

Recent Semileptonic Results from Belle and Belle II

Flavor@TH Workshop at CERN

Florian Bernlochner (florian.bernlochner@uni-bonn.de

b

Puzzles...

It may look cute, but that might be deceiving...

Puzzles...

It may look cute, but that might be deceiving...

Obs.	Current World Av./Data	0 00-1 0-10	Significance
$\mathcal{R}(D)$	0.340 ± 0.030	0.299 ± 0.003	1.2σ
$\mathcal{R}(D^*)$	0.295 ± 0.014	0.299 ± 0.003 0.258 ± 0.005	$2.5\sigma \int^{5.10}$
$P_{\tau}(D^*)$	$-0.38\pm0.51^{+0.21}_{-0.16}$	-0.501 ± 0.011	0.2σ
$F_{L,\tau}(D^*)$	$0.60 \pm 0.08 \pm 0.04$	0.455 ± 0.006	1.6σ
$\mathcal{R}(J\!/\!\psi)$	$0.71 \pm 0.17 \pm 0.18$	0.2582 ± 0.0038	1.8σ
$\mathcal{R}(\pi)$	1.05 ± 0.51	0.641 ± 0.016	0.8σ
$\mathcal{R}(D)$	0.337 ± 0.030	0.299 ± 0.003	1.3σ
$\mathcal{R}(D^*)$	0.298 ± 0.014	0.299 ± 0.003 0.258 ± 0.005	2.5σ

The question of **tagging**:

At e^+e^- -B-Factories we can leverage the known initial collision kinematics

Can gain even more information, if we reconstruct

```
second B decay \widehat{=} tagging
```

Idea comes in many flavors:

- inclusive tagging -
- SL tagging

Efficiency

e.g. with hadronic tagging the full event kinematics but the neutrino is reconstructed

E.g. if just one final state particle is missing, then with $Y = X\ell'$

 $\cos \theta_{BY} = \frac{2E_B E_Y - m_B^2 - m_Y^2}{2|\mathbf{p}_B||\mathbf{p}_V|} \in [-1,1]$

Tagging in a nutshell

Reconstruct B-Mesons in several stages:

start with detector stable particles; then progress to simple composite states; combine the composite states to build more complexity

Each **stage** trains a **Boosted Decision Tree (BDT)** to identify good combinations;

each stage's BDT output is used as input for the next stage + all kinematic information

- + (particle identification scores)
- + vertex fit probabilities

Tagging in a nutshell

Reconstruct B-Mesons in several stages:

start with detector stable particles; then progress to simple composite states; combine the composite states to build more complexity

Each **stage** trains a **Boosted Decision Tree (BDT)** to identify good combinations;

each stage's BDT output is used as input for the next stage + all kinematic information

- + (particle identification scores)
- + vertex fit probabilities

Tagging in a nutshell

Reconstruct B-Mesons in several stages:

start with detector stable particles; then progress to simple composite states; combine the composite states to build more complexity

Each **stage** trains a **Boosted Decision Tree (BDT)** to identify good combinations;

each stage's BDT output is used as input for the next stage + all kinematic information

- + (particle identification scores)
- + vertex fit probabilities

Talk Overview

Talk Overview

Measurements of Lepton Mass squared moments in inclusive $B \rightarrow X_c \ell \bar{\nu}_{\ell}$ Decays with the Belle II Experiment [Phys. Rev. D 107, 072002, arXiv:2205.06372] A test of **light-lepton universality** in the rates of inclusive semileptonic Bmeson decays at Belle II [Submitted to PRL]

4.

5.

6.

2.

First **Simultaneous** Determination of Inclusive and Exclusive $|V_{ub}|$ [Submitted to PRL, arXiv:2303.17309]

Measurement of **Differential Distributions** of $B \to D^* \ell \bar{\nu}_{\ell}$ and Implications on $|V_{cb}|$, [Accepted by PRD], [arXiv:2301.07529]

Determination of $|V_{cb}|$ using $\overline{B}^0 \to D^{*+} \ell^- \overline{\nu}_{\ell}$ with **Belle II**, [To be submitted to PRD]

Test of **light-lepton universality** in **angular asymmetries** of hadronically tagged $B^0 \rightarrow D^{*-} \{e^+, \mu^+\} \nu$ decays at Belle II, [To be submitted to PRL]

1.

Event-wise Master-formula

$$\langle q^{2n} \rangle = \frac{\sum_{i}^{N_{\text{data}}} w(q_i^2) \times q_{\text{calib},i}^{2n}}{\sum_{j}^{N_{\text{data}}} w(q_j^2)} \times \mathcal{C}_{\text{calib}} \times \mathcal{C}_{\text{gen}}$$

Measurements of Lepton Mass squared moments in inclusive $B \rightarrow X_c \ell \bar{\nu}_{\ell}$ Decays with the Belle II Experiment [Phys. Rev. D 107, 072002, arXiv:2205.06372]

Measurements of Lepton Mass squared moments in inclusive $B \rightarrow X_c \ell \bar{\nu}_{\ell}$ Decays with the Belle II Experiment [Phys. Rev. D 107, 072002, arXiv:2205.06372]

Measurements of Lepton Mass squared moments in inclusive $B \rightarrow X_c \ell \bar{\nu}_{\ell}$ Decays with the Belle II Experiment [Phys. Rev. D 107, 072002, arXiv:2205.06372]

0.6

Belle II

A test of **light-lepton universality** in the rates of **inclusive** semileptonic Bmeson decays at Belle II [Submitted to PRL, arXiv:XYZ]

 $R(X_{e/\mu})_{\rm SM} = 1.006 \pm 0.001$

M. Rahimi and K. K. Vos, J. High Energ. Phys. 11, 007 (2022).

 $X_c \ell \nu$ form factors

Total

 $\frac{0.1}{2.1}$

3.

