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The amplitudes bootstrap

* Bootstrap method for discovering physics:
x geometry/thought experiments?

J math question about the S-matrix

q get gauge theory, gravity
(“elevator-free” derivation of GR)



The amplitudes bootstrap

* Bootstrap method for discovering physics:
x geometry/thought experiments?

J math question about the S-matrix

q get gauge theory, gravity
(“elevator-free” derivation of GR)

 What is the analogue for string theory?
What is the math question for which string amplitudes are the answer?

e Ultimate goal: Is string theory in some sense unique?



String amplitudes

* What do string amplitudes do?

* Ultraviolet-complete low-energy physics by taming Planck-
scale pathologies in amplitudes.

* Accomplish this by adding a tower of massive higher-spin
degrees of freedom. (Cannot add just one higher-spin state
without making the problem worse. e.g.. CEMZ [1407.5597])
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* What do string amplitudes do?

* Ultraviolet-complete low-energy physics by taming Planck-
scale pathologies in amplitudes.

* Accomplish this by adding a tower of massive higher-spin
degrees of freedom. (Cannot add just one higher-spin state
without making the problem worse. e.g.. CEMZ [1407.5597])

* So string theory answers the question of how to build an amplitude
exchanging higher-spin modes consistently at high energies:
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String amplitudes

* What do string amplitudes do?

* Ultraviolet-complete low-energy physics by taming Planck-
scale pathologies in amplitudes.

* Accomplish this by adding a tower of massive higher-spin
degrees of freedom. (Cannot add just one higher-spin state
without making the problem worse. e.g.. CEMZ [1407.5597])

* So string theory answers the question of how to build an amplitude
exchanging higher-spin modes consistently at high energies:

Veneziano amplitude: (1968)
D(—s)I (1) |

Ay(s,t) =
v(s,t) ['(—s—1) ' How unique is this?

| What is the math question about the
S-matrix to which string amplitudes
are the answer?




Bootstrap and QCD prehistory

* Veneziano’s amplitude was constructed to solve several phenomenological
puzzles of the late 1960s:
* The strong coupling associated with nuclear-mediated processes
made perturbative methods seem impractical (prior to the discovery
of asymptotic freedom)
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* Observations had shown the existence of Regge trajectories in
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Bootstrap and QCD prehistory

* Veneziano’s amplitude was constructed to solve several phenomenological
puzzles of the late 1960s:

* The strong coupling associated with nuclear-mediated processes
made perturbative methods seem impractical (prior to the discovery
of asymptotic freedom)

* Observations had shown the existence of Regge trajectories in
meson spectra, m* « J (Chew-Frautschi plot)

* Dolen-Horn-Schmid duality (1967): “dual resonance”
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Physical constraints

* |n this talk, we will derive a class of four-point scalar amplitudes (i.e., dynamics)
by inputting a spectrum of tree-level exchanged states m2, along with a set of
physical constraints:




Physical constraints

* |n this talk, we will derive a class of four-point scalar amplitudes (i.e., dynamics)
by inputting a spectrum of tree-level exchanged states m2, along with a set of
physical constraints:

* We will find that the dynamics of string theory—the distinctive form of string
amplitudes—arise naturally.

* However, we will find that four-point string amplitudes exist in an infinite space
of new objects that accomplish the same mathematical miracles:
generalizations of Veneziano amplitudes.



Crossing symmetry

* |n this talk, we will derive a class of four-point scalar amplitudes (i.e., dynamics)
by inputting a spectrum of tree-level exchanged states m2, along with a set of
physical constraints:

Colored scalars =—> cyclic invariant amplitude:
A(s,t) = A(t, s)



Polynomial residues

* |n this talk, we will derive a class of four-point scalar amplitudes (i.e., dynamics)
by inputting a spectrum of tree-level exchanged states m2, along with a set of
physical constraints:

Each exchanged state with mass m? exhibits a finite tower of spins,
which we take to run from 0 to n, so that

Rn(t) = Res A(s,t) = Y Apmt™
m=0

—m 2
S=mo,



Polynomial residues

* |n this talk, we will derive a class of four-point scalar amplitudes (i.e., dynamics)
by inputting a spectrum of tree-level exchanged states m2, along with a set of
physical constraints:

Each exchanged state with mass m? exhibits a finite tower of spins,
which we take to run from 0 to n, so that

Rn(t) = Res A(s,t) = Y Apmt™
m=0

—m 2
S=mo,

We considered other polynomials for generalizations of the Coon
amplitude in Cheung, GR [2210.12163], but will leave the bootstrap approach
to arbitrary polynomials to future work.

