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Motivation

@® The precision of current high energy particle experiments require very accurate theoretical predictions.

® Usually these predictions are made in a perturbative QFT framework, where one has to perform multi-
loop Feynman integral computations.

@® It was observed that also functions beyond polylogarithms can appear. These functions are only properly

defined on non-trivial geometries:
_/62/\7\
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["Bestiary" [Marzucca, McLeod,
collaboration] Page, Pogel, Weinzierl]

® For the computation of amplitudes or cross sections it is necessary to have these function spaces under
control, e.g. relations between them, numerical evaluation, etc. .

@ So far, one of the bottlenecks in amplitude computations is a method to derive an e-factorized form of
the differential equations for these non-trivial functions such that their €-expansion is under control.
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Master Integrals and e-factorized Differential Equations

® Using IBP and symmetry relations one finds a minimal set of integrals necessary for a given
roblem. These are called master integrals:
P & [=(L,I5,...,1,)

® Usually Feynman integrals are divergent, so we have to regularize them. Mostly, one
takes dimensional regularization:
8 do — d = dy — 2¢

@® These master integrals can be computed using differential equations called the
Gauss-Manin system: dl(z, e) _ GM(z, e)I(z, e)



Master Integrals and e-factorized Differential Equations

® Using IBP and symmetry relations one finds a minimal set of integrals necessary for a given
roblem. These are called master integrals:
P g I = (117127 7IT)

@® Usually Feynman integrals are divergent, so we have to regularize them. Mostly, one
takes dimensional regularization:
8 dy — d = do — 2¢

@® These master integrals can be computed using differential equations called the
Gauss-Manin system: d[(z, e) _ GM(Z, e)I(z, e)

® The e-expansion can easily be solved if the GM system is e-factorized: [Henn]

~

I(z,€) = T(z,€)I(z,¢€) suchthat dI(z,€) = e GM(2)I(z,€)

~

z
I(z,e) = Pexp (e/ GM(z’)dz’) I(zp,€) and I,(#) = lterated integrals over GM,;;(z)
20
Get as many orders in e-expansion as we want in a controlled way.

® So far, there is no general method known to get this form, in particular for geometries
beyond polylogarithms. What "canonical-form" means is also only clear for polylogarithms.

@® Quite recent, algorithm for equal-mass banana graphs. [Pégel, Wang, Weinzierl] 'I'I.I'I'I
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Review of Elliptic Curves and Calabi-Yau Manifolds

@ — R

(€, dz/y, dz A dy) (X, 0, w)

@ Calabi-Yau manifolds are natural generalizations
of elliptic curves:

Calabi-Yaus are complex n-dim Kahler manifolds
which have a unique holomorphic (n, 0)-form.

4
CYs are defined via polynomial constraints. (Y2Z —4AXP 4+ go() X 2% {D_ X7 —V¥Xo- Xy =0} C P
+g3(t)Z° =0} cP? =0
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dX . XdX elliptic integrals
B Y K()‘)aK(l o )‘)

® Periods are governed by differential equations: Picard-Fuchs equation or Gauss-Manin system:

. . . W = power series 1n z
Point of maximal unipotent monodromy:
. . L w1 = wo log(z) + X1
hierarchic logarithmic structure 1

w2 = 5o log(2)? + X1 log(z) + Xy



Review of Elliptic Curves and Calabi-Yau Manifolds

e — Qe H"(X)
. Using Griffiths transversality

0.0 H*(X) o H" MH(X)

J C;\ CStrU ct
;

o0 e H'(X)® ... HO"(X)

0, k<n

® There are quadratic relations between periods: / QAOEQ =TT X OFI = {C L —n
X 79 -



Review of Elliptic Curves and Calabi-Yau Manifolds

Qc HY(X)
0.0 H*(X) o H" MH(X)

' Using Griffiths transversality we can construct

orNec H"'(X)@...® H*"(X)

@ There are quadratic relations between periods: / QAOPQ =TI L oI = {(/97 Z f Z
X ) —
@ One can express or eliminate some periods (or their derivatives) through the others:
il Legendre relations K3| CY 3—f01d|
‘wo (2] 1 wWwowa ~~ w%
/ / AN\ 12
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Qc HY(X)
0.0 H*(X) o H" MH(X)