Belle I Hadronic Tagging (FR)

ca. factor of 2 less efficient, but focus on cleaner tags

Hadronic **tagging** just is **fun**: Capability to identify **kinematic** and **constituents** of X_u **system**

Charged Tracks Neutral Clusters

$$p_X = \sum_i \left(\sqrt{m_\pi^2 + |\mathbf{p}_i|^2}, \mathbf{p}_i \right) + \sum_j \left(E_j, \mathbf{k}_j \right)$$

$$q^{2} = (p_{sig} - p_{X})^{2}$$
 $M_{X} = \sqrt{(p_{X})^{\mu} (p_{X})_{\mu}}$

$$m_{\rm miss}^2 = \left(p_{\rm sig} - p_X - p_\ell\right)^2 \approx m_\nu^2 = 0 \,{\rm GeV^2}$$

But ... this is still a pretty difficult measurement

3.

Belle I Hadronic Tagging (FR)

ca. factor of 2 less efficient, but focus on cleaner tags

Inclusive $B \to X_u \ell \bar{\nu}_\ell$ measurements are extremely challenging due to dominant $B \to X_c \ell \bar{\nu}_\ell$ background

Clean **separation** only **possible** in certain **kinematic regions**, e.g. **lepton endpoint** or **low** M_X

Multivariate Sledgehammer

Before BDT selection

Lepton Energy in signal B rest frame E^B_{ℓ}

3.

New Idea: Exploit that exclusive X_u final states can be separated using the # of charged pions

 $n_{\pi^{+}} = 0: \quad B \to \pi^{0} \ell \bar{\nu}_{\ell}$ $n_{\pi^{+}} = 1: \quad B \to \pi^{+} \ell \bar{\nu}_{\ell}$ $n_{\pi^{+}} = 2: \quad \text{other}$ $n_{\pi^{+}} \ge 3: \quad B \to X_{u} \ell \bar{\nu}_{\ell}$

Use **'thrust',** expect more collimated system for $B \to \pi^0 \ell \bar{\nu}_\ell$ and $B \to \pi^+ \ell \bar{\nu}_\ell$ than for other processes

$$\max_{|\mathbf{n}|=1} \left(\sum_{i} |\mathbf{p_i} \cdot \mathbf{n}| / \sum_{i} |\mathbf{p_i}| \right)$$

Extraction of **BFs** and $B \rightarrow \pi$ form factors, in 2D fit of $q^2 : n_{\pi^+}$

Use high M_X to constrain $B \to X_c \ell^{} \bar{\nu}_\ell^{}$

$$\rho = 0.10$$

(Note that $B \to X_{\mu} \ell \bar{\nu}_{\ell}$ of course contains $B \to \pi \ell \bar{\nu}_{\ell}$)

26

4.

Belle II Hadronic Tagging (FEI) applied to Belle data **Target** B^{\pm} and B^0/\overline{B}^0 and decays with **slow pions**

Very clean sample; signal extraction using

$$M_{\rm miss}^2 = \left(p_{e^+e^-} - p_{B_{\rm tag}} - p_{D^*} - p_{\ell} \right)^2$$

Provide full experimental covariance matrix for simultaneous analysis

Overall efficiency is **very challenging** to determine due to **tagging**; focus on decay shapes

"Reconstructed"

Provide 4 x 40 bins plus average (careful, only 36 dof);

Some of the (many) **results**:

BGL truncation order determined using Nested Hypothesis Test

$$R_{e\mu} = \frac{\mathcal{B}(B \to D^* e \bar{\nu}_e)}{\mathcal{B}(B \to D^* \mu \bar{\nu}_\mu)} = 0.993 \pm 0.023 \pm 0.023 \,,$$

	$ V_{\rm cb} $	χ^2	dof	Ν	$ ho_{ m max} $
BGL_{111}	40.4 ± 0.8	45.6	34	3	0.70
BGL_{112}	40.9 ± 0.9	43.4	33	4	0.98
BGL_{121}	40.7 ± 0.9	45.2	33	4	0.60
BGL_{122}	41.5 ± 1.1	42.3	32	5	0.98
BGL_{131}	38.1 ± 1.7	41.7	32	5	0.98
BGL_{132}	39.0 ± 1.6	37.5	31	6	0.98
BGL_{211}	39.7 ± 1.0	42.7	33	4	0.99
BGL_{212}	40.4 ± 1.0	39.3	32	5	0.99

[To be submitted to PRD]

Also focus initially on **1D projections**:

Sago 2ggo

 $\times 10^4$

7000

6000

5000

3000

2000

1000

0.142

signa bkg v bkg v MC U JData

Entries

Pull

0

-5^L-10^{0.142} 0.144 0.146

///// MC Uncertain

-10 150 0.152 0.154 0.156

Q

nstructed

0 Q Q

<u>АМ о</u>

<u>-1</u>]0

6.28

ы

6 🚰 signal bkg with bkg with

MC I Data

40

- <u>3</u>0

-20

0.9

0.8

1.4

1.2

2.2

2.6

6

85

0.2

0.2

0.5

1.3

2.3

8.3

85

2.1

0 4 bkg with 💻 signa

bkg v

MC U

15 1.4 (

signal bkg with true D*

bkg with fake D*

Data

×10

1.0

0.2 0.0

15

76

22

0

0

0

84

14

1.55000-0

4000

0

0

0

0.1

0

22 1.4 🛱

Also focus initially on **1D projections**:

