

Puzzles...

It may look cute, but that might be deceiving...

... Long-standing discrepancy since about a decade

Puzzles...

It may look cute, but that

 might be deceiving...

$$
R=\frac{b \rightarrow q \tau \bar{\nu}_{\tau}}{b \rightarrow q \ell \bar{\nu}_{\ell}}
$$

$$
\ell=e, \mu
$$

	Current				$\begin{array}{c}\text { Current } \\ \text { Obs. }\end{array}$	World Av./Data	SM Prediction	Significance
$\mathcal{R}(D)$	0.340 ± 0.030	0.299 ± 0.003	1.2σ					
$\mathcal{R}\left(D^{*}\right)$	0.295 ± 0.014	0.258 ± 0.005	2.5σ					

SL Analysis Methods

The question of tagging:
At $e^{+} e^{-}$-B-Factories we can leverage the known initial collision kinematics

Can gain even more information, if we reconstruct

$$
\text { second } B \text { decay } \widehat{=} \text { tagging }
$$

Idea comes in many flavors:

- inclusive tagging
- SL tagging
- hadronic tagging
E.g. if just one final state particle is missing, then with $Y=X e$

$$
\cos \theta_{B Y}=\frac{2 E_{B} E_{Y}-m_{B}^{2}-m_{Y}^{2}}{2\left|\mathbf{p}_{B}\right|\left|\mathbf{p}_{Y}\right|} \in[-1,1]
$$

$$
M_{\nu}^{2} \simeq M_{\mathrm{miss}}^{2}=\left(p_{e^{+} e^{-}}-p_{B_{\mathrm{ag}}}-p_{X}-p_{\ell}\right)^{2}
$$

Final Output Score

Reconstruct B-Mesons in several stages:
start with detector stable particles; then progress to simple composite states; combine the composite states to build more complexity

Each stage trains a Boosted Decision Tree (BDT) to identify good combinations;
each stage's BDT output is used as input for the next stage + all kinematic information

+ (particle identification scores)
+ vertex fit probabilities

Final Output $O_{\text {tag }}$
Score

Reconstruct B-Mesons in several stages:
start with detector stable particles; then progress to simple composite states; combine the composite states to build more complexity

Each stage trains a Boosted Decision Tree (BDT) to identify good combinations;
each stage's BDT output is used as input for the next stage + all kinematic information

+ (particle identification scores)
+ vertex fit probabilities

Tagging in a nutshell

Final Output $O_{\text {tag }}$
Score

Reconstruct B-Mesons in several stages:
start with detector stable particles; then progress to simple composite states; combine the composite states to build more complexity

Each stage trains a Boosted Decision Tree (BDT) to identify good combinations;
each stage's BDT output is used as input for the next stage + all kinematic information

+ (particle identification scores)
+ vertex fit probabilities

Talk Overview

1. Recent results form Belle and Belle II
2. From 1D projections to full angular information

3. The Potential of full angular fits

Talk Overview

1. Recent results form Belle and Belle II

2. From 1D projections to full angular information

3. The Potential of full angular fits

Recent Results Overview

Measurements of Lepton Mass squared moments in inclusive $B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ Decays with the Belle II Experiment [Phys. Rev. D 107, 072002, arXiv:2205.06372]

A test of light-lepton universality in the rates of inclusive semileptonic Bmeson decays at Belle II [Submitted to PRL]
3.

First Simultaneous Determination of Inclusive and Exclusive $\left|V_{u b}\right|$ [Submitted to PRL, arXiv:2303.17309]
4.

Measurement of Differential Distributions of $B \rightarrow D^{*} \ell \bar{\nu}_{\ell}$ and Implications on $\left|V_{c b}\right|$, [Accepted by PRD], [arXiv:2301.07529]

Determination of $\left|V_{c b}\right|$ using $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$ with Belle II, [To be submitted to PRD]
6.

Test of light-lepton universality in angular asymmetries of hadronically tagged $B^{0} \rightarrow D^{*-}\left\{e^{+}, \mu^{+}\right\} \nu$ decays at Belle II, [To be submitted to PRL]

```
+ more, e.g. arXiv:2210.04224v2 [hep-ex] or arXiv:2211.09833 [hep-ex] (Phys. Rev. D 107, 092003)
``` Decays with the Belle II Experiment [Phys. Rev. D 107, 072002, arXiv:2205.06372]

Key-technique: hadronic tagging

\section*{Improved Hadronic Tagging} using Belle II algorithm (ca. 2 times more efficient)
[Full Event Interpretation, T. Keck et al, Comp. Soft. Big. Sci 3 (2019), arXiv:1807.08680]

Step \#1: Subtract Background

\section*{Event-wise Master-formula}
\[
\left\langle q^{2 n}\right\rangle=\frac{\sum_{i}^{N_{\mathrm{data}}} w\left(q_{i}^{2}\right) \times q_{\mathrm{calib}, i}^{2 n}}{\sum_{j}^{N_{\mathrm{data}}} w\left(q_{j}^{2}\right)} \times \mathcal{C}_{\mathrm{calib}} \times \mathcal{C}_{\mathrm{gen}}
\]
1. Measurements of Lepton Mass squared moments in inclusive \(B \rightarrow X_{c} \ell \bar{\nu}_{\ell}\) Decays with the Belle II Experiment [Phys. Rev. D 107, 072002, arXiv:2205.06372]