' Using Griffiths transversality we can construct

|

orNec H"'(X)@...® H*"(X)

@ There are quadratic relations between periods: / QAOPQ =TI L oI = {CQ’ : f Z
X ) —
@ One can express or eliminate some periods (or their derivatives) through the others:
il Legendre relations K3| CY 3—f01d|
‘wo (2] 1 wWwowa ~~ w%
/ / AN\ 12
Fo @] AR @ ~ Ra(2)m0 + Ra(2)h + R(2) 20
0
® We can simplify the inverse Wronskian: W(z);; ={0.w;}, W(2) ' =SW()TZ(2)

® Can write the solutions for € = 0 in terms of iterated period integrals:
I~ H(z)T/ dz’ W(z') " *Inhom(z’) + periods
0

LcyI(z) = Inhom(z) e s
~ H(z)TE/ dz' W(z")Inhom(2") 4 periods m

6 0



Our Procedure

1
® We can work bottom up and sector-by sector. -

First, maximal cuts of a sector. sy
Then continue with the subtopologies.

Pick your start sector.
Sectors below are already in e-form.
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1
® We can work bottom up and sector-by sector. -

First, maximal cuts of a sector. sy
Then continue with the subtopologies.

Pick your start sector.
Sectors below are already in e-form.

@ Our procedure has basically 4 different steps:

1) Choose a "good" initial basis s.t. the different geometries are visible ind = dj.

(c.f. polylogs: no higher poles)

2) Split Wronskian into a semi-simple and unipotent part. Rotate with the inverse semi-simple part.
(c.f. polylogs: unit leading singularities)

3) Clean up your Sector: a) Perform e-rescalings to achieve upper triangular e-form.

b) Remove total derivatives.

c) Introduce new functions, if necessary, for full e-form. These
turn out to be iterated integrals of the functions introduced
in the steps before.

4) Clean up your Subsectors for full e-form.
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Initial Basis

@ Either trivial or quite complicated. Not unique. But a good initial basis simplifies subsequent steps drastically.

[1]

® No power-like UV or IR divergent integrals in d = dy. No non-trivial e-dependencies in denominators.

@ Search for minimally coupled systems in your sector, e.g. check factorizations of the Picard-Fuchs operator.

S Gives us information about the non-trivial geometries in a sector.
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® For each minimally coupled system "good" integrals might be:
@ Start with the integral having as max. cut the standard period integral of the geometry.
£| .--/dlog/%/dlog... CY| ---/dlog/dQ/dlog---
Integral of the first kind Integral of (n,0)-form

@ Take further integrals with max. cut related to the other cohomology elements.

"In practice, this means one can take dots on massive propagators if no
UV or IR divergencies are introduced."

@® For practical reasons, one can go later to a derivative basis.



Initial Basis

@ Either trivial or quite complicated. Not unique. But a good initial basis simplifies subsequent steps drastically.

[1]

® No power-like UV or IR divergent integrals in d = dy. No non-trivial e-dependencies in denominators.

@ Search for minimally coupled systems in your sector, e.g. check factorizations of the Picard-Fuchs operator.

S Gives us information about the non-trivial geometries in a sector.

® For each minimally coupled system "good" integrals might be:

@ Start with the integral having as max. cut the standard period integral of the geometry.

£| ---/dlog/%/dlog--- @ ---/dlog/dQ/dlog---

Integral of the first kind Integral of (n,0)-form

@ Take further integrals with max. cut related to the other cohomology elements.

"In practice, this means one can take dots on massive propagators if no
UV or IR divergencies are introduced."

@® For practical reasons, one can go later to a derivative basis.
@® Try to separate the different minimally coupled systems:

@ Search for integrals which localize on non-trivial geometries and having residues.
Normalize these residues, i.e. integrals of third kind for elliptic curves.