Non-polynomial residues would describe an infinitely-extended

object; can be of interest, e.qg., for the EFThedron.
Huang, GR [2203.00696]; Caron-Huot, Van Duong [2011.02957]; Arkani-Hamed, Huang, Huang [2012.15849]



High-energy boundedness

* |n this talk, we will derive a class of four-point scalar amplitudes (i.e., dynamics)
by inputting a spectrum of tree-level exchanged states m2, along with a set of
physical constraints:

We assume by fiat that A — 0in the Regge limit:
s — 00, t < mj fixed

Equivalently, no pole at infinity, so we can write a dispersion relation:
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Dual resonance

* |n this talk, we will derive a class of four-point scalar amplitudes (i.e., dynamics)
by inputting a spectrum of tree-level exchanged states m2, along with a set of
physical constraints:

Tree-level exchanges: Im A(s',t) =7 ) (s’ — m2)Rn(t)

n=0




Dual resonance

* Dual resonance is a hallmark of string amplitudes that differentiates them from
field theory:

* We’'re asking: What’s the full space of dual resonant functions?






Integer spectrum bootstrap

e Let’s first consider the case of an integer spectrum:

2 __
m, =mn

* Implementing crossing symmetry in the dual resonant ansatz is a two-variable
problem:

A(S,t) _ Z Rn(t) _ Z Rn(s) _ A(t, S)



Integer spectrum bootstrap

e Let’s first consider the case of an integer spectrum:

2 __
m, =mn

* Implementing crossing symmetry in the dual resonant ansatz is a two-variable

problem:
n P
n=0

— Z ]fz,n—(st) = A(t, s)

* Turn into a single-variable problem by choosing special kinematics,

t=s—k, ke N
Crossing becomes:

A(s,s — k) =A(s —k,5) = Z f: Ry (s)

n— s n+k—s
n=0

k—1
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Integer spectrum bootstrap

o0 k—1
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(finite number of terms,
nopolesat s=n <k



Integer spectrum bootstrap

i Rn(s—k) = Rn_y(s) kz_:l R,(s — k)
n—=s B n—=s
n==k n=0
demanding
nopolesat s=n <k
yields

e

R,(n —k) = R,_r(n), 1<k<n

Caveats:

e Strictly speaking, neither necessary nor sufficient for crossing:

* Not sufficient: We chose special kinematics ¢ = s — k, so crossing could
conceivably hold on that choice but not away from it.

* Not necessary: s-channel representation of the amplitude converges for
t < m¢ or as a residue on generic t. For t € N, could break down.

* We will take the residue constraint above as motivation and see what we
find. All subsequent examples will indeed satisfy this constraint and
converge.



Integer spectrum bootstrap

We have n conditions
R,in—k)=R,_r(n), 1<k<n

on the n + 1 free parameters in the residue ansatz:

R (t) = f: N
m=0



Integer spectrum bootstrap

We have n conditions
R,in—k)=R,_r(n), 1<k<n

on the n + 1 free parameters in the residue ansatz:

R (t) = f: N
m=0

Defining A\, = A\, @nd for brevity writing ! =I'(z + 1) for z € C, we find the
general solution:

Ay t! n!
R, (1) = Z

m! (t —m)! (n —m)!

m=0




Veneziano amplitude

1
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* The Vandermonde identity
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Veneziano amplitude
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Veneziano amplitude

1
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* The Vandermonde identity
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Veneziano amplitude

1

e |etuschoose )\, = —
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* The Vandermonde identity
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then implies

Veneziano amplitude



Hypergeometric amplitude

e | etuschoose )\, = reR




Hypergeometric amplitude

* Letuschoose )\, = : reR

(t+n+r)r!
(t+7)(n+r)

— R, (t) =

* From the definition of the generalized hypergeometric function,
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Hypergeometric amplitude

e | et uschoose )\, = reR

(t+n+r)r!
(t+r)(n+r)!

— R, (t) =

* From the definition of the generalized hypergeometric function,

o

Cl/]_, e o o 7 a/m (al)k ¢ (azm)k Z

the amplitude becomes
= R, (1) 1 1, —s, 1+t+r
A(S’t)_zn_s—_g?)FQ[ 1_8,1+r ,1

n=0

k

* Using a Thomae transformation,

New hypergeometric amplitude



Partial wave unitarity

* In order for our amplitude to correspond to a physical theory, its residues must
obey partial wave unitarity.

e |ater, we’ll be much more general, but as a preliminary check, let’s consider
massless external particles in D = 4 dimensions.
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* In order for our amplitude to correspond to a physical theory, its residues must
obey partial wave unitarity.
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* Unitarity of partial waves requires a,, > 0.