Step \#2: Calibrate moment

Event-wise Master-formula
\[
\left\langle q^{2 n}\right\rangle=\frac{\sum_{i}^{N_{\mathrm{data}}} w\left(q_{i}^{2}\right) \times q_{\mathrm{calib}, i}^{2 n}}{\sum_{j}^{N_{\mathrm{data}}} w\left(q_{j}^{2}\right)} \times \mathcal{C}_{\mathrm{calib}} \times \mathcal{C}_{\mathrm{gen}}
\] Decays with the Belle II Experiment [Phys. Rev. D 107, 072002, arXiv:2205.06372]

Step \#1: Subtract Background

Step \#2: Calibrate moment

Event-wise Master-formula
\[
\left\langle q^{2 n}\right\rangle=\frac{\sum_{i}^{N_{\text {data }}} w\left(q_{i}^{2}\right) \times q_{\mathrm{calib}, i}^{2 n}}{\sum_{j}^{N_{\mathrm{data}}} w\left(q_{j}^{2}\right)} \times \mathcal{C}_{\mathrm{calib}} \times \mathcal{C}_{\mathrm{gen}}
\]

Step \#3: If you fail, try again

Measurements of Lepton Mass squared moments in inclusive \(B \rightarrow X_{c} \ell \overline{\mathrm{v}}_{\ell}\) Decays with the Belle II Experiment [Phys. Rev. D 107, 072002, arXiv:2205.06372]

Step \#1: Subtract Background

Step \#2: Calibrate moment

Event-wise Master-formula
\[
\left\langle q^{2 n}\right\rangle=\frac{\sum_{i}^{N_{\text {data }}} w\left(q_{i}^{2}\right) \times q_{\mathrm{calib}, i}^{2 n}}{\sum_{j}^{N_{\mathrm{data}}} w\left(q_{j}^{2}\right)} \times \mathcal{C}_{\mathrm{calib}} \times \mathcal{C}_{\mathrm{gen}}
\]

Step \#3: If you fail, try again

Step \#4: Correct for selection effects

First extraction of \(\left|V_{c b}\right|\) from \(q^{2}\) moments:

\section*{Included corrections} on the mom. predictions
\begin{tabular}{c|cccc}
\(\left\langle\left\langle q^{2}\right)^{n}\right\rangle\) & tree & \(\alpha_{s}\) & \(\alpha_{s}^{2}\) & \(\alpha_{s}^{3}\) \\
\hline Partonic & \(\checkmark\) & \(\checkmark\) & & \\
\(\mu_{G}^{2}\) & \(\checkmark\) & \(\checkmark\) & & \\
\(\rho_{D}^{3}\) & \(\checkmark\) & \(\checkmark\) & & \\
\(1 / m_{b}^{4}\) & \(\checkmark\) & & & \\
& & & &
\end{tabular}
\(\longrightarrow \quad\left|V_{c b}\right|=\left(41.69 \pm\left. 0.59\right|_{\mathrm{fit}} \pm\left. 0.23\right|_{\mathrm{h} . \mathrm{o} .}\right) \cdot 10^{-3}=(41.69 \pm 0.63) \cdot 10^{-3}\)

A test of light-lepton universality in the rates of inclusive semileptonic Bmeson decays at Belle II [Submitted to PRL, arXiv:XYZ]

Hadronic Tagging
\[
\begin{aligned}
& R\left(X_{e / \mu} \mid p_{\ell}^{B}>1.3 \mathrm{GeV} / c\right)=1.005 \pm 0.009 \text { (stat) } \\
& \pm 0.019 \text { (syst) } \\
& R\left(X_{e / \mu}\right)=1.007 \pm 0.009 \text { (stat) } \pm 0.019 \text { (syst) }
\end{aligned}
\]

Systematic Uncertainties:
\begin{tabular}{ll}
\hline \hline Source & Uncertainty [\%] \\
\hline Sample size & 0.9 \\
Lepton identification & 1.9 \\
\(X \ell \nu\) branching fractions & 0.2 \\
\(X_{c} \ell \nu\) form factors & 0.1 \\
\hline Total & 2.1 \\
\hline \hline
\end{tabular}
\[
R\left(X_{e / \mu}\right)_{\mathrm{SM}}=1.006 \pm 0.001
\]
M. Rahimi and K. K. Vos, J. High Energ. Phys. 11, 007 (2022).

Belle I Hadronic Tagging (FR)
ca. factor of 2 less efficient, but focus on cleaner tags

Hadronic tagging just is fun: Capability to identify kinematic and constituents of \(X_{u}\) system

But ... this is still a pretty difficult measurement

Belle I Hadronic Tagging (FR)
ca. factor of 2 less efficient,
but focus on cleaner tags

Inclusive \(B \rightarrow X_{u} \ell \bar{\nu}_{\ell}\) measurements are extremely challenging due to dominant \(B \rightarrow X_{c} \ell \bar{\nu}_{\ell}\) background

Clean separation only possible in certain kinematic regions, e.g. lepton endpoint or low \(M_{X}\)

\section*{Multivariate Sledgehammer}

Direct cuts on \(m_{X}, E_{\ell}\) problematic (i.e. direct theory / shape-function dependence)