@ Take integrals vanishing in d = d. II-u-"
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Initial Basis: Examples

@ Banana graphs:

Trivial, top sector equals CY (I — 1)-fold, take dots or derivative basis.
® Triangle graph:

Elliptic top sector with additional residue
=0

dx
Ii11,1,1,10

y
fuc
Yy

Ii11,1,2,1,0

h 1 _2
T d=4 4 8422
= —Z z
~ GMtri,top = z(1—2)(8+=) (1—z)(z(8—|—)z)
2 4(1—=
?Z’:O T ~ dzx _3_2 o 3z
_______ 1,1,1,1,1,1,—1 (@ — 7o)
[Jiang, Wang,
Yang, Zhao]

[1,2]

o O
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Initial Basis: Examples

@ Banana graphs: Trivial, top sector equals CY (I — 1)-fold, take dots or derivative basis. [1,2]
® Triangle graph: Elliptic top sector with additional residue
) ___?‘_z:_o dz
Ii111,1,1,0 ~ m _% _% 0
dx d=4 4—2 8422
Iia1,2,1,0 N/as? GMtri,top — z(l—z)éS—l—z) (1—3)(2(_8;|—z) 0
%= Liaaa,-1 N/ dv 3z IS
oyttt e y(x — 20)
[Jiang, Wang,
Yang, Zhao]
@ Double box: Contains a 4x4 elliptic block in the sector below the top sector.
?f" | e I, I are standard elliptic integrals. 0 ] 0 0
5 . o _ Fi(s,t, M) F2(s,t,M) 0 0
oo ': %¥0 I3 is an integral of third kind. GM{.!, = ng’ ;. M% (S’O’ ) 0 0
. . . . R2(s,t, M 0 0 O
(Bonciani et al. 1, is chosen s.t. it vanishes in d = 4. (5.2, M)
Primo, Tancredi]
@® Non-planar graph: Contains a 6x6 elliptic block in the sector below the top sector.
— L [ 0 1 00 00
5 11, I are standard elliptic integrals. Fi(s.t) F2(s£) 0 0 0 0 \
r’ ‘N i S . . d=4 R]_(S,t) 0 0 O 0 O
I3 from factorization of PF operator. GMy | = 0 0 00 0 0
. . . R2(s,t 0 0O 0 0 O
Iy, I5, Ig are residues with unit \ (0 ) O 00 0 0 )

leading singularity.

=



Inverse Semi-Simple Part

® This step generalizes the normalization with leading singularities. "afterwards we have pure functions”

[1]

® Take homogeneous diff. eq. in every minimally coupled block ind = d.
The corresponding Wronskian satisfies the same system.
Il,max Il,max
d d

- : = GM(z) : and —W =GM(z)W

Ir,max Ir,max

o TUTI



Inverse Semi-Simple Part

® This step generalizes the normalization with leading singularities. "afterwards we have pure functions”

[1]

® Take homogeneous diff. eq. in every minimally coupled block ind = d.
The corresponding Wronskian satisfies the same system.
Il,max Il,max
d d

Ir,max Ir,max

® Split the Wronskian into a semi-simple (leading singularities) and unipotent (logs) part:

W =W, W, with diwu:éM(z)Wu st.  GM (2)=0 (nilpotent)
Z

@ Splitting is not unique. Normalize diagonal of ( o1 0 0 0 0 0 0 \
: : 00 Y 0 0 0 0 0
unipotent part to be unity. 00 0% 0 0 0 0
® For Calabi-Yau manifolds the nilpotent matrix is known: GMgy=| 0 0 0 0 . 0 0 0
0o 0 0 0 0 Y, 0 O
oo o0 0 0 0 Y O
o0 0 0 0 0 0 1

\oo0o o0 0 0 0 0 0)

@ Use relations from Griffiths transversality to simplify the semi-simple part.
For example for the three-loop banana (K3) we can remove @, in W.

=
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Clean Up

@® There are two clean ups to do. One inside a sector and one between sectors and subsectors:

a) Perform e-rescalings to achieve upper triangular e-form.
b) Remove total derivatives.

c) Introduce new functions, if necessary, for full e-form. These
turn out to be iterated integrals of the functions introduced
in the steps before.

