

Form factor fits

Jonathan Flynn Physics & Astronomy University of Southampton

Flavour@TH 8-12 May 2023

Introduction

- Mainly concerned with semileptonic heavy-to-light decays from lattice perspective
- ... where there is a long extrapolation to cover the physical range of q^2 , squared momentum-transfer to the leptons,
- ... including the low- q^2 region where experimental data is most precise

Semileptonic heavy-to-light meson decay on the lattice

$$\frac{L^{-1}}{\text{finite box}} \ll \text{physics of interest} \ll \frac{a^{-1}}{\text{lattice spacing}}$$

Kinematics: example $B \rightarrow \pi l v$

$$q_{\rm max}^2 = (m_B - m_\pi)^2 \approx 26.4 \,{\rm GeV}^2$$

Lowest Fourier modes on L = 4 fm lattice

$ \vec{n}^2 $	0	1	2	3	4
E_{π}/GeV	0.139	0.338	0.457	0.551	0.631
q^2/GeV^2	26.4	24.3	23.1	22.1	21.2

Limited coverage of q^2 range

RBC-UKQCD PRD91 074510 2015¹

Exploiting dispersion relations to control q^2 extrapolation

Okubo PRD3 2897 1971², PRD4 725 1971³; Okubo and Shih PRD4 2020 1971⁴; Bourrely, Machet, de Rafael NPB189 157 1981⁵; Boyd, Grinstein, Lebed PLB353 306 1995⁶, NPB461 493 1996⁷, PRD56 6895 1997⁸; Lellouch NPB479 353 1996⁹

Extrapolation in q^2 , *z* transformation

 Unitarity/analyticity bounds via dispersion relation → fast-converging model-independent series expansion in z

- Illustrated for $B_s \rightarrow K$ where start of cut and threshold for $B_s K$ production differ
- Integrate over arc of unit circle $[-\alpha_{B_sK}, \alpha_{B_sK}]$ where $\alpha_{B_sK} = \arg[z(t_+)]$ Gubernari et al 2021, 2022^{10,11}, Blake et al 2022¹²

BGL expansion

$$f_X(q_i^2) = \frac{1}{B_X(q_i^2)\phi_X(q_i^2)} \sum_{n=0}^{K_X-1} a_{X,n} \, z(q_i^2)^n = Z_{XX,in} a_{X,n}$$

Two constraints

- Kinematic: $f_+(0) = f_0(0)$ (eliminates one of the $a_{X,n}$)
- Unitarity:

$$\frac{1}{2\pi i} \oint_{|z|=1} \frac{dz}{z} \theta_{\alpha} \left| B_{X}(q^{2}) \phi_{X}(q^{2}) f_{X}(q^{2}) \right|^{2} \leq 1$$

where
$$\theta_{\alpha} = \theta(\alpha - |\arg(z)|)$$

 $a_{X,i}\langle z^{i}|z^{j}\rangle_{\alpha}a_{X,j} \leq 1$
 $\langle z^{i}|z^{j}\rangle_{\alpha} = \frac{1}{2\pi} \int_{-\alpha}^{\alpha} d\phi(z^{*})^{i}z^{j}|_{z=e^{i\phi}} = \begin{cases} \frac{\sin(\alpha(i-j))}{\pi(i-j)} & i \neq j, \\ \frac{\alpha}{\pi} & i = j \end{cases}$

JF, Jüttner, Tsang 2303.11285¹³

BGL: frequentist fit

Input (eg lattice ff)

$$\begin{aligned}
\mathbf{f}^{T} &= (\mathbf{f}_{+}, \mathbf{f}_{0})^{T} \\
&= (f_{+}(q_{0}^{2}), f_{+}(q_{1}^{2}), \dots, f_{+}(q_{N_{+}-1}^{2}), f_{0}(q_{0}^{2}), f_{0}(q_{1}^{2}), \dots, f_{0}(q_{N_{0}-1}^{2})) \\
\end{aligned}$$
Output (BGL params)

$$\mathbf{a}^{T} &= (\mathbf{a}_{+}, \mathbf{a}_{0})^{T} &= (a_{+,0}, a_{+,1}, \dots, a_{+,K_{+}-1}, a_{0,1}, a_{0,2}, \dots, a_{0,K_{0}-1}) \\
\end{aligned}$$
Frequentist fit

$$\chi^{2}(\mathbf{a}, \mathbf{f}) &= (\mathbf{f} - Z\mathbf{a})^{T}C_{\mathbf{f}}^{-1}(\mathbf{f} - Z\mathbf{a}) \\$$
Frequentist result

$$\mathbf{a} &= (Z^{T}C_{\mathbf{f}}^{-1}Z)^{-1}ZC_{\mathbf{f}}^{-1}\mathbf{f}, \qquad C_{\mathbf{a}} &= (Z^{T}C_{\mathbf{f}}^{-1}Z)^{-1}
\end{aligned}$$

- Z contains BGL ansatz and kinematic constraint
- Written here using constraint to eliminate $a_{0,0}$:

$$a_{0,0} = \frac{B_0(0)\phi_0(0)}{B_+(0)\phi_+(0)} \sum_{k=0}^{K_+-1} a_{+,k} z(0)^k - \sum_{k=1}^{K_0-1} a_{0,k} z(0)^k$$