Can reject \(98.7 \%\) of \(X_{c}\)
\begin{tabular}{|lccc}
\hline \hline Selection & \(B \rightarrow X_{u} \ell^{+} \nu_{\ell}\) & \(B \rightarrow X_{c} \ell^{+} \nu_{\ell}\) & Data \\
\hline\(M_{\mathrm{bc}}>5.27 \mathrm{GeV}\) & \(84.8 \%\) & \(83.8 \%\) & \(80.2 \%\) \\
\(\mathcal{O}_{\mathrm{BDT}}>0.85\) & \(18.5 \%\) & \(1.3 \%\) & \(1.6 \%\) \\
\hline \(\mathcal{O}_{\mathrm{BDT}}>0.83\) & \(21.9 \%\) & \(1.7 \%\) & \(2.1 \%\) \\
\(\mathcal{O}_{\mathrm{BDT}}>0.87\) & \(14.5 \%\) & \(0.9 \%\) & \(1.1 \%\) \\
\hline \hline
\end{tabular}

Before BDT selection
Hadronic Mass \(M_{X}=\sqrt{p_{X}^{2}}\)
\(\underset{\text { squared }}{\text { Four-momentum transfer }} q^{2}=\left(p_{B}-p_{X}\right)^{2}\)

Hadronic Mass \(M_{X}=\sqrt{p_{X}^{2}}\)

Four-momentum transfer squared
\(q^{2}=\left(p_{B}-p_{X}\right)^{2}\)

Lepton Energy in signal B restframe
\(E_{\ell}^{B}\)

New Idea: Exploit that exclusive \(X_{u}\) final states can be separated using the \# of charged pions

Use 'thrust', expect more collimated system for \(B \rightarrow \pi^{0} \ell \bar{\nu}_{\ell}\) and \(B \rightarrow \pi^{+} \ell \bar{\nu}_{\ell}\) than for other proceses
\[
\max _{|\mathbf{n}|=1}\left(\sum_{i}\left|\mathbf{P}_{\mathbf{i}} \cdot \mathbf{n}\right| / \sum_{i}\left|\mathbf{P}_{\mathbf{i}}\right|\right)
\]
\(q^{2}\)
Extraction of BFs and \(B \rightarrow \pi\) form factors, in 2D fit of \(q^{2}: n_{\pi^{+}}\)
\(M_{X}\)
Use high \(M_{X}\) to constrain \(B \rightarrow X_{c} \ell \bar{\nu}_{e}\)

\section*{2D Categories :}

\section*{For fit link}
\[
\left.\begin{array}{l}
B \rightarrow \pi^{0} \ell \bar{\nu}_{\ell} \\
B \rightarrow \pi^{+} \ell \bar{\nu}_{\ell}
\end{array}\right)
\]
assuming isospin

Float \(\mathrm{BCL} B \rightarrow \pi \mathrm{FF}\) constrained to FLAG 2022
WA [Eur.Phys.J.C 82 (2022) 10, 869]
\[
\begin{align*}
& f_{+}\left(q^{2}\right)=\frac{1}{1-q^{2} / m_{0}^{2}=} \sum_{n=0}^{N+-1} a_{n}^{+}\left[z^{n}-(-1)^{n-N^{+}} \frac{n}{N^{+}} z^{z^{+}}\right] \\
& f_{0}\left(q^{2}\right)=\sum_{n=0}^{N_{0}-1} a_{n}^{0} z^{n}, \tag{3}
\end{align*}
\]

\(\rightarrow \begin{array}{r}\mathcal{B}\left(\bar{B}^{0} \rightarrow \pi^{+} \ell^{-} \bar{\nu}_{\ell}\right)=(1.43 \pm 0.19 \pm 0.13) \times 10^{-4}, \\ \Delta \mathcal{B}\left(B \rightarrow X_{u} \ell \bar{\nu}_{\ell}\right)=(1.40 \pm 0.14 \pm 0.23) \times 10^{-3},\end{array} \quad \rho \rho=0.10 \quad \begin{aligned} & \quad \text { (Note that } B \rightarrow X_{u} \ell \bar{\nu}_{\ell} \text { of } \\ & \left.\text { course contains } B \rightarrow \pi \ell \bar{\nu}_{\ell}\right)\end{aligned}\)

Two sets of results:
1) FLAG 2022
\[
\left|V_{u b}^{\text {excl. }}\right| /\left|V_{u b}^{\text {incl. }}\right|=1.06 \pm 0.14
\]
2) FLAG 2022 + all experimental information on \(B \rightarrow \pi\) FF
\(\left|V_{u b}^{\text {excl. }}\right| /\left|V_{u b}^{\text {incl. }}\right|=0.97 \pm 0.12\),

Belle II Hadronic Tagging (FEI) applied to Belle data

Target \(B^{ \pm}\)and \(B^{0} / \bar{B}^{0}\) and decays with slow pions
Very clean sample; signal extraction using
\[
M_{\mathrm{miss}}^{2}=\left(p_{e^{+} e^{-}}-p_{B_{\mathrm{tag}}}-p_{D^{*}}-p_{\ell}\right)^{2}
\]

Focus on 1D projections of recoil parameter and decay angles:

Provide full experimental covariance matrix for simultaneous analysis
Overall efficiency is very challenging to determine due to tagging; focus on decay shapes