Also focus initially on **1D projections**:

Test of **light-lepton universality** in **angular asymmetries** of hadronically tagged $B^0 \rightarrow D^* - \{e^+, \mu^+\} \nu$ decays at Belle II, [To be submitted to PRL]

Construct **asymmetries**:

$$\mathcal{A}(w) = \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}w}\right)^{-1} \left[\int_{0}^{1} - \int_{-1}^{0}\right] dX \frac{\mathrm{d}\Gamma}{\mathrm{d}w\mathrm{d}X},$$

$$\int_{0}^{1} \frac{A_{\mathrm{FB}} : \mathrm{d}X \to \mathrm{d}(\cos\theta_{l})}{\int_{0}^{1} S_{3} : \mathrm{d}X \to \mathrm{d}(\cos2\chi)}$$

$$S_{5} : \mathrm{d}X \to \mathrm{d}(\cos2\chi)$$

$$S_{5} : \mathrm{d}X \to \mathrm{d}(\cos\chi\cos\theta_{V})$$

$$S_{7} : \mathrm{d}X \to \mathrm{d}(\sin\chi\cos\theta_{V})$$

$$S_{9} : \mathrm{d}X \to \mathrm{d}(\sin2\chi)$$

E.g. forward-backward asymmetry in $\cos \theta_{\ell}$

$$A_{\rm FB} = \frac{N^+ - N^-}{N^+ + N^+}$$

Test of **light-lepton universality** in **angular asymmetries** of hadronically tagged $B^0 \rightarrow D^{*-} \{e^+, \mu^+\} \nu$ decays at Belle II, [To be submitted to PRL]

Test of **light-lepton universality** in **angular asymmetries** of hadronically tagged $B^0 \rightarrow D^{*-} \{e^+, \mu^+\} \nu$ decays at Belle II, [To be submitted to PRL]

Test of **light-lepton universality** in **angular asymmetries** of hadronically tagged $B^0 \rightarrow D^{*-} \{e^+, \mu^+\} \nu$ decays at Belle II, [To be submitted to PRL]

Can also split these **asymmetries** further into *w* **bins** :

$$w \in [1, w_{\max}]$$

 $w \in [1, 1.275]$
 $w \in [1.275, w_{\max}]$

Talk Overview

Possible Strategies

Publish either container that allows later reinterpretation

(includes final selected data, MC, etc.)

Very ambitious, but great goal!

- Not everybody agrees and not everybody agrees to what extent Publish ND or unbinned unfolded measurements

Very challenging, binned: curse of dimensionality (5D measurement essentially)

Unbinned unfolding cool new idea, beats high dimensionality

Omnifold: unbinned unfolding Phys. Rev. Lett. 124, 182001 (2020)

Possible Strategies

Publish either container that allows later reinterpretation

(includes final selected data, MC, etc.)

opendata CERN

Very ambitious, but great goal!

- Not everybody agrees and not everybody agrees to what extend

Publish ND or unbinned unfolded measurements

Very challenging, binned: curse of dimensionality (5D measurement essentially)

Unbinned unfolding cool new idea, beats high dimensionality

Omnifold: unbinned unfolding Phys. Rev. Lett. 124, 182001 (2020) Somewhere in between?

Without loosing too much interesting information?

Publish 1D Measurements of partial BFs

45

2018 and 2023

Full Angular Information without going to 4D

Full angular information can be encoded into **12 coefficients** :

8 Coefficients relevant in massless limit & SM

Step 1: bin up phase-space in $q^2 \sim w$ in however many bins you can afford

Step 1: bin up phase-space in $q^2 \sim w$ in however many bins you can afford

Step 2: Determine the # of signal events in specific phase-space regions

The coefficients are related to a weighted sun of events in a given q^2 bin

$$J_{i} = \frac{1}{N_{i}} \sum_{j=1}^{8} \sum_{k,l=1}^{4} \eta_{ij}^{\chi} \eta_{ik}^{\theta_{\ell}} \eta_{il}^{\theta_{V}} \left[\chi^{i} \otimes \theta_{\ell}^{j} \otimes \theta_{V}^{k} \right]$$