Frequentist fit practicalities

• Truncation: limited number of (synthetic) input form-factor points, plus kinematic constraint, limits number of terms in *z*-expansion

$$K_{+} + K_{0} - 1 < N_{+} + N_{0}$$

- Truncation of series shows up in:
 - Varying locations of the synthetic points shows large variation in $f_{+,0}(0)$ values
 - Varying t_0 in *z*-transformation shows large variation in $f_{+,0}(0)$ values

Functional matching FNAL-MILC PRD92 014024 2015¹⁴, FNAL-MILC PRD100 034501 2019¹⁵

• Lattice calculation typically gives a parametrised function for a form factor over a limited range, often linear in the parameters

$$f_{\text{lat}}(z) = c_i \phi_i(z)$$
 $z_1 \le z \le z_2$

• You know the covariance of $f_{lat}(z)$ and $f_{lat}(z')$

$$K(z, z') = \operatorname{cov}(f_{\mathsf{lat}}(z)f_{\mathsf{lat}}(z')) = \phi_i(z)\operatorname{cov}(c_ic_j)\phi_j(z')$$

• Match to *z*-expansion (eg BGL or BCL \bigcirc BCL \bigcirc), $f(z, \mathbf{a})$, in $z_1 \le z \le z_2$ by minimising

$$\chi_{\text{lat}}^2 = \int_{z_1}^{z_2} dz \int_{z_1}^{z_2} dz' [f_{\text{lat}}(z) - f(z, \mathbf{a})] K^{-1}(z, z') [f_{\text{lat}}(z') - f(z', \mathbf{a})]$$

- Limited number of parameters c_i shows up as zero eigenvalues of the linear operator defined by K(z, z')
- Regulate by discarding singular modes before inverting *K*

Functional matching: $B_s \rightarrow K \ell v$

- BCL z-fits with K_{+,0} = 4 and kinematic constraint
- χ^2_{lat} 's frequentist interpretation unclear

Dispersive matrix bounds

- determine f(t) with $f(t_i)$ known at positions t_i ($t = q^2$)
- let $F(t) = B(t)\phi(t)f(t)$ and write $F^{T} = (F_0, F_1, \dots, F_N)$ with $F_0 = F(t)$ and $F_i = F(t_i)$
- define inner product

$$\langle g|h\rangle = \frac{1}{2\pi i} \int_{|z|=1} \bar{g}(z)h(z)$$

and

$$g_t(z) \equiv \frac{1}{1 - \overline{z}(t)z}$$
 with $\langle g_t | h \rangle = h(t)$

• build Gram matrix *M* of inner products of $F, g_t, g_{t_1}, g_{t_2}, \ldots, g_{t_N}$

$$M = \begin{bmatrix} \langle F | F \rangle & F^{\mathsf{T}} \\ F & G \end{bmatrix}$$

- *G* is Gram matrix of inner products of $g_t, g_{t_1}, \ldots, g_{t_N}$
- det $M = \det G \times (\langle F | F \rangle F^{\mathsf{T}} G^{-1} F) \ge 0$ with det $G \ge 0$.
- dispersion relation $\langle F|F \rangle \leq \chi$ gives

$$\chi - F^{\mathsf{T}} G^{-1} F \geq 0$$

quadratic inequality for F_0 and hence f(t)

Dispersive matrix method results

- plots from JHEP 08 022 2022¹⁶ top: $B \rightarrow \pi$ RBC-UKQCD 15¹ FNAL-MILC 15¹⁴ bottom: $Bs \rightarrow K$ HPQCD 14¹⁷, RBC-UKQCD 15¹, FNAL-MILC 19¹⁵
- χ's from lattice-computed current-current correlators
- indirect implementation of kinematic constraint
- use input data from different sources by combining form-factors at common q^2 points
- lacks frequentist interpretation

Di Carlo et al PRD104 054502 2021¹⁸; Martinelli et al PRD104 094512 2021¹⁹, PRD105 034503 2022²⁰, JHEP 08 022 2022¹⁶, PRD106 093002 2022²¹

$f_+(0) = f_0(0)$ constraint in DM method

$f_+(0) = f_0(0)$ constraint in DM method 2

- left: variation of upper and lower bounds for $f_{+,0}(15 \text{ GeV}^2)$ for $f_{\text{lo}}^* \le f^* \le f_{\text{up}}^*$
- above: f_{+,0} bounds for different treatments of inner bootstrap. f₀ points shifted down to separate them from f₊ at low q²

Bayesian BGL form factor fit

- Frequentist fit
 - $N_{dof} = N_{data} N_{params} \ge 1$ means in practice truncation of z expansion at low order
 - induced systematic
- Bayesian fit [RBC-UKQCD 2303.11280²²; JF, Jüttner, Tsang 2303.11285¹³]
 - aim to fit full *z* expansion (no truncation)
 - need regulator to control higher-order coefficients use unitarity constraint
 - compute (functions of) *z*-expansion coefficients as expectation values

$$\langle g(\mathbf{a})
angle = N \int d\mathbf{a} \, g(\mathbf{a}) \, \pi(\mathbf{a}|\mathbf{f}, C_{\mathbf{f}}) \, \pi_{\mathbf{a}}$$

with probability for parameters given model and data

$$\pi(\mathbf{a}|\mathbf{f}, C_{\mathbf{f}}) \propto \exp\left(-\frac{1}{2}\chi^{2}(\mathbf{a}, \mathbf{f})\right) \quad \text{where} \quad \chi^{2}(\mathbf{a}, \mathbf{f}) = (\mathbf{f} - Z\mathbf{a})^{T}C_{\mathbf{f}}^{-1}(\mathbf{f} - Z\mathbf{a})$$

and prior knowledge from unitarity constraint

$$\pi_{\mathbf{a}} \propto \theta \left(1 - |\mathbf{a}_{+}|_{\alpha}^{2}\right) \theta \left(1 - |\mathbf{a}_{0}|_{\alpha}^{2}\right)$$