\section*{Focus on 1D projections of recoil parameter and decay angles:}

Focus on 1D projections of recoil parameter and decay angles:

Reverse detector migration using \(\quad \hat{\vec{\mu}}=R^{-1} \hat{\vec{n}}\), matrix inversion

"Reconstructed"

Focus on 1D projections of recoil parameter and decay angles:

Correct for acceptance and efficiency effects

"Reconstructed"

Provide \(4 \times 40\) bins plus average (careful, only 36 dof) ;
Some of the (many) results:

\section*{BGL truncation order determined using Nested Hypothesis Test}

\[
R_{e \mu}=\frac{\mathcal{B}\left(B \rightarrow D^{*} e \bar{\nu}_{e}\right)}{\mathcal{B}\left(B \rightarrow D^{*} \mu \bar{\nu}_{\mu}\right)}=0.993 \pm 0.023 \pm 0.023,
\]
\begin{tabular}{llllll}
\hline \hline & & \multicolumn{5}{c}{\(V_{\text {cb }} \mid\)} & \(\chi^{2}\) & dof & N & \(\left|\rho_{\max }\right|\) \\
\hline \(\mathrm{BGL}_{111}\) & \(40.4 \pm 0.8\) & 45.6 & 34 & 3 & 0.70 \\
\(\mathrm{BGL}_{112}\) & \(40.9 \pm 0.9\) & 43.4 & 33 & 4 & 0.98 \\
\(\mathbf{B G L}_{121}\) & \(40.7 \pm 0.9\) & 45.2 & 33 & 4 & 0.60 \\
\(\mathrm{BGL}_{122}\) & \(41.5 \pm 1.1\) & 42.3 & 32 & 5 & 0.98 \\
\(\mathrm{BGL}_{131}\) & \(38.1 \pm 1.7\) & 41.7 & 32 & 5 & 0.98 \\
\(\mathrm{BGL}_{132}\) & \(39.0 \pm 1.6\) & 37.5 & 31 & 6 & 0.98 \\
\(\mathrm{BGL}_{211}\) & \(39.7 \pm 1.0\) & 42.7 & 33 & 4 & 0.99 \\
\(\mathrm{BGL}_{212}\) & \(40.4 \pm 1.0\) & 39.3 & 32 & 5 & 0.99 \\
& & & & &
\end{tabular}

Untagged analysis focussing on experimentally cleanest mode:
\[
\begin{aligned}
\bar{B}^{0} \rightarrow D^{*}+\ell^{-} & \bar{\nu}_{\ell} \\
\hookrightarrow D^{*+} & \rightarrow D^{0}+\pi^{+} \\
& \hookrightarrow D^{0} \rightarrow K^{-} \pi^{+}
\end{aligned}
\]

\section*{Extraction in 2D fit:}

Also focus initially on 1D projections:

Also focus initially on 1D projections:

Correct for migration effects:

"True"

Also focus initially on 1D projections:

Correct for migration effects:

Correct for acceptance \& efficiency

\section*{\begin{tabular}{l}
0 \\
0 \\
0 \\
\(\mathbb{O}\) \\
\multirow{2}{*}{}
\end{tabular}}

"True"

\[
\begin{aligned}
\left|V_{c b}\right|_{\mathrm{CLN}} & =(40.2 \pm 0.3 \pm 0.9 \pm 0.6) \times 10^{-3} \\
\left|V_{c b}\right|_{\mathrm{BGL}} & =(40.6 \pm 0.3 \pm 1.0 \pm 0.6) \times 10^{-3}
\end{aligned}
\]

\section*{BGL truncation order}
determined using Nested
Hypothesis Test
\(\overline{\left(n_{a}, n_{b}, n_{c}\right)}\left|V_{c b}\right| \times 10^{3}\)
\(\rho_{\max }\)\(\chi^{2} \quad\) Ndf \(p\)-value \((1,1,2) \quad 40.2 \pm 1.1 \quad 0.28 \quad 40.5 \quad 32 \quad 14 \%\) \((2,1,2) \quad 40.1 \pm 1.1 \quad 0.97 \quad 38.6 \quad 31 \quad 16 \%\) \((1,2,2) \quad 40.6 \pm 1.2 \quad 0.57 \quad 39.1 \quad 31 \quad 15 \%\) \((1,1,3) \quad 40.1 \pm 1.1 \quad 0.97 \quad 40 \quad 31 \quad 13 \%\) \((2,2,2) \quad 40.2 \pm 1.3 \quad 0.99 \quad 38.6 \quad 30 \quad 13 \%\) \((1,3,2) \quad 39.8 \pm 1.3 \quad 0.98 \quad 37.6 \quad 30 \quad 16 \%\)
\begin{tabular}{llllll}
\((1,2,3)\) & \(40.5 \pm 1.2\) & 0.97 & 39 & 30 & \(13 \%\)
\end{tabular}