Normalization Factor

Weights

Phase space region

 \tilde{N}_+

 \tilde{N}_{-}

E.g. for J_3 : Split χ into 2 Regions

$$'+': \chi \in [0, \pi/4], [3/4\pi, 5/4\pi], [7/4\pi, 2\pi]$$

 $'-': \chi \in [\pi/4, 3/4\pi], [5/4\pi, 7/4\pi]$

J_i	η^{χ}_i	$\eta_i^{ heta_\ell}$	$\eta_i^{ heta_V}$	normalization N_i		
J_{1s}	{+}	$\{+,a,a,+\}$	$\{-,c,c,-\}$	$2\pi(1)2$		
J_{1c}	$\{+\}$	$\{+,a,a,+\}$	$\{+,d,d,+\}$	$2\pi(1)(2/5)$		
J_{2s}	$\{+\}$	$\{-,b,b,-\}$	$\{-,c,c,-\}$	$2\pi(-2/3)2$		
J_{2c}	$\{+\}$	$\{-,b,b,-\}$	$\{+,d,d,+\}$	$2\pi(-2/3)(2/5)$		
J_3	$\{+,-,-,+,+,-,-,+\}$	$\{+\}$	$\{+\}$	$4(4/3)^2$		
J_4	$\{+,+,-,-,-,+,+\}$	$\{+,+,-,-\}$	$\{+,+,-,-\}$	$4(4/3)^2$		
J_5	$\{+,+,-,-,-,+,+\}$	$\{+\}$	$\{+,+,-,-\}$	$4(\pi/2)(4/3)$		
J_{6s}	$\{+\}$	$\{+,+,-,-\}$	$\{-,c,c,-\}$	$2\pi(1)2$		
J_{6c}	$\{+\}$	$\{+,+,-,-\}$	$\{+,d,d,+\}$	$2\pi(1)(2/5)$		
J_7	$\{+,+,+,+,-,-,-,-\}$	$\{+\}$	$\{+,+,-,-\}$	$4(\pi/2)(4/3)$		
J_8	$\{+,+,+,+,-,-,-,-\}$	$\{+,+,-,-\}$	$\{+,+,-,-\}$	$4(4/3)^2$		
J_9	$\{+,+,-,-,+,+,-,-\}$	{+}	{+}	$4(4/3)^2$		
$a = 1 - \frac{1}{\sqrt{2}}, b = a\sqrt{2}, c = 2\sqrt{2} - 1, d = 1 - 4\sqrt{2}/5$						

FB, Z. Ligeti, S. Turczyk, Phys. Rev. D 90, 094003 (2014)

Step 3: Reverse Migration and Acceptance Effects

Resolution effects: events with a **given "true"** value of $\{q^2, \cos \theta_{\ell'}, \cos \theta_V, \chi\}$ can fall into different reconstructed bins

(statistical overlap, systematics)

SM: { $J_{1s}^{q_i^2}, J_{1c}^{q_i^2}, J_{2s}^{q_i^2}, J_{2c}^{q_i^2}, J_3^{q_i^2}, J_4^{q_i^2}, J_5^{q_i^2}, J_{6s}^{q_i^2}$ }

e.g. 5 x 8 = 40 coefficients

or full thing (SM + NP) with **5 x 12 = 60 coefficients**

		0					
J_i	η_i^{χ}	$\eta_i^{ heta_\ell}$	$\eta_i^{ heta_V}$	normalization N_i			
J_{1s}	$\{+\}$	$\{+,a,a,+\}$	$\{-,c,c,-\}$	$2\pi(1)2$			
J_{1c}	$\{+\}$	$\{+,a,a,+\}$	$\{+,d,d,+\}$	$2\pi(1)(2/5)$			
J_{2s}	$\{+\}$	$\{-,b,b,-\}$	$\{-,c,c,-\}$	$2\pi(-2/3)2$			
J_{2c}	$\{+\}$	$\{-,b,b,-\}$	$\{+,d,d,+\}$	$2\pi(-2/3)(2/5)$			
J_3	$\{+,-,-,+,+,-,-,+\}$	$\{+\}$	$\{+\}$	$4(4/3)^2$			
J_4	$\{+,+,-,-,-,+,+\}$	$\{+,+,-,-\}$	$\{+,+,-,-\}$	$4(4/3)^2$			
J_5	$\{+,+,-,-,-,+,+\}$			$4(\pi/2)(4/3)$			
J_{6s}	$\{+\}$	$\{+,+,-,-\}$	$\{-,c,c,-\}$	$2\pi(1)2$			
J_{6c}	$\{+\}$	$\{+,+,-,-\}$	$\{+,d,d,+\}$	$2\pi(1)(2/5)$			
J_7	$\{+,+,+,+,-,-,-,-\}$	$\{+\}$	$\{+,+,-,-\}$	$4(\pi/2)(4/3)$			
J_8	$\{+,+,+,+,-,-,-,-\}$	$\{+,+,-,-\}$	$\{+,+,-,-\}$	$4(4/3)^2$			
J_9	$\{+,+,-,-,+,+,-,-\}$	{+}	{+}	$4(4/3)^2$			
$1 1 \sqrt{2} 1 \sqrt{2} 1 \sqrt{2} \sqrt{2} \sqrt{2} 1 1 \sqrt{2} \sqrt{2}$							
$a = 1 - 1/\sqrt{2}, b = a\sqrt{2}, c = 2\sqrt{2} - 1, d = 1 - 4\sqrt{2}/5$							

FB, Z. Ligeti, S. Turczyk, Phys. Rev. D 90, 094003 (2014)

Talk Overview

1D versus Full Angular Sensitivities

Errors and central values from 1D projection fits of arXiv:2301.07529 (Table XVI)

1D versus Full Angular Sensitivities

Errors and central values from 1D projection fit of arXiv:2301.07529 (Table XVI) Data points: **Asimov Fit using MC (!)**

53

1D versus Full Angular Sensitivities

54

Angular Coefficients also will allow us to better investigate what is going on with lattice versus data tensions..

Some closing thoughts

Number of exciting developments are happening:

- Many exciting new results from Belle and Belle II

More to come...

Some closing thoughts

Number of exciting developments are happening:

- Many exciting new results from Belle and Belle II

"The least interesting thing in your paper is your fit, give us your data"

Paolo Gambino — Challenges in Semileptonic B Decays 2022

Some closing thoughts

Number of exciting developments are happening:

- Many exciting new results from Belle and Belle II

"The least interesting thing in your paper is your fit, give us your data"

Paolo Gambino — Challenges in Semileptonic B Decays 2022

- We just released the Belle measurement on HepData

https://www.hepdata.net/record/ins2624324

Number of exciting developments are happening:

- Many exciting new results from Belle and Belle II

"The least interesting thing in your paper is your fit, give us your data"

Paolo Gambino — Challenges in Semileptonic B Decays 2022

- We just released the Belle measurement on HepData

https://www.hepdata.net/record/ins2624324

- Angular analyses for $B \to D^* \ell \bar{\nu}_{\ell}$ offer a good next step on making more information available.