Bayesian BGL form factor fit

- use MC integration: sample **a** from multivariate normal and drop samples incompatible with unitarity
- in practice, low probability to satisfy unitarity when K_+ and K_0 large
- modify

$$\pi(\mathbf{a}|\mathbf{f}_{p}, C_{\mathbf{f}_{p}}) \pi_{\mathbf{a}}(\mathbf{a}_{p}|M) \propto \theta(\mathbf{a}) \exp\left(-\frac{1}{2}(\mathbf{f}_{p} - Z\mathbf{a})^{T}C_{\mathbf{f}_{p}}^{-1}(\mathbf{f}_{p} - Z\mathbf{a}) - \frac{1}{2}\mathbf{a}^{T}\frac{M}{\sigma^{2}}\mathbf{a}\right)$$

- choose *M* such that $\mathbf{a}^T M \mathbf{a} \le 2$ in presence of kinematic constraint
- draw random number
- correct with accept-reject with probability

$$p \leq \frac{\exp(-1/\sigma^2)}{\exp(-\mathbf{a}^T \frac{M}{2\sigma^2} \mathbf{a})}$$

Bayesian $(K_+, K_0) = (5, 5)$ fit for HPQCD 14 data

- Frequentist and Bayesian agree when comparison possible
- Frequentist provides *p*-value; no quality of fit for Bayesian
- Unitarity constraint stabilises higher orders BGL fit without truncation coeffts
- Stat error on low-order coeffts a little larger than for low-order frequentist fit (Bayes allows more freedom in functional form)

Easy to combine data: $B_s \rightarrow K \ell v$

Bayesian $(K_+, K_0) = (5, 5)$ fit for HPQCD 14, FNAL-MILC 2019 and RBC-UKQCD 23 data HPQCD PRD90 054506 2014¹⁷ FNAL-MILC PRD100 034501 2019¹⁵ RBC-UKQCD 2303.11280²²

Combine with non-lattice data: eg sum rules, experiment

Bayesian $(K_+, K_0) = (5, 5)$ fit for HPQCD 14, RBC-UKQCD 23 and sum rule data HPQCD PRD90 054506 2014¹⁷, RBC-UKQCD 2303.11280²², Khodjamirian, Rusov JHEP 08 112 2017²³

Relation to dispersive matrix approach

Bayesian inference and dispersive matrix approach applied to our own data RBC-UKQCD 2303.11280²²

 $B \rightarrow \pi l \nu$

FNAL-MILC PRD92 014024 2015¹⁴, RBC-UKQCD PRD91 074510 2015¹, JLQCD PRD106 054502 2022²⁴

Self-consistency in z-expansions Simons, Gustafson, Meurice 2304.13045²⁶

- Perfect knowledge of an analytic function on one part of real axis uniquely determines it on another part
- Extend (approximate) polynomial determined in high-z region to all z: f^{high}(z). Similarly for for low-z region: f^{low}(z).
- Use discrepancy $f^{\text{high}}(z) - f^{\text{low}}(z)$ over some range of *z* to devise a measure of self-consistency

- 2nd (left) or 3rd (right) order fits to z polys in BGL fits to Belle $B \rightarrow D$ data PRD93 032006 2016²⁵
- blue: high-z fit, green: low-z fit

 $B_s \rightarrow K \ell \nu$: extrapolation of lattice data

$$f_X(E_K, m_\pi, a) = \frac{1}{E_K + \Delta_X} \left(d_{X,0} + c_{X,1} E_K + c_{X,2} E_K^2 + d_{X,1} a^2 + d_{X,2} L(m_\pi) \right)$$

- $\Delta = m_{B^*} m_{B_s}$ where m_B^* is $\overline{b}u$ flavour state with $J^P = 1^-(0^+)$ for $f_+(f_0)$
- Form factors $f_{\parallel,\perp}$ easier to extract on lattice

$$f_{+}(q^{2}) = \frac{1}{\sqrt{2m_{B_{s}}}} \Big[f_{\parallel}(E_{K}) + (m_{B_{s}} - E_{K}) f_{\perp}(E_{K}) \Big]$$
$$f_{0}(q^{2}) = \frac{\sqrt{2m_{B_{s}}}}{m_{B_{s}}^{2} - m_{K}^{2}} \Big[(m_{B_{s}} - E_{K}) f_{\parallel}(E_{K}) + (E_{K}^{2} - m_{K}^{2}) f_{\perp}(E_{K}) \Big]$$

- Chiral/continuum extrapolation in the past done for $f_{\parallel,\perp}$, then converted, assuming $f_{\parallel(\perp)}$ dominated by $f_{0(+)}$. FNAL-MILC PRD100 034501 2019¹⁵, RBC-UKQCD PRD91 074510 2015¹
- Now chiral/continuum extrapolation for $f_{+,0}$ RBC-UKQCD 2303.11280²²

 $B_s \rightarrow K \ell \nu$: extrapolation of lattice data 2

- $f_{\parallel,\perp}$ vs $f_{+,0}$ makes a difference at low q^2 in RBC-UKQCD 23²² data
- Helps explain differences in subsequent extrapolations to $q^2 = 0$?