Construct asymmetries:
\(\mathcal{A}(w)=\left(\frac{\mathrm{d} \Gamma}{\mathrm{d} w}\right)^{-1}\left[\int_{0}^{1}-\int_{-1}^{0}\right] \underbrace{\mathrm{d} w \mathrm{~d} X}_{\downarrow}\),
\[
\begin{aligned}
& A_{\mathrm{FB}}: \mathrm{d} X \rightarrow \mathrm{~d}\left(\cos \theta_{l}\right) \\
& S_{3}: \mathrm{d} X \rightarrow \mathrm{~d}(\cos 2 \chi) \\
& S_{5}: \mathrm{d} X \rightarrow \mathrm{~d}\left(\cos \chi \cos \theta_{V}\right) \\
& S_{7}: \mathrm{d} X \rightarrow \mathrm{~d}\left(\sin \chi \cos \theta_{V}\right) \\
& S_{9}: \mathrm{d} X \rightarrow \mathrm{~d}(\sin 2 \chi)
\end{aligned}
\]
E.g. forward-backward asymmetry in \(\cos \theta_{\ell}\)
\[
A_{\mathrm{FB}}=\frac{N^{+}-N^{-}}{N^{+}+N^{+}}
\]

Construct asymmetries:
\(\mathcal{A}(w)=\left(\frac{\mathrm{d} \Gamma}{\mathrm{d} w}\right)^{-1}\left[\int_{0}^{1}-\int_{-1}^{0}\right] \underbrace{\mathrm{d} w \mathrm{~d} X}_{\downarrow}\),
\[
\begin{aligned}
& A_{\mathrm{FB}}: \mathrm{d} X \rightarrow \mathrm{~d}\left(\cos \theta_{l}\right) \\
& S_{3}: \mathrm{d} X \rightarrow \mathrm{~d}(\cos 2 \chi) \\
& S_{5}: \mathrm{d} X \rightarrow \mathrm{~d}\left(\cos \chi \cos \theta_{V}\right) \\
& S_{7}: \mathrm{d} X \rightarrow \mathrm{~d}\left(\sin \chi \cos \theta_{V}\right) \\
& S_{9}: \mathrm{d} X \rightarrow \mathrm{~d}(\sin 2 \chi)
\end{aligned}
\]
E.g. forward-backward asymmetry in \(\cos \theta_{\ell}\)
\[
A_{\mathrm{FB}}=\frac{N^{+}-N^{-}}{N^{+}+N^{+}}
\]

Bobeth et al. [Eur.Phys.J.C 81 (2021) 11, 984]

\[
\mathcal{A}(w)=\left(\frac{\mathrm{d} \Gamma}{\mathrm{~d} w}\right)^{-1}\left[\int_{0}^{1}-\int_{-1}^{0}\right] d X \frac{\mathrm{~d} \Gamma}{\mathrm{~d} w \mathrm{~d} X}
\]
\[
\begin{aligned}
& A_{\mathrm{FB}}: \mathrm{d} X \rightarrow \mathrm{~d}\left(\cos \theta_{l}\right) \\
& S_{3}: \mathrm{d} X \rightarrow \mathrm{~d}(\cos 2 \chi) \\
& S_{5}: \mathrm{d} X \rightarrow \mathrm{~d}\left(\cos \chi \cos \theta_{V}\right) \\
& S_{7}: \mathrm{d} X \rightarrow \mathrm{~d}\left(\sin \chi \cos \theta_{V}\right) \\
& S_{9}: \mathrm{d} X \rightarrow \mathrm{~d}(\sin 2 \chi)
\end{aligned}
\]

\(S_{9}\)
 tagged \(B^{0} \rightarrow D^{*}-\left\{e^{+}, \mu^{+}\right\} \nu\) decays at Belle II, [To be submitted to PRL]

Can also split these asymmetries further into \(w\) bins :
\[
\begin{aligned}
& w \in\left[1, w_{\max }\right] \\
& w \in[1,1.275] \\
& w \in\left[1.275, w_{\max }\right]
\end{aligned}
\]

Belle II

\section*{Talk Overview}

\section*{1. Recent results form Belle and Belle II}

\section*{2. From 1D projections to full angular information}

3. The Potential of full angular fits

\section*{Possible Strategies}

\section*{Possible Strategies}

Omnifold: unbinned unfolding Phys. Rev. Lett. 124, 182001 (2020)

\section*{Full Angular Information without going to 4D}

Full angular information can be encoded into 12 coefficients :
\begin{tabular}{|c|c|}
\hline \(\mathrm{d} \Gamma \quad G_{F}^{2}\left|V_{c b}\right|^{2} m_{B}^{3}\) & Each of these coefficients \\
\hline \(\overline{\mathrm{d} q^{2} \mathrm{~d} \cos \theta_{V} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \chi}=\frac{2 \pi^{4}}{}\) & is a function of \(q^{2} \sim w\) \\
\hline \[
\times\left\{J_{1 s} \sin ^{2} \theta_{V}+J_{1 c} \cos ^{2} \theta_{V}\right.
\] & \\
\hline \(+\left(J_{2 s} \sin ^{2} \theta_{V}+J_{2 c} \cos ^{2} \theta_{V}\right) \cos 2 \theta_{\ell}\) & \multirow[b]{3}{*}{With some smart folding, one can "easily" determine them} \\
\hline \(+J_{3} \sin ^{2} \theta_{V} \sin ^{2} \theta_{\ell} \cos 2 \chi\) & \\
\hline \(+J_{4} \sin 2 \theta_{V} \sin 2 \theta_{\ell} \cos \chi+J_{5} \sin 2 \theta_{V} \sin \theta_{\ell} \cos \chi\) & \\
\hline \(+\left(J_{6 s} \sin ^{2} \theta_{V}+J_{6 c} \cos ^{2} \theta_{V}\right) \cos \theta_{\ell}\) & \multirow[b]{3}{*}{\begin{tabular}{l}
Based on the ideas of: \\
JHEP 05 (2013) 043 \\
Phys. Rev. D 90, 094003 (2014) \\
http://cds.cern.ch/record/1605179
\end{tabular}} \\
\hline \(+J_{7} \sin 2 \theta_{V} \sin \theta_{\ell} \sin \chi+J_{8} \sin 2 \theta_{V} \sin 2 \theta_{\ell} \sin \chi\) & \\
\hline \[
\left.+J_{9} \sin ^{2} \theta_{V} \sin ^{2} \theta_{\ell} \sin 2 \chi\right\}
\] & \\
\hline
\end{tabular}