Number of exciting developments are happening:

- Many exciting new results from Belle and Belle II

"The least interesting thing in your paper is your fit, give us your data"

Paolo Gambino — Challenges in Semileptonic B Decays 2022

- We just released the Belle measurement on HepData

https://www.hepdata.net/record/ins2624324

- Angular analyses for $B \to D^* \ell \bar{\nu}_{\ell}$ offer a good next step on making more information available.

Thank you for your attention

More Information

11 11

a

Florian Bernlochner (florian.bernlochner@uni-bonn.de

Why is it important to measure $|V_{ub}| \& |V_{cb}|$?

Nobel prize 2008

Why is it important to measure |Vub & Vcb ?

Why is it important to measure |V_{ub} & V_{cb} ?

68

Why is it important to measure $|V_{ub}| \& |V_{cb}|$?

69

How do we study SL decays to obtain e.g. $|V_{ub}| \& |V_{cb}|$?

How are we doing?

How are we doing?

Untagged measurements of $B \to D^{(*)} \ell \bar{\nu}_{\ell}$

Untagged measurements of $B \to D^{(*)} \ell \bar{\nu}_{\ell}$

Untagged measurements of $B \to D^{(*)} \ell \bar{\nu}_{\ell}$

75

Alternative Reconstruction Methods

Can exploit that the B meson lies on a **cone**, whose opening angle is fully determined by properties of visible particles:

$$\cos \theta_{B,D^*\ell} = \frac{2E_B E_{D^*\ell} - m_B^2 - m_{D^*\ell}^2}{2|\mathbf{p}_B||\mathbf{p}_{D\ell}|}$$

Can use this to estimate B meson direction building a weighted average on the cone

 $(E^B, p_B^x, p_B^y, p_B^z) = (\sqrt{s/2}, |\mathbf{p}_B| \sin \theta_{BY} \cos \phi, |\mathbf{p}_B| \sin \theta_{BY} \sin \phi, |\mathbf{p}_B| \cos \theta_{BY})$

with weights according to $w_i = \sin^2 \theta_i$ with θ denoting the polar angle

(following the angular distribution of $\Upsilon(4S) \to B\bar{B}$)

One can also combine both estimates -

Alternative Reconstruction Methods

More than a decade of $B \to D^{(*)} \ell \bar{\nu}_{\ell}$ is "lost" :-(

For $B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}$ traditionally single form factor parametrization (Caprini-Lellouch-Neubert, CLN) was used. Nucl.Phys. B530 (1998) 153-181

Measurements directly determined the parameters and quoted these with correlations.

Problem: Theory knowledge advances; **today more** general parametrization are preferred (**BGL**, ...)

1			
	Experiment	$\eta_{\rm EW} \mathcal{F}(1) V_{cb} [10^{-3}] \text{ (rescaled)}$	ρ^2 (rescaled)
<mark>•∳</mark> ••		$\eta_{\rm EW} \mathcal{F}(1) V_{cb} [10^{-3}] \text{ (published)}$	ρ^2 (published)
	ALEPH [497]	$31.38 \pm 1.80_{\rm stat} \pm 1.24_{\rm syst}$	$0.488 \pm 0.226_{\rm stat} \pm 0.146_{\rm syst}$
		$31.9 \pm 1.8_{\rm stat} \pm 1.9_{\rm syst}$	$0.37\pm0.26_{\rm stat}\pm0.14_{\rm syst}$
	CLEO [501]	$40.16 \pm 1.24_{\rm stat} \pm 1.54_{\rm syst}$	$1.363 \pm 0.084_{\rm stat} \pm 0.087_{\rm syst}$
		$43.1 \pm 1.3_{\rm stat} \pm 1.8_{\rm syst}$	$1.61\pm0.09_{\rm stat}\pm0.21_{\rm syst}$
	OPAL excl [498]	$36.20 \pm 1.58_{\rm stat} \pm 1.47_{\rm syst}$	$1.198 \pm 0.206_{\rm stat} \pm 0.153_{\rm syst}$
)	50	$36.8 \pm 1.6_{\rm stat} \pm 2.0_{\rm syst}$	$1.31\pm0.21_{\rm stat}\pm0.16_{\rm syst}$
, (1) X	OPAL partjal reco [498]	$37.44 \pm 1.20_{\rm stat} \pm 2.32_{\rm syst}$	$1.090 \pm 0.137_{\rm stat} \pm 0.297_{\rm syst}$
(1)		$37.5 \pm 1.2_{\mathrm{stat}} \pm 2.5_{\mathrm{syst}}$	$1.12\pm0.14_{\rm stat}\pm0.29_{\rm syst}$
	DELPHI partial reco [499]	$35.52 \pm 1.41_{\rm stat} \pm 2.29_{\rm syst}$	$1.139 \pm 0.123_{\rm stat} \pm 0.382_{\rm syst}$
		$35.5 \pm 1.4_{\rm stat} \stackrel{+2.3}{_{-2.4\rm syst}}$	$1.34 \pm 0.14_{\rm stat} \stackrel{+0.24}{_{-0.22\rm syst}}$
	DELPHI excl [500]	$35.87 \pm 1.69_{\rm stat} \pm 1.95_{\rm syst}$	$1.070 \pm 0.141_{\rm stat} \pm 0.153_{\rm syst}$
		$39.2 \pm 1.8_{\rm stat} \pm 2.3_{\rm syst}$	$1.32\pm0.15_{\rm stat}\pm0.33_{\rm syst}$
	Belle [502]	$34.82 \pm 0.15_{\rm stat} \pm 0.55_{\rm syst}$	$1.106 \pm 0.031_{\rm stat} \pm 0.008_{\rm syst}$
		$35.06 \pm 0.15_{\rm stat} \pm 0.56_{\rm syst}$	$1.106 \pm 0.031_{\rm stat} \pm 0.007_{\rm syst}$
	BABAR excl [503]	$33.37 \pm 0.29_{\rm stat} \pm 0.97_{\rm syst}$	$1.182 \pm 0.048_{\rm stat} \pm 0.029_{\rm syst}$
		$34.7 \pm 0.3_{\rm stat} \pm 1.1_{\rm syst}$	$1.18 \pm 0.05_{\rm stat} \pm 0.03_{\rm syst}$
	BABAR D^{*0} [507]	$34.55 \pm 0.58_{\rm stat} \pm 1.06_{\rm syst}$	$1.124 \pm 0.058_{\rm stat} \pm 0.053_{\rm syst}$
		$35.9 \pm 0.6_{\rm stat} \pm 1.4_{\rm syst}$	$1.16 \pm 0.06_{\rm stat} \pm 0.08_{\rm syst}$
	BABAR global fit $[509]$	$35.45 \pm 0.20_{\rm stat} \pm 1.08_{\rm syst}$	$1.171 \pm 0.019_{\rm stat} \pm 0.060_{\rm syst}$
		$35.7 \pm 0.2_{\rm stat} \pm 1.2_{\rm syst}$	$1.21 \pm 0.02_{\rm stat} \pm 0.07_{\rm syst}$
	Average	$35.00\pm0.11_{\mathrm{stat}}\pm0.34_{\mathrm{syst}}$	$1.121 \pm 0.014_{ m stat} \pm 0.019_{ m syst}$