Summary

- Aim for truncation-independence in z fits
- Bayesian inference
 - unitarity constraint built in
 - kinematic constraint directly implemented
 - easy to combine theory and experimental input
 - easy-to-use output (a set of BGL *z*-fit coefficients and their correlations)

Backup

z transformation

Let $t = q^2$ $z(t; t_*, t_0) = \frac{\sqrt{t_* - t} - \sqrt{t_* - t_0}}{\sqrt{t_* - t} + \sqrt{t_* - t_0}}.$

- Maps $q^2 = t$ plane, with cut along $t \ge t_*$, onto disk |z| < 1
- *t*_{*} is threshold for two-particle production for lowest-mass two-particle state with correct quantum numbers
- Transformation takes cut $t_* \le t < \infty$ onto |z| = 1 and takes $t_* > t > -\infty$ onto (-1, 1)
- $z(t_0; t_*, t_0) = 0$. Choose t_0 to fix range of z corresponding to $0 \le q^2 = t \le t_-$
- To symmetrize *z*-range around the origin:

$$t_0 = t_* - \sqrt{t_*(t_* - t_-)}$$

BCL parametrisation Bourrely, Caprini, Lellouch PRD79 013008 200927

$$f_{+}(q^{2}) = \frac{1}{1 - q^{2}/m_{B^{*}(1^{-})}^{2}} \sum_{k=0}^{K_{+}-1} b_{k}^{+} \left[z^{k} - (-1)^{k} - K_{+} \frac{k}{K_{+}} z^{K_{+}} \right]$$
$$f_{0}(q^{2}) = \frac{1}{1 - q^{2}/m_{B^{*}(0^{+})}^{2}} \sum_{k=0}^{K_{0}-1} b_{k}^{0} z^{k}$$

- $1/(1 q^2/m_{B^*(1^-)}^2)$ in f_+ accounts for sub-threshold pole
- pole factors ensure $f(q^2) \sim 1/q^2$ at large q^2
- ensure correct threshold behaviour near start of cut for f₊
- form used in FNAL-MILC PRD100 034501 2019¹⁵

HPQCD 14 – \mathbf{a}_+

K_+	K_0	$a_{+,0}$	$a_{+,1}$	$a_{+,2}$	$a_{+,3}$	$a_{+,4}$	$a_{+,5}$	$a_{+,6}$	$a_{+,7}$	$a_{+,8}$	$a_{+,9}$
2	2	0.0270(12)	-0.0792(49)	-	-	-	-	-	-	× .	-
2	3	0.0273(13)	-0.0761(63)	× .	-	-	-	-	-	× .	-
3	2	0.0257(14)	-0.0805(49)	0.069(30)	-	-	-	-	-	H	-
3	3	0.0261(14)	-0.0728(64)	0.096(34)	-	-	-	-	-	-	-
3	4	0.0261(14)	-0.0728(76)	0.096(39)	-	-	-	-	-	-	-
4	3	0.0261(14)	-0.0729(68)	0.096(35)	0.008(90)	-	-	-	-	-	-
4	4	0.0261(14)	-0.0730(77)	0.091(62)	-0.02(20)	-	-	-	-	× .	-
5	5	0.0262(15)	-0.0735(79)	0.084(67)	-0.03(19)	0.03(68)	-	-	-	-	-
6	6	0.0261(14)	-0.0735(79)	0.086(69)	-0.03(19)	-0.00(64)	0.01(65)	-	-	-	-
7	7	0.0262(14)	-0.0732(84)	0.088(69)	-0.02(18)	0.01(65)	0.02(73)	-0.03(70)	-	-	-
8	8	0.0261(14)	-0.0732(80)	0.089(72)	-0.02(18)	-0.00(66)	0.03(86)	-0.04(90)	0.03(73)	-	-
9	9	0.0261(14)	-0.0729(84)	0.095(75)	-0.02(19)	-0.04(68)	0.1(1.0)	-0.1(1.2)	0.1(1.1)	-0.06(79)	-
10	10	0.0261(14)	-0.0726(89)	0.101(79)	-0.01(20)	-0.09(73)	0.2(1.3)	-0.3(1.7)	0.2(1.8)	-0.2(1.4)	0.08(87)