11
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a)
b)

C)

Clean Up

@® There are two clean ups to do. One inside a sector and one between sectors and subsectors:

Perform e-rescalings to achieve upper triangular e-form.

Remove total derivatives.

Introduce new functions, if necessary, for full e-form. These
turn out to be iterated integrals of the functions introduced
in the steps before.

(i) Inside a minimally coupled block:

K3

1 0 0 0 1 0 00
0 1 0 0 0 1 00
0 Ga(2) 1 o |*[o o 10
0 —1G2(2)? —Ga(z) 1 0 g 1
(ii) Between minimally coupled blocks:
Non-planarl
( 1 0 0 0 0 O\
G1(s,t) 1 0 0 0 0
0 0 1 0 00
2G5 (s, 1) 0 0 1 00
0 0 0 0 1 0
\ Ga(s,t)? — QDT Gt g Gusyy 0 1)
11

[1]

[ (2(1—82)(1+82)%)
Giz) = /0 4 = 2 = 162)2 “0)

— ) Z, Gl (Z/)
Ga(z) = /0 ‘ VA =42 (1 = 162") wo(2')

related to integrals of third kind
t

G1i(s,t) = —/ dt’ R1(s,t) wo(s,t")
0

t
G (s, 1) = — / At R2(s.£) wo(s.1')
0

TUTI



Examples

® Example: Triangle graph

Ru=O
d=4—2¢ 18 master integrals
B 9 elliptic top sector
=0 2= s/m with residue
T(z,€) = Thew objects
1 0 O
—%(z + 1)w0(z) 10 Ttot. deri.
o+ (522 — 44z — 76) wo(2)? 0 1
e 0 0
0 0 € Te—scalings
0 € 0
! 0 0
. w0 (2) 1 T—l
| 5(z=8)(z+1) (wo(z) + 2zwy(2)) 7(2—8)(z+ 1)wo(z) 0 ss
0 0 1

z 0 O
' 0 2z 0 CZﬂinitiaLl
T TUTI
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Examples

® So far, we found the e-form for many graphs having different geometries and number of parameters:

[1,2]

’_@- achieved €-form up to five loops (CY four-fold), same form as [Pogel, Wang, Weinzierl]

also two- and three-mass configuration for elliptic case

up to five loops, top sector contains two CYs

2 . . .
L #0 analyzed many triangles with different mass
- configurations and multi-parameter
2
?4750 7‘:=0
. :, 40 double box including all subsectors and topsector
9,;.-0 :

~
(— o - - - o o=

non-planar double box including all subsectors and topsector

® More examples are coming!

. TUTI



Conclusion

® To understand the e-structure of Feynman integrals a "good" e-form of the GM system is essential.
® Understanding the geometries appearing in a Feynman graph is important to achieve e-form.

® We think, that if the splitting of the Wronskian into semi-simple and unipotent part for the relevant
geometries is under control, one can derive an €-form following our procedure.

® Our method is nearly algorithmic. In particular, the steps for a given class of geometries is similar
independent of the explicit geometry, i.e. for all elliptic curves, K3, etc. .
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Conclusion

® To understand the e-structure of Feynman integrals a "good" e-form of the GM system is essential.
® Understanding the geometries appearing in a Feynman graph is important to achieve e-form.

® We think, that if the splitting of the Wronskian into semi-simple and unipotent part for the relevant
geometries is under control, one can derive an €-form following our procedure.

® Our method is nearly algorithmic. In particular, the steps for a given class of geometries is similar
independent of the explicit geometry, i.e. for all elliptic curves, K3, etc. .

® Nevertheless, there are some parts we want to understand better:

@ Better understanding of the initial basis. How to find enough possible candidates?

® What are the properties of the new functions G? Can we predict how many we need?

They are iterated integrals. In elliptic case they are related to integrals of the third kind.

For CYs they have integer expansions (magnetic modular forms). Pole structure?
@ Limitations of our procedure? Can we rigorously prove why our method works?

® Outlook: Use our bases to try to understand the analytic structure of amplitudes associated to

non-trivial geometries.
. TUTI
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