\section*{How can we measure these coefficients?}

Step 1: bin up phase-space in \(q^{2} \sim w\) in however many bins you can afford

\section*{How can we measure these coefficients?}

Step 1: bin up phase-space in \(q^{2} \sim w\) in however many bins you can afford

Step 2: Determine the \# of signal events in specific phase-space regions

The coefficients are related to a weighted sun of events in a given \(q^{2}\) bin
\[
J_{i}=\frac{1}{N_{i}} \sum_{j=1}^{8} \sum_{k, l=1}^{4} \eta_{i j}^{\eta_{i j k}^{\theta_{i k}} n_{i i}^{\theta_{v}}}\left[x^{i} \otimes \theta_{t}^{j} \otimes \theta_{V}^{k}\right]
\]

Normalization Factor
E.g. for \(J_{3}\) : Split \(\chi\) into 2 Regions
\[
\begin{aligned}
& \prime+^{\prime}: \chi \in[0, \pi / 4],[3 / 4 \pi, 5 / 4 \pi],[7 / 4 \pi, 2 \pi] \\
& \prime--^{\prime}: \chi \in[\pi / 4,3 / 4 \pi],[5 / 4 \pi, 7 / 4 \pi]
\end{aligned}
\]

\[
a=1-1 / \sqrt{2}, b=a \sqrt{2}, c=2 \sqrt{2}-1, d=1-4 \sqrt{2} / 5
\]
\[
\tilde{N}_{+}
\]
\[
\tilde{N}_{-}
\]

\section*{Step 3: Reverse Migration and Acceptance Effects}

Resolution effects: events with a given "true" value of \(\left\{q^{2}, \cos \theta_{\ell}, \cos \theta_{V}, \chi\right\}\) can fall into different reconstructed bins
E.g. \(w\) migration matrix

arXiv:2301.07529 [hep-ex]

Unfolded yields

Bkg subtracted yields

Step 4: Calculate \(J_{i}\) for a given \(w / q^{2}\) bin
\[
\begin{aligned}
& n_{+}^{q_{i}^{2}} \\
& n_{-}^{q_{i}^{2}}
\end{aligned} \rightarrow \hat{J}_{3}^{q_{i}^{2}}=\frac{1}{\Gamma} \times \frac{n_{+}^{q_{i}^{2}}-n_{-}^{q_{i}^{2}}}{4(4 / 3)^{2}}
\]

More involved for the other coefficients: need full experimental covariance between all measured \(w / q^{2}\) bins and coefficients (statistical overlap, systematics)

\section*{SM:}
\(\left\{J_{1 s}^{q_{i}^{2}}, J_{1 c}^{q_{i}^{2}}, J_{2 s}^{q_{i}^{2}}, J_{2 c}^{q_{i}^{2}}, J_{3}^{q_{i}^{2}}, J_{4}^{q_{i}^{2}}, J_{5}^{q_{i}^{2}}, J_{6 s}^{q_{i}^{2}}\right\}\)

\section*{e.g. \(5 \times 8=40\) coefficients}
or full thing (SM + NP) with \(5 \times 12=60\) coefficients

\section*{Talk Overview}
1. Recent results form Belle

\section*{2. From 1D projections to full \\ angular information} and Belle II
3. The Potential of full angular fits

\section*{1D versus Full Angular Sensitivities}

\section*{1D versus Full Angular Sensitivities}

\section*{1D versus Full Angular Sensitivities}

\section*{1D versus Full Angular Sensitivities}

Angular Coefficients also will allow us to better investigate what is going on with lattice versus data tensions..

\section*{Some closing thoughts}

Number of exciting developments are happening:
- Many exciting new results from Belle and Belle II

More to come...

\section*{Some closing thoughts}

Number of exciting developments are happening:
- Many exciting new results from Belle and Belle II
"The least interesting thing in your paper is your fit, give us your data"
Paolo Gambino - Challenges in Semileptonic B Decays 2022

\section*{Some closing thoughts}

Number of exciting developments are happening:
- Many exciting new results from Belle and Belle II
"The least interesting thing in your paper is your fit, give us your data"
Paolo Gambino - Challenges in Semileptonic B Decays 2022
- We just released the Belle measurement on HepData
https://www.hepdata.net/record/ins2624324

\section*{Some closing thoughts}

Number of exciting developments are happening:
- Many exciting new results from Belle and Belle II
"The least interesting thing in your paper is your fit, give us your data"
Paolo Gambino - Challenges in Semileptonic B Decays 2022
- We just released the Belle measurement on HepData
https://www.hepdata.net/record/ins2624324
- Angular analyses for \(B \rightarrow D^{*} \ell \bar{\nu}_{\ell}\) offer a good next step on making more information available.

