It is possible to write all
polylogarithmic l-loop integrals in d = 4 as l-fold integrals! Open
question: find optimal (fewest terms) depth-reduced expression.



Summary

▶ No reason to expect a coproduct/coaction in general, once we
encounter Calabi-Yau on-shell spaces.

▶ Two types of singularities, square roots and logarithmic (true
even in the Calabi-Yau case). In the polylogarithmic case can
do the “useless” square root integrals explicitly.

▶ The prefactors make the function nicer by eliminating some
branch cuts in the product.

▶ Direct integration feasible in Cutkosky representation. Built-in
checks: cancellation of spurious square roots, symmetry of the
integral.

▶ Explains the transcendental weight and the “one-dimensional”
nature of integrals.

▶ In principle can apply the same strategy in Baikov
representation (work in progress).

▶ If you want the minimum number of integrations, use depth
reduction.



Thank You!