(n,e ™ gi,e
spin-¢ intermediate state



Partial wave unitarity

* In order for our amplitude to correspond to a physical theory, its residues must
obey partial wave unitarity.

e |ater, we’ll be much more general, but as a preliminary check, let’s consider
massless external particles in D = 4 dimensions.

e Partial wave decomposition:

n [(1—£)/2]

2675 (0 + s)1§IntT25(2 — n + 2p) £ 28
ne = (2
ane = (2£+1) —I—n'z Z 1 ) asisi (2l 1 25 + 1))

e

S=

* Unitarity of partial waves requires a,, > 0.

(n,e ™ gi,e
spin-¢ intermediate state
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Hard scattering

* In the high-energy, fixed-angle limit,
s], |t] — oo, t/s fixed

the hypergeometric amplitude exhibits the scaling:

A(S,t) N@B(S,t) + é + B(S,t) — (S—|—t)10g(8—|—t) —Slogs—tlogt—|—
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* In the high-energy, fixed-angle limit,
s], |t] — oo, t/s fixed

the hypergeometric amplitude exhibits the scaling:

A(S,t) N@B(S,t) + % + B(S,t) — (S—|—t)10g(8—|—t) —Slogs—tlogt—|—
S

* In the physical region, cos§ =1+ 2 € [—1,1], one has B < 0, so the amplitude
falls off as a power law ~ r/st, unless » = 0, where the exponential decay of the
string amplitude obtains.



Hard scattering

* In the high-energy, fixed-angle limit,
s], |t] — oo, t/s fixed

the hypergeometric amplitude exhibits the scaling:

A(S,t) N@B(S,t) + % + B(S,t) — (S—|—t)10g(8—|—t) —Slogs—tlogt—|—
S

* In the physical region, cos§ =1+ 2 € [—1,1], one has B < 0, so the amplitude
falls off as a power law ~ r/st, unless » = 0, where the exponential decay of the
string amplitude obtains.

Caron-Huot, Komargodski,

* In the unphysical ¢ > 0 region, B > 0 and we find the scaling:  scier Zhiboedov
[1607.04253]

log A~ (s+t)log(s+t) — slogs —tlogt



Regge limit

* In the Regge limit,

S — 00, t fixed

the hypergeometric amplitude exhibits the scaling:

A(s, 1) ~ s7(51) r J(s. 1) =t 4 ...

T

Scaling fort > 0ort < 0.

* Expected j + ¢t Regge scaling when dressed with external polarizations



A worldsheet interpretation?

Remarkably, the hypergeometric amplitude has an integral representation,
8 1 r 1(1 :ﬂy)t
St—r//da:dy 1—:1:)’5“

reminiscent the Koba-Nielsen form for the Veneziano amplitude,

x—s—l

1 —x)tt!

1
4-point: A%)n:/ dx(
0



A worldsheet interpretation?

Remarkably, the hypergeometric amplitude has an integral representation,
8 1 ’r 1(1 QEy)t
St—r//da:dy 1—:1:)’5“

reminiscent the Koba-Nielsen form for the Veneziano amplitude,

1 1 —s12—1 —845—1(1 _ xy)823+834—851
5-point: A% — / / dzdy 2 Y
P ven = | | rdy (1 — z)s2aT1(1 — y)saatl
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Coon amplitudes

* Historically, string amplitudes predate the realization that the theory was about
strings at all. Exploring amplitudes can lead to new physics, as we’ve seen from
the hypergeometric amplitude.