 $HPQCD \ 14-a_0$

K_{+}	K_0	$a_{0,0}$	$a_{0,1}$	$a_{0,2}$	$a_{0,3}$	$a_{0,4}$	$a_{0,5}$	$a_{0,6}$	$a_{0,7}$	$a_{0,8}$	$a_{0,9}$
2	2	0.0883(44)	-0.250(17)	-	-	-	H.	-	-	-	-
2	3	0.0880(44)	-0.243(19)	0.052(65)	-	-	-	-	-		-
3	2	0.0907(46)	-0.240(17)	-	-	-	-	-	-	-	-
3	3	0.0906(44)	-0.215(22)	0.137(73)	-	-	÷.	-	-		-
3	4	0.0907(47)	-0.215(22)	0.14(11)	-0.01(31)	-	-	-	-	-	-
4	3	0.0907(45)	-0.214(22)	0.139(72)	-	-	-	-	-	H	-
4	4	0.0907(46)	-0.215(25)	0.12(19)	-0.08(60)	-	-	-	-	-	-
5	5	0.0909(46)	-0.218(25)	0.10(19)	-0.12(55)	0.04(63)	Ξ.	-	-	-	-
6	6	0.0907(45)	-0.217(25)	0.10(19)	-0.11(53)	0.06(66)	-0.02(66)	-	-	-	-
7	7	0.0907(46)	-0.217(26)	0.11(20)	-0.08(51)	0.03(73)	0.03(81)	-0.04(70)	-	-	-
8	8	0.0908(46)	-0.217(25)	0.11(20)	-0.08(50)	-0.01(84)	0.1(1.0)	-0.09(96)	0.08(74)	-	-
9	9	0.0907(46)	-0.215(25)	0.13(22)	-0.05(50)	-0.06(95)	0.2(1.4)	-0.2(1.5)	0.1(1.2)	-0.05(82)	-
10	10	0.0907(46)	-0.214(27)	0.15(24)	-0.03(49)	-0.2(1.1)	0.4(1.8)	-0.5(2.2)	0.4(2.1)	-0.3(1.6)	0.13(90)

Combine data

Combine lattice data

К+	K ₀	<i>a</i> _{+,0}	a _{+,1}	a _{+,2}	a _{+,3}	<i>a</i> _{+,4}	р	$\chi^2/N_{ m dof}$	$N_{ m dof}$
2	2	0.02641(58)	-0.0824(26)				0.00	5.15	14
2	3	0.02668(68)	-0.0811(31)				0.00	5.50	13
3	2	0.02477(68)	-0.0829(26)	0.054(12)			0.00	3.95	13
3	3	0.02534(73)	-0.0792(31)	0.062(12)			0.00	3.89	12
3	4	0.02534(73)	-0.0781(34)	0.067(14)			0.00	4.19	11
4	3	0.02535(73)	-0.0776(38)	0.074(20)	0.023(30)		0.00	4.19	11
4	4	0.02592(97)	-0.033(50)	0.69(69)	2.1(2.3)		0.00	4.53	10
5	5	0.0266(10)	0.052(65)	2.21(97)	11.1(5.6)	17.2(15.1)	0.00	5.04	8
								21	
К+	K ₀	<i>a</i> _{0,0}	<i>a</i> _{0,1}	<i>a</i> _{0,2}	a _{0,3}	<i>a</i> _{0,4}	р	$\chi^2/N_{ m dof}$	N _{dof}
<i>K</i> + 2	<i>К</i> 0 2	<i>a</i> _{0,0} 0.0854(17)	a _{0,1} -0.2565(75)	a _{0,2}	<i>a</i> _{0,3}	<i>a</i> _{0,4}	р 0.00	$\frac{\chi^2/N_{\rm dof}}{5.15}$	N _{dof} 14
<i>K</i> + 2 2	<i>K</i> ₀ 2 3	<i>a</i> _{0,0} 0.0854(17) 0.0856(18)	<i>a</i> _{0,1} –0.2565(75) –0.2527(91)	<i>a</i> _{0,2} 0.021(27)	a _{0,3}	a _{0,4}	<i>p</i> 0.00 0.00	$\chi^2/N_{\rm dof}$ 5.15 5.50	<i>N</i> _{dof} 14 13
<i>K</i> ₊ 2 2 3	<i>K</i> ₀ 2 3 2	<i>a</i> _{0,0} 0.0854(17) 0.0856(18) 0.0858(18)	<i>a</i> _{0,1} -0.2565(75) -0.2527(91) -0.2501(77)	a _{0,2} 0.021(27)	a _{0,3}	a _{0,4}	<i>p</i> 0.00 0.00 0.00	<u>χ²/N_{dof}</u> 5.15 5.50 3.95	N _{dof} 14 13 13
<i>K</i> ₊ 2 3 3	<i>K</i> ₀ 2 3 2 3	<i>a</i> _{0,0} 0.0854(17) 0.0856(18) 0.0858(18) 0.0864(18)	<i>a</i> _{0,1} -0.2565(75) -0.2527(91) -0.2501(77) -0.2379(95)	<i>a</i> _{0,2} 0.021(27) 0.061(28)	a _{0,3}	a _{0,4}	<i>p</i> 0.00 0.00 0.00 0.00	χ^2/N_{dof} 5.15 5.50 3.95 3.89	N _{dof} 14 13 13 12
<i>K</i> ₊ 2 2 3 3 3	<i>K</i> ₀ 2 3 2 3 4	<i>a</i> _{0,0} 0.0854(17) 0.0856(18) 0.0858(18) 0.0864(18) 0.0869(19)	<i>a</i> _{0,1} -0.2565(75) -0.2527(91) -0.2501(77) -0.2379(95) -0.231(13)	<i>a</i> _{0,2} 0.021(27) 0.061(28) 0.067(29)	-0.08(10)	a _{0,4}	p 0.00 0.00 0.00 0.00 0.00	χ^2/N_{dof} 5.15 5.50 3.95 3.89 4.19	N _{dof} 14 13 13 12 11
<i>K</i> ₊ 2 3 3 3 4	<i>K</i> ₀ 2 3 2 3 4 3	<i>a</i> _{0,0} 0.0854(17) 0.0856(18) 0.0858(18) 0.0864(18) 0.0869(19) 0.0869(19)	$a_{0,1}$ -0.2565(75) -0.2527(91) -0.2501(77) -0.2379(95) -0.231(13) -0.229(15)	<i>a</i> _{0,2} 0.021(27) 0.061(28) 0.067(29) 0.091(48)	a _{0,3}	a _{0,4}	p 0.00 0.00 0.00 0.00 0.00	χ^2/N_{dof} 5.15 5.50 3.95 3.89 4.19 4.19	N _{dof} 14 13 13 12 11 11
<i>K</i> ₊ 2 3 3 4 4	<i>K</i> ₀ 2 3 2 3 4 3 4	<i>a</i> _{0,0} 0.0854(17) 0.0856(18) 0.0858(18) 0.0864(18) 0.0869(19) 0.0869(19) 0.0887(27)	$a_{0,1}$ -0.2565(75) -0.2527(91) -0.2501(77) -0.2379(95) -0.231(13) -0.229(15) -0.08(17)	<i>a</i> _{0,2} 0.021(27) 0.061(28) 0.067(29) 0.091(48) 2.2(2.4)	<i>a</i> _{0,3} -0.08(10) 7.0(7.9)	a _{0,4}	p 0.00 0.00 0.00 0.00 0.00 0.00	$\frac{\chi^2/N_{\rm dof}}{5.15}$ 5.50 3.95 3.89 4.19 4.19 4.53	N _{dof} 14 13 13 12 11 11 10