Old measurements **cannot be updated** the underlying distributions were not provided but only the result of the fit.

Obviously we should **avoid** this in the future.

Three groups: One published, One freshly on arxiv, One preliminary :

Tension with measured shapes ...

BGL is much better, model independent

So is it ok to just present results with Boyd Grinstein Lebed (BGL) ?

BGL looks great:

- it removes the relation between slope and curvature on the leading form factor; data can pull it.
- Slop and curvature of the form factor ratios $R_{1/2}$ are not constrained, data can pull it.

Beautiful unbinned 4D fit (!) from BaBar [Phys. Rev. Lett. 123, 091801 (2019)]

$a_0^f \times 10^2$	$a_1^f \times 10^2$	$a_1^{F_1} \times 10^2$	$a_0^g \times 10^2$	$a_1^g \times 10^2$	$ V_{cb} \times 10^3$
1.29	1.63	0.03	2.74	8.33	38.36
± 0.03	± 1.00	± 0.11	± 0.11	± 6.67	± 0.90

TABLE I. The N = 1 BGL expansion results of this analysis, including systematic uncertainties.

$ ho_D^2*$	$R_1(1)$	$R_2(1)$	$ V_{cb} \times 10^3$
0.96 ± 0.08	1.29 ± 0.04	0.99 ± 0.04	38.40 ± 0.84

TABLE II. The CLN fit results from this analysis, including systematic uncertainties.

Truncation Order

Model independence is a step forward, but choices have to be made here as well..

$$g(z) = \frac{1}{P_g(z)\phi_g(z)} \sum_{n=0}^N a_n z^n, \qquad f(z) = \frac{1}{P_f(z)\phi_f(z)} \sum_{n=0}^N b_n z^n, \qquad \mathcal{F}_1(z) = \frac{1}{P_{\mathcal{F}_1}(z)\phi_{\mathcal{F}_1}(z)} \sum_{n=0}^N c_n z^n,$$

One Problem you face as an experimentalist: where do you truncate?

Truncate too soon:

- Model dependence in extracted result for $|V_{cb}|$?

Truncate too late:

- Unnecessarily increase variance on $|V_{cb}|$?

Is there an ideal truncation order?

What about additional constraints?

Z. Ligeti, D. Robinson, M. Papucci, FB [arXiv:1902.09553, PRD100,013005 (2019)]

Use a **nested hypothesis test (NHT)** to determine optimal truncation order

Test statistics & Decision boundary $\Delta \chi^2 = \chi_N^2 - \chi_{N+1}^2 \qquad \Delta \chi^2 > 1$

Distributed like a χ^2 -distribution with 1 dof (Wilk's theorem)

Gambino, Jung, Schacht [arXiv:1905.08209, PLB]

Constrain contributions from higher order coefficients using **unitarity bounds**

$$\sum_{n=0}^{N} |a_n|^2 \le 1 \qquad \sum_{n=0}^{N} \left(|b_n|^2 + |c_n|^2 \right) \le 1$$

e.g.

$$\chi^2 \rightarrow \chi^2 + \chi^2_{\text{penalty}}$$

Steps:

2

3

5

1 Carry out nested fits with one parameter added

Accept descendant over parent fit, if $\Delta \chi^2 > 1$

Repeat 1 and 2 until you find **stationary** points

4 If multiple **stationary** points remain, choose the one with smallest *N*, then smallest χ^2

Steps:

2

3

5

1 Carry out nested fits with one parameter added

Accept descendant over parent fit, if $\Delta \chi^2 > 1$

Repeat 1 and 2 until you find **stationary** points

4 If multiple **stationary** points remain, choose the one with smallest *N*, then smallest χ^2

Steps:

2

3

5

1 Carry out nested fits with one parameter added

Accept descendant over parent fit, if $\Delta \chi^2 > 1$

Repeat 1 and 2 until you find **stationary** points

4 If multiple **stationary** points remain, choose the one with smallest *N*, then smallest χ^2

Steps:

2

3

5

1 Carry out nested fits with one parameter added

Accept descendant over parent fit, if $\Delta \chi^2 > 1$

Repeat 1 and 2 until you find **stationary** points

4 If multiple **stationary** points remain, choose the one with smallest *N*, then smallest χ^2

Steps:

2

3

1 Carry out nested fits with one parameter added

Accept descendant over parent fit, if $\Delta \chi^2 > 1$

Repeat 1 and 2 until you find **stationary** points

4 If multiple **stationary** points remain, choose the one with smallest *N*, then smallest χ^2

Toy study to illustrate possible bias

Toy study to illustrate possible bias

Bias

90

 \rightarrow Procedure produces **unbiased** $|V_{cb}|$ values, just picking a given hypothesis (BGL₁₂₂) **does not**

Relative Frequency of selected Hypothesis:											
	BGL_{122}	BGL_{212}	BGL_{221}	BGL_{222}	BGL_{223}	BGL_{232}	BGL_{322}	BGL_{233}	BGL ₃₂₃	BGL ₃₃₂	BGL ₃₃₃
1-times	6%	0%	37%	27%	6%	6%	11%	0%	2%	4%	0.4%
10-times	0%	0%	8%	38%	14%	8%	16%	3%	4%	8%	1%

Is it meaningful to combine LQCD and data that do not agree in shape? What does this mean for our $|V_{cb}|$ values? Can we trust $\mathcal{F}(1)$?

1.0		0.0016	
4.0	$B_{\cdot} \rightarrow D^{*} u \bar{\nu}$	$ HPQCD B \rightarrow D^* \ell$	$\ell \bar{ u}_{\ell}$

Same data / MC disagreement?

$$p_{\text{unfolded}}^{(n)}(t) = \nu_n(t) \, p_{\text{Gen.}}(t).$$

- UNIFOLD: A single observable as input. This is an unbinned version of IBU.
- MULTIFOLD: Many observables as input. Here, we use the six jet substructure observables in Fig. 2 to derive the detector response.
- OMNIFOLD: The full event (or jet) as input, using the full phase space information.

Measurement of **partial** branching fractions of inclusive $B \to X_u \ell \bar{\nu}_{\ell}$ decays with hadronic tagging [PRD 104, 012008 (2021), arXiv:2102.00020]

Fit kinematic distributions and measure partial BF

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \,\ell^+ \,\nu_\ell)}{\tau_B \cdot \Delta \Gamma(B \to X_u \,\ell^+ \,\nu_\ell)}}$$

3 phase-space regions

Measurement of **differential** branching fractions of inclusive $B \to X_u \ell \bar{\nu}_\ell$ decays with hadronic tagging [Phys. Rev. Lett. 127, 261801 (2021), arXiv:2107.13855]

Measurement of **6** kinematic variables characterizing $B \to X_u \ell \bar{\nu}_\ell$ in $E_\ell^B > 1 \text{ GeV}$ region of PS Selection and reconstruction analogous to partial BF measurement Apply additional selections to improve resolution and background shape uncertainties

98

Bkg. Background subtraction via coarse M_X fit: subtracted data 400 Signal MC Signal MC Signal MC 140 175 Bkg subtracted data Bkg subtracted data Bkg subtracted data 120 150 300 Overlaid signal MC 125 M_X Events Events Events ¹⁰⁰ ²² (hybrid $B \to X_{\mu} \ell \bar{\nu}_{\ell}$) 60 75 100 40 50 20 25 0.0 10 12 5 10 15 20 25 0 2 4 14 0.5 2.0 2.5 3.0 3.5 1.0 1.5 4.0 $M_{\rm Y}^2$ [GeV²] q^2 [GeV²] M_X [GeV] Signal MC 120 140 p^+ Bkg subtracted data 100 120 80 100 Events 100 Events 60 Events 80 40 60 light-cone momenta: 20 40 $P_+ = E_X \mp |P_X|$ 50 Signal MC Signal MC 20 -20 Bkg subtracted data Bkg subtracted dat 1.0 1.2 1.4 2.0 2.2 2.4 2.6 1.6 1.8 0.0 0.5 1.0 3.0 3.5 2.0 2.5 4.0 5 3 E^B_{ℓ} [GeV] P^{-} [GeV] P⁺ [GeV]

Differential Spectra

Unfolded + acceptance corrected distributions with total Error / Stat. Error

Agreement (w/o theory uncertainties)

χ^2	E_{ℓ}^B	M_X	M_X^2	q^2	P_+	<i>P</i> _
n.d.f.	16	8	5	12	9	10
Hybrid	13.5	2.5	2.6	4.5	1.7	5.2
DFN	16.2	63.2	13.1	18.5	29.3	6.1
BLNP	16.5	61.0	6.3	20.6	23.6	13.7

Differential Spectra

Full experimental correlations

$\bar{B} \to X_c \ell \bar{\nu}_\ell$ modelling

- Update excl. branching ratios to PDG 2020 and the masses and widths of D** decays
- Generate additional MC samples to fill the gap between the exclusive & inclusive measurement (assign 100% BR uncertainty in systematics covariance matrix)