* Also satisfying our physical constraints is the ¢-deformed generalization of
Veneziano discovered by Coon (1969), unfortunately forgotten for decades:

Citations per year Recent surge of interest:
- * unitarity
Figueroa, Tourkine [2201.12331];
8 Bhardwaj et al. [2212.00764];
Jepsen [2303.02149]

s * string amplitudes with
2 similar properties
. \/\/\_\_/\_/_/\/\ /\ /\/J Maldacena, GR [2207.06426]

e construction and

generalization

Cheung, GR [2210.12163, 2302.12263];
Geiser, Lindwasser [2207.08855, 2210.14920]




g-bootstrapping

e Let’s bootstrap an amplitude with spectrum given by the ¢-deformed integers:
1 —q"
1 —gq

n — [n]q:
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g-bootstrapping

e Let’s bootstrap an amplitude with spectrum given by the ¢-deformed integers:
1 —q"
1 —gq

my, = [n]q —

* Define new auxiliary kinematic variables:

log[1—(1—
=i, _ logl=(—q)1
q T — log g

e Assume dual resonant ansatz:

A(O’, 7_) _ Z R ([T]Q)

n
n—=0 [n o U]Q

— poles at m> = [n],



g-bootstrapping

As before, choose special kinematics:

T=0—k

Imposing crossing A(o,0 — k) = A(oc — k,0)

. 3% Fallr =K
n==k

n — ol

g-generalized residue constraint:

Ry(ln — klg = Rn—r(|nq),

General solution:

Tl ]!

— Ry—x(lo]q) _ Z

T —m],! [n —m],!




Prefactor dressing

* We still have the freedom to dress each term in the sum with a prefactor that
does not change the poles or residues:

T(O'—n) o—Nn

q — 1
m(m+1)
* Doing so, and choosing A = q[ 1 yields a dual resonant, crossing
symmetric amplitude: miq:
Ao, T) = i q " (7' + n)
n=0 [n o U]q n q

Coon amplitude



Chew-Frautschi
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Branch cuts

* At high energies, the Coon amplitude goes like

log A ~ —log(—s) log(—t)

indicating a branch cut with a double log.

* In Maldacena, GR [2207.06426], We built string constructions with exactly the
log A ~ —log(—s) log(—t) form at high energies, so this is physically healthy.




Branch cuts

* At high energies, the Coon amplitude goes like
log A ~ —log(—s) log(—t)

iIndicating a branch cut with a double log.

* In Maldacena, GR [2207.06426], We built string constructions with exactly the
log A ~ —log(—s) log(—t) form at high energies, so this is physically healthy.

* Branch cuts above an accumulation point suggest an ionization process.
Figueroa, Tourkine [2201.12331]

* Recent work has shown an apparent breakdown of unitarity exponentially near
the branch point, but this may possibly be cured by choosing a different
dressing prefactor. Jepsen [2303.02149]




g-hypergeometric amplitude

e Let’s consider a more general choice for the A,;:

. = q—m(Tg+l) +rm [T]q!
" m + 7!

T +n+ 7],
[+l + ],




g-hypergeometric amplitude

e Let’s consider a more general choice for the A,;:

)\ — qw—l—rm [T]q!
" m + 7!

T+ rlgllr]y!
7+ 7lgln + 7]y

— Ru([7]y) =

* Then using a ¢g-Thomae (-Kummer-Whipple) transformation, we have a new class
of crossing symmetric, dual resonant amplitudes:

New g-hypergeometric amplitude



g-hypergeometric amplitude

* Generalizes all of our previous amplitudes:

r A :
: Veneziano
i Coon
! Hypergeometric 3F5
: g-Hypergeometric 3¢9
i
0 EEEE R ® - -
i
| |
—
0 1 g

New g-hypergeometric amplitude
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Partial wave unitarity
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Accumulation points in string theory

 What is the underlying physical interpretation of these amplitudes (e.g., strings)?
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* For example, in Maldacena, GR [2207.06426] We constructed string backgrounds
(scattering open strings attached to a D-brane in AdS) that exhibited various
features seen in the Coon amplitude (accumulation points, high-energy behavior).

* Bootstrap amplitude constructions may therefore point the way toward new
structures within string theory itself.



Conclusions

* We have derived an infinite-parameter family of amplitudes obeying:
e |Lorentz invariance
* Crossing symmetry
* Polynomial residues
* UV boundedness: dual resonance
* Regge spectrum



Conclusions

We have derived an infinite-parameter family of amplitudes obeying:
e Lorentz invariance
e Crossing symmetry
* Polynomial residues
* UV boundedness: dual resonance
* Regge spectrum

For particular choices of the parameters, we get the Veneziano amplitude
and a compelling one-parameter generalization: hypergeometric amplitudes

g-deformation: derived Coon amplitude and ¢-hypergeometric generalization

Partial wave unitarity satisfied in large regions of parameter space



Future directions

Even broader spaces of dual resonant amplitudes?
Higher-point generalization of hypergeometric amplitudes

Systematic analysis of unitary regions of parameter space and critical
dimensions

Underlying physical system giving rise to our new amplitudes