\section*{Some closing thoughts}

Number of exciting developments are happening:
- Many exciting new results from Belle and Belle II
"The least interesting thing in your paper is your fit, give us your data"
Paolo Gambino - Challenges in Semileptonic B Decays 2022
- We just released the Belle measurement on HepData
https://www.hepdata.net/record/ins2624324
- Angular analyses for \(B \rightarrow D^{*} \ell \bar{\nu}_{\ell}\) offer a good next step on making more information available.

Thank you for your attention

\section*{Why is it important to measure \(\left|V_{u b}\right| \&\left|V_{c b}\right|\) ?}

\section*{Why is it important to measure \(\left|V_{u b}\right| \&\left|V_{c b}\right|\) ?}

Overconstrain Unitarity condition \(\rightarrow\) Potent test of Standard Model

\section*{Why is it important to measure \(\left|V_{u b}\right| \&\left|V_{c b}\right|\) ?}

\section*{Why is it important to measure \(\left|V_{u b}\right| \&\left|V_{c b}\right|\) ?}

\section*{CPV Kaon Mixing}

Overconstrain Unitarity condition \(\rightarrow\) Potent test of Standard Model

\section*{B-Meson Mixing}

\section*{Why is it important to measure \(\left|V_{u b}\right| \&\left|V_{c b}\right|\) ?}

\section*{CPV Kaon Mixing}

\section*{Present day}

\section*{B-Meson Mixing}

\section*{Why is it important to measure \(\left|V_{y b}\right| \&\left|V_{c b}\right|\) ?}

\section*{The future? \\ with Belle II \& LHCb}

B-Meson Mixing

\section*{How do we study SL decays to obtain e.g. \(\left|V_{u b}\right| \&\left|V_{c b}\right|\) ?}

\section*{How are we doing?}
\(\left|\mathrm{V}_{\mathrm{ub}}\right|\) Measurements over Time

\section*{How are we doing?}
\(\left|V_{\text {ub }}\right|\) Measurements over Time

\section*{Untagged measurements of \(B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}\)}

\section*{Untagged measurements of \(B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}\)}

\section*{Untagged measurements of \(B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}\)}

\section*{Alternative Reconstruction Methods}

Can exploit that the \(B\) meson lies on a cone, whose opening angle is fully determined by properties of visible particles:
\[
\cos \theta_{B, D^{*} \ell}=\frac{2 E_{B} E_{D^{*} \ell}-m_{B}^{2}-m_{D^{*} \ell}^{2}}{2\left|\mathbf{p}_{B}\right|\left|\mathbf{p}_{D \ell}\right|}
\]

Can use this to estimate \(B\) meson direction building a weighted average on the cone
\(\left(E^{B}, p_{B}^{x}, p_{B}^{y}, p_{B}^{z}\right)=\left(\sqrt{s} / 2,\left|\mathbf{p}_{B}\right| \sin \theta_{B Y} \cos \phi,\left|\mathbf{p}_{B}\right| \sin \theta_{B Y} \sin \phi,\left|\mathbf{p}_{B}\right| \cos \theta_{B Y}\right)\)
with weights according to \(w_{i}=\sin ^{2} \theta_{i}\) with \(\theta\) denoting the polar angle
(following the angular distribution of \(\Upsilon(4 S) \rightarrow B \bar{B}\))

One can also combine both estimates

\section*{Alternative Reconstruction Methods}

\section*{More than a decade of \(B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}\) is "lost" :-(}

For \(B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}\) traditionally single form factor parametrization (Caprini-Lellouch-Neubert, CLN) was used. Nucl.Phys. \(\operatorname{B530}\) (1998) 153-181

\section*{Measurements directly determined the} parameters and quoted these with correlations.