BR		B ⁺	B ⁰
$B \to X_c \ell^+ \nu_\ell$			
$B o D \ell^+ \nu_\ell$	D, D*	$(2.5\pm0.1) imes10^{-2}$	$(2.3\pm0.1) imes10^{-2}$
$B o D^* \ell^+ u_\ell$	•	$(5.4 \pm 0.1) \times 10^{-2}$	$(5.1 \pm 0.1) \times 10^{-2}$
$B o D_0^* \ell^+ u_\ell$		$(0.420 \pm 0.075) \times 10^{-2}$	$(0.390 \pm 0.069) \times 10^{-2}$
$(\hookrightarrow D\pi)$			
$B o D_1^* \ell^+ u_\ell$		$(0.423 \pm 0.083) \times 10^{-2}$	$(0.394 \pm 0.077) \times 10^{-2}$
$(\hookrightarrow D^*\pi)$			
$B o D_1 \ell^+ u_\ell$	D**	$(0.422 \pm 0.027) \times 10^{-2}$	$(0.392 \pm 0.025) \times 10^{-2}$
$(\hookrightarrow D^*\pi)$			
$B o D_2^* \ell^+ u_\ell$		$(0.116 \pm 0.011) \times 10^{-2}$	$(0.107 \pm 0.010) \times 10^{-2}$
$(\hookrightarrow D^*\pi)$			
$B o D_2^* \ell^+ u_\ell$		$(0.178 \pm 0.024) \times 10^{-2}$	$(0.165 \pm 0.022) imes 10^{-2}$
$(\hookrightarrow D\pi)$			
$\rho(D_2^* \to D^*\pi, D_2^*)$	$\rightarrow D\pi) = 0.693$		
$B o D_1 \ell^+ u_\ell$	Gap	$(0.242 \pm 0.100) \times 10^{-2}$	$(0.225 \pm 0.093) \times 10^{-2}$
$(\hookrightarrow D\pi\pi)$			
$B \to D\pi\pi \ell^+ \nu_\ell$		$(0.06 \pm 0.06) \times 10^{-2}$	$(0.06 \pm 0.06) \times 10^{-2}$
$B o D^* \pi \pi \ell^+ u_{\ell}$	e	$(0.216 \pm 0.102) \times 10^{-2}$	$(0.201 \pm 0.095) \times 10^{-2}$
$B \to D\eta \ell^+ \nu_\ell$		$(0.396 \pm 0.396) \times 10^{-2}$	$(0.399 \pm 0.399) \times 10^{-2}$
$B \to D^* \eta \ell^+ \nu_\ell$		$(0.396 \pm 0.396) \times 10^{-2}$	$(0.399 \pm 0.399) \times 10^{-2}$
$B \to X_c \ell^+ \nu_\ell$		$(10.8 \pm 0.4) imes 10^{-2}$	$(10.1 \pm 0.4) \times 10^{-2}$

BR	B ⁺	B ⁰
$B \to D_0^* \ell^+ \nu_\ell$	$(0.03 \pm 0.03) \times 10^{-2}$	$(0.03 \pm 0.03) \times 10^{-2}$
$(\hookrightarrow D\pi\pi)$		
$B \to D_1^* \ell^+ \nu_\ell$	$(0.03 \pm 0.03) \times 10^{-2}$	$(0.03 \pm 0.03) \times 10^{-2}$
$(\hookrightarrow D\pi\pi)$	(aa.) -2	(
$B \to D_0^* \pi \pi \ell^+ \nu_\ell$	$(0.108 \pm 0.051) \times 10^{-2}$	$(0.101 \pm 0.048) \times 10^{-2}$
$(\hookrightarrow D^* \pi \pi)$ $B \to D_1^* \pi \pi \ell^+ \nu_\ell$	$(0.108 \pm 0.051) \times 10^{-2}$	$(0.101 \pm 0.048) \times 10^{-2}$
$(\hookrightarrow D^* \pi \pi)$	(0.108 ± 0.051) × 10	(0.101 ± 0.048) × 10
$B \to D_0^* \ell^+ \nu_\ell$	$(0.396 \pm 0.396) \times 10^{-2}$	$(0.399 \pm 0.399) \times 10^{-2}$
$(\hookrightarrow D\eta)$		
$B \to D_1^* \ell^+ \nu_\ell$	$(0.396 \pm 0.396) \times 10^{-2}$	$(0.399\pm0.399)\times10^{-2}$
$(\hookrightarrow D^*\eta)$		

	Values			Co	rrelatio	ons		
$ V_{cb} \times 10^3$	39.8 ± 1.1	1	-0.16	0.02	-0.1	-0.61	-0.16	0.11
$a_{0} \times 10^{3}$	28.3 ± 1.0	-0.16	1	-0.09	-0.2	0.17	0.11	-0.03
$a_1 \times 10^3$	-45.9 ± 65.7	0.02	-0.09	1	-0.85	-0.04	-0.09	0.14
a_2	-4.8 ± 2.4	-0.1	-0.2	-0.85	1	0.12	0.13	-0.17
$b_0 \times 10^3$	13.3 ± 0.2	-0.61	0.17	-0.04	0.12	1	0.11	-0.13
$c_1 \times 10^3$	-3.2 ± 1.4	-0.16	0.11	-0.09	0.13	0.11	1	-0.91
$c_2 \times 10^3$	59.1 ± 29.9	0.11	-0.03	0.14	-0.17	-0.13	-0.91	1