Determining |V_{ub}|

Combining LHCb results [LHCb2021²⁸] for

$$R_{\text{BF},[q_{\min}^2,q_{\max}^2]} = \frac{\int_{q_{\min}^2}^{q_{\max}^2} \frac{d\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_{\mu})}{dq^2}}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_{\mu})}$$

in low ($q^2 \le 7 \text{ GeV}^2$), high ($q^2 \ge 7 \text{ GeV}^2$) and combined bins

$$R_{\text{BF,low}} = 1.66(08)(09) \times 10^{-3}$$

$$R_{\text{BF,high}} = 3.25(21)\binom{+18}{-19} \times 10^{-3}$$

$$R_{\text{BF,all}} = 4.89(21)\binom{+24}{-25} \times 10^{-3}$$

and for [LHCb2020²⁹]

$$\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu) = 2.49(12)(21) \times 10^{-2}$$

Find $|V_{ub}|$ from

$$|V_{ub}| = \sqrt{\frac{R_{\text{BF,bin}} \mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_{\mu})}{\tau_{B_s^0} \Gamma_{0,\text{bin}}(B_s \to K \ell \nu)}}$$

where $\Gamma_{0,bin} = \Gamma_{bin} / |V_{ub}|^2$. Using RBC-UKQCD23 (K_+, K_0) = (5,5)

$$|V_{ub}| = \begin{cases} 4.10(240) \times 10^{-3} & \text{low} \\ 3.76(55) \times 10^{-3} & \text{high} \\ 3.78(61) \times 10^{-3} & \text{all} \end{cases}$$

For comparison

$$|V_{ub}|_{\text{exclusive}}^{\text{FLAG21}} = 3.74(17) \times 10^{-3} [1, 14, 30-34]$$

R ratios for LFU tests

$$R(P) = \frac{\int_{m_{\tau}^2}^{q_{\max}^2} dq^2 \frac{d\Gamma(B_{(s)} \to P\tau\bar{v}_{\tau})}{dq^2}}{\int_{m_{\ell}^2}^{q_{\max}^2} dq^2 \frac{d\Gamma(B_{(s)} \to P\ell\bar{v}_{\ell})}{dq^2}}$$

$$R^{\text{new}}(P) = \frac{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 \frac{d\Gamma(B_{(s)} \to P\tau\bar{\nu}_{\tau})}{dq^2}}{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 \frac{\omega_{\tau}(q^2)}{\omega_{\ell}(q^2)} \frac{d\Gamma(B_{(s)} \to P\ell\bar{\nu}_{\ell})}{dq^2}}$$

- Adopt idea proposed for B_(s) → V decays [Isidori-Sumensari³⁵]
 - Common integration range; $q_{\min}^2 \ge m_{\tau}^2$ [Freytsis et al³⁶, Bernlochner et al³⁷, Soni³⁸]
 - *Same* weights for vector parts in integrands for τ and ℓ

Write

$$\frac{d\Gamma(B_{(s)} \rightarrow P\ell v)}{dq^2} = \Phi \,\omega_\ell(q^2) \left[F_V^2 + (F_S^\ell)^2\right]$$

$$\begin{split} \Phi &= \eta \frac{G_F^2 |V_{xb}|^2}{24\pi^3} \\ \omega_\ell &= \left(1 - \frac{m_\ell^2}{q^2}\right)^2 \left(1 + \frac{m_\ell^2}{2q^2}\right) \\ F_V^2 &= \vec{k}^3 |f_+(q^2)|^2 \\ [F_S^\ell)^2 &= \frac{3}{4} |\vec{k}| \frac{m_\ell^2}{m_\ell^2 + 2q^2} \frac{(M^2 - m^2)^2}{M^2} |f_0(q^2)|^2 \end{split}$$

R ratios for LFU tests

$$R(P) = \frac{\int_{m_{\tau}^2}^{q_{\max}^2} dq^2 \frac{d\Gamma(B_{(s)} \to P\tau\bar{v}_{\tau})}{dq^2}}{\int_{m_{\ell}^2}^{q_{\max}^2} dq^2 \frac{d\Gamma(B_{(s)} \to P\ell\bar{v}_{\ell})}{dq^2}}$$

$$R^{\text{new}}(P) = \frac{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 \frac{d\Gamma(B_{(s)} \to P\tau \overline{\nu}_{\tau})}{dq^2}}{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 \frac{\omega_{\tau}(q^2)}{\omega_{\ell}(q^2)} \frac{d\Gamma(B_{(s)} \to P\ell \overline{\nu}_{\ell})}{dq^2}}$$

- Adopt idea proposed for $B_{(s)} \rightarrow V$ decays [Isidori-Sumensari³⁵]
 - Common integration range; $q_{\min}^2 \ge m_{\tau}^2$ [Freytsis et al³⁶, Bernlochner et al³⁷, Soni³⁸]
 - *Same* weights for vector parts in integrands for τ and ℓ

Write

$$\frac{d\Gamma(B_{(S)} \rightarrow P\ell\nu)}{dq^2} = \Phi \,\omega_\ell(q^2) \left[F_V^2 + (F_S^\ell)^2\right]$$

• If drop scalar contribution, $(F_S^\ell)^2$, in denominator $(m_\ell^2/2q^2 \le m_\mu^2/2m_\tau^2 = 0.002)$ expect

$$R^{\text{new,SM}}(P) = 1 + \frac{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 \,\omega_{\tau}(q^2) (F_S^{\tau})^2}{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 \,\omega_{\tau}(q^2) F_V^2}$$

References I

- [1] JM Flynn et al. (RBC, UKQCD), $B \rightarrow \pi \ell v$ and $B_s \rightarrow K \ell v$ form factors and $|V_{ub}|$ from 2+1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks, Phys. Rev. D **91**, 074510 (2015), arXiv:1501.05373 [hep-lat].
- [2] S Okubo, Exact bounds for k-l-3 decay parameters, Phys. Rev. D 3, 2807–2813 (1971).
- [3] S Okubo, New improved bounds for k-l-3 parameters, Phys. Rev. D 4, 725–733 (1971).
- [4] S Okubo and IF Shih, Exact inequality and test of chiral sw(3) theory in k-l-3 decay problem, Phys. Rev. D 4, 2020–2029 (1971).
- [5] C Bourrely et al., Semileptonic Decays of Pseudoscalar Particles ($M \rightarrow M' \ell v_{\ell}$) and Short Distance Behavior of Quantum Chromodynamics, Nucl. Phys. B **189**, 157–181 (1981).
- [6] CG Boyd et al., Model independent extraction of |V(cb)| using dispersion relations, Phys. Lett. B 353, 306–312 (1995), arXiv:hep-ph/9504235.
- [7] CG Boyd et al., Model independent determinations of $\overline{B} \rightarrow D\ell \overline{v}$, $D^*\ell \overline{v}$ form-factors, Nucl. Phys. B **461**, 493–511 (1996), arXiv:hep-ph/9508211.
- CG Boyd et al., Precision corrections to dispersive bounds on form-factors, Phys. Rev. D 56, 6895–6911 (1997), arXiv:hep-ph/9705252.
- L Lellouch, Lattice constrained unitarity bounds for anti-B0 —> pi+ lepton- anti-lepton-neutrino decays, Nucl. Phys. B 479, 353–391 (1996), arXiv:hep-ph/9509358.

References II

- [10] N Gubernari et al., Non-local matrix elements in $B_{(s)} \rightarrow \{K^{(*)}, \phi\}\ell^+\ell^-$, JHEP **02**, 088 (2021), arXiv:2011.09813 [hep-ph].
- [11] N Gubernari et al., Improved theory predictions and global analysis of exclusive $b \rightarrow s\mu^+\mu^-$ processes, JHEP **09**, 133 (2022), arXiv:2206.03797 [hep-ph].
- [12] T Blake et al., Dispersive bounds for local form factors in $\Lambda_b \rightarrow \Lambda$ transitions, (2022), arXiv:2205.06041 [hep-ph].
- [13] JM Flynn et al., Bayesian inference for form-factor fits regulated by unitarity and analyticity, (2023), arXiv:2303.11285 [hep-ph].
- [14] JA Bailey et al. (Fermilab Lattice, MILC), $|V_{ub}|$ from $B \rightarrow \pi \ell \nu$ decays and (2+1)-flavor lattice QCD, Phys. Rev. D 92, 014024 (2015), arXiv:1503.07839 [hep-lat].
- [15] A Bazavov et al. (Fermilab Lattice, MILC), $B_s \rightarrow K\ell v$ decay from lattice QCD, Phys. Rev. D **100**, 034501 (2019), arXiv:1901.02561 [hep-lat].
- [16] G Martinelli et al., Exclusive semileptonic $B \rightarrow \pi \ell v_{\ell}$ and $B_s \rightarrow K \ell v_{\ell}$ decays through unitarity and lattice QCD, (2022), arXiv:2202.10285 [hep-ph].
- [17] CM Bouchard et al. (HPQCD), $B_s \rightarrow K \ell \nu$ form factors from lattice QCD, Phys. Rev. D **90**, 054506 (2014), arXiv:1406.2279 [hep-lat].
- [18] M Di Carlo et al., Unitarity bounds for semileptonic decays in lattice QCD, Phys. Rev. D 104, 054502 (2021), arXiv:2105.02497 [hep-lat].

References III

- [19] G Martinelli et al., Constraints for the semileptonic B→D(*) form factors from lattice QCD simulations of two-point correlation functions, Phys. Rev. D 104, 094512 (2021), arXiv:2105.07851 [hep-lat].
- [20] G Martinelli et al., |V_{cb}| and R(D)^(*)) using lattice QCD and unitarity, Phys. Rev. D 105, 034503 (2022), arXiv:2105.08674 [hep-ph].
- [21] G Martinelli et al., |Vcb|, lepton flavor universality and SU(3)F symmetry breaking in Bs→Ds(*)ℓvℓ decays through unitarity and lattice QCD, Phys. Rev. D 106, 093002 (2022), arXiv:2204.05925 [hep-ph].
- [22] JM Flynn et al., Exclusive semileptonic $B_s \rightarrow K \ell v$ decays on the lattice, (2023), arXiv:2303.11280 [hep-lat].
- [23] A Khodjamirian and AV Rusov, $B_s \rightarrow K \ell v_\ell$ and $B_{(s)} \rightarrow \pi(K) \ell^+ \ell^-$ decays at large recoil and CKM matrix elements, JHEP **08**, 112 (2017), arXiv:1703.04765 [hep-ph].
- [24] B Colquhoun et al. (JLQCD), Form factors of $B \rightarrow \pi \ell v$ and a determination of $|V_{ub}|$ with Möbius domain-wall fermions, Phys. Rev. D **106**, 054502 (2022), arXiv:2203.04938 [hep-lat].
- [25] R Glattauer et al. (Belle), Measurement of the decay $B \rightarrow D\ell v_{\ell}$ in fully reconstructed events and determination of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$, Phys. Rev. D **93**, 032006 (2016), arXiv:1510.03657 [hep-ex].
- [26] D Simons et al., Self-consistent optimization of the z-Expansion for B meson decays, (2023), arXiv:2304.13045 [hep-ph].

References IV

- [27] C Bourrely et al., Model-independent description of $B \rightarrow \pi \ell v$ decays and a determination of $|V_{ub}|$, Phys. Rev. D **79**, [Erratum: Phys.Rev.D **82**, 099902 (2010)], 013008 (2009), arXiv:0807.2722 [hep-ph].
- [28] R Aaij et al. (LHCb), First observation of the decay $B_s^0 \rightarrow K^- \mu^+ v_\mu$ and Measurement of $|V_{ub}|/|V_{cb}|$, Phys. Rev. Lett. **126**, 081804 (2021), arXiv:2012.05143 [hep-ex].
- [29] R Aaij et al. (LHCb), Measurement of $|V_{cb}|$ with $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$ decays, Phys. Rev. D **101**, 072004 (2020), arXiv:2001.03225 [hep-ex].
- [30] P del Amo Sanchez et al. (BaBar), Study of $B \to \pi \ell v$ and $B \to \rho \ell v$ Decays and Determination of $|V_{ub}|$, Phys. Rev. D 83, 032007 (2011), arXiv:1005.3288 [hep-ex].
- [31] JP Lees et al. (BaBar), Branching fraction and form-factor shape measurements of exclusive charmless semileptonic B decays, and determination of |*V*_{ub}|, Phys. Rev. D **86**, 092004 (2012), arXiv:1208.1253 [hep-ex].
- [32] H Ha et al. (Belle), Measurement of the decay $B^0 \rightarrow \pi^- \ell^+ v$ and determination of $|V_{ub}|$, Phys. Rev. D 83, 071101 (2011), arXiv:1012.0090 [hep-ex].
- [33] A Sibidanov et al. (Belle), Study of Exclusive $B \rightarrow X_u \ell v$ Decays and Extraction of $||V_{ub}||$ using Full Reconstruction Tagging at the Belle Experiment, Phys. Rev. D **88**, 032005 (2013), arXiv:1306.2781 [hep-ex].
- [34] Y Aoki et al. (Flavour Lattice Averaging Group (FLAG)), FLAG Review 2021, Eur. Phys. J. C 82, 869 (2022), arXiv:2111.09849 [hep-lat].

References V

- [35] G Isidori and O Sumensari, Optimized lepton universality tests in $B \rightarrow V \ell \bar{v}$ decays, Eur. Phys. J. C **80**, 1078 (2020), arXiv:2007.08481 [hep-ph].
- [36] M Freytsis et al., Flavor models for $\overline{B} \rightarrow D^{(*)} \tau \overline{\nu}$, Phys. Rev. D **92**, 054018 (2015), arXiv:1506.08896 [hep-ph].
- [37] FU Bernlochner and Z Ligeti, Semileptonic $B_{(s)}$ decays to excited charmed mesons with e, μ, τ and searching for new physics with $R(D^{**})$, Phys. Rev. D **95**, 014022 (2017), arXiv:1606.09300 [hep-ph].
- [38] JM Flynn et al. (RBC, UKQCD), Nonperturbative calculations of form factors for exclusive semileptonic B_(s) decays, PoS ICHEP2020, 436 (2021), arXiv:2012.04323 [hep-ph].