Problem: Theory knowledge advances; today more general parametrization are preferred (BGL, ...)
\begin{tabular}{|c|c|c|}
\hline Experiment & \[
\begin{gathered}
\eta_{\mathrm{EW}} \mathcal{F}(1)\left|V_{c b}\right|\left[10^{-3}\right] \text { (rescaled) } \\
\eta_{\mathrm{EW}} \mathcal{F}(1)\left|V_{c b}\right|\left[10^{-3}\right] \text { (published) }
\end{gathered}
\] & \[
\begin{gathered}
\rho^{2} \text { (rescaled) } \\
\rho^{2} \text { (published) }
\end{gathered}
\] \\
\hline ALEPH [497] & \[
\begin{gathered}
\hline 31.38 \pm 1.80_{\text {stat }} \pm 1.24_{\text {syst }} \\
31.9 \pm 1.8_{\text {stat }} \pm 1.9_{\text {syst }}
\end{gathered}
\] & \[
\begin{gathered}
\hline 0.488 \pm 0.226_{\text {stat }} \pm 0.146_{\text {syst }} \\
0.37 \pm 0.26_{\text {stat }} \pm 0.14_{\text {syst }}
\end{gathered}
\] \\
\hline CLEO [501] & \[
\begin{gathered}
40.16 \pm 1.24_{\text {stat }} \pm 1.54_{\text {syst }} \\
43.1 \pm 1.3_{\text {stat }} \pm 1.8_{\text {syst }}
\end{gathered}
\] & \[
\begin{gathered}
1.363 \pm 0.084_{\text {stat }} \pm 0.087_{\text {syst }} \\
1.61 \pm 0.09_{\text {stat }} \pm 0.21_{\text {syst }}
\end{gathered}
\] \\
\hline OPAL excl [498] & \[
\begin{gathered}
36.20 \pm 1.58_{\text {stat }} \pm 1.47_{\text {syst }} \\
36.8 \pm 1.6_{\text {stat }} \pm 2.0_{\text {syst }}
\end{gathered}
\] & \[
\begin{gathered}
1.198 \pm 0.206_{\text {stat }} \pm 0.153_{\text {syst }} \\
1.31 \pm 0.21_{\text {stat }} \pm 0.16_{\text {syst }}
\end{gathered}
\] \\
\hline OPAL partial reco [498] & \[
\begin{gathered}
37.44 \pm 1.20_{\mathrm{stat}} \pm 2.32_{\mathrm{syst}} \\
37.5 \pm 1.2_{\mathrm{stat}} \pm 2.5_{\mathrm{syst}}
\end{gathered}
\] & \[
\begin{gathered}
1.090 \pm 0.137_{\text {stat }} \pm 0.297_{\text {syst }} \\
1.12 \pm 0.14_{\text {stat }} \pm 0.29_{\text {syst }} \\
\hline
\end{gathered}
\] \\
\hline DELPHI partial reco [499] & \[
\begin{gathered}
35.52 \pm 1.41_{\text {stat }} \pm 2.29_{\text {syst }} \\
35.5 \pm 1.4_{\text {stat }}+2.4{ }_{-2 \text { syst }}^{+2}
\end{gathered}
\] & \[
\begin{gathered}
1.139 \pm 0.123_{\text {stat }} \pm 0.382_{\text {syst }} \\
1.34 \pm 0.14_{\text {stat }}{ }_{-0.222 \text { syst }}^{+0.24}
\end{gathered}
\] \\
\hline DELPHI excl [500] & \[
\begin{gathered}
35.87 \pm 1.69_{\text {stat }} \pm 1.95_{\text {syst }} \\
39.2 \pm 1.8_{\text {stat }} \pm 2.3_{\text {syst }}
\end{gathered}
\] & \[
\begin{aligned}
& 1.070 \pm 0.141_{\text {stat }} \pm 0.153_{\text {syst }} \\
& 1.32 \pm 0.15_{\text {stat }} \pm 0.33_{\text {syst }}
\end{aligned}
\] \\
\hline Belle [502] & \[
\begin{aligned}
& 34.82 \pm 0.15_{\text {stat }} \pm 0.55_{\text {syst }} \\
& 35.06 \pm 0.15_{\text {stat }} \pm 0.56_{\text {syst }}
\end{aligned}
\] & \[
\begin{aligned}
& 1.106 \pm 0.031_{\text {stat }} \pm 0.008_{\text {syst }} \\
& 1.106 \pm 0.031_{\text {stat }} \pm 0.007_{\text {syst }}
\end{aligned}
\] \\
\hline BABAR excl [503] & \[
\begin{gathered}
33.37 \pm 0.29_{\text {stat }} \pm 0.97_{\text {syst }} \\
34.7 \pm 0.3_{\text {stat }} \pm 1.1_{\text {syst }}
\end{gathered}
\] & \[
\begin{gathered}
1.182 \pm 0.048_{\text {stat }} \pm 0.029_{\text {syst }} \\
1.18 \pm 0.05_{\text {stat }} \pm 0.03_{\text {syst }}
\end{gathered}
\] \\
\hline BABAR D*0 [507] & \[
\begin{gathered}
34.55 \pm 0.58_{\text {stat }} \pm 1.06_{\mathrm{syst}} \\
35.9 \pm 0.6_{\text {stat }} \pm 1.4_{\text {syst }} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1.124 \pm 0.058_{\text {stat }} \pm 0.053_{\text {syst }} \\
1.16 \pm 0.06_{\text {stat }} \pm 0.08_{\text {syst }} \\
\hline
\end{gathered}
\] \\
\hline BABAR global fit [509] & \[
\begin{gathered}
35.45 \pm 0.20_{\mathrm{stat}} \pm 1.08_{\mathrm{syst}} \\
35.7 \pm 0.2_{\mathrm{stat}} \pm 1.2_{\mathrm{syst}}
\end{gathered}
\] & \[
\begin{gathered}
1.171 \pm 0.019_{\text {stat }} \pm 0.060_{\text {syst }} \\
1.21 \pm 0.02_{\text {stat }} \pm 0.07_{\text {syst }}
\end{gathered}
\] \\
\hline Average & \(35.00 \pm 0.11_{\text {stat }} \pm 0.34_{\text {syst }}\) & \(1.121 \pm 0.014_{\text {stat }} \pm 0.019_{\text {syst }}\) \\
\hline
\end{tabular}

Old measurements cannot be updated the underlying distributions were not provided but only the result of the fit.

Obviously we should avoid this in the future.

\section*{The emergence of beyond zero-recoil lattice:}

\section*{Very exciting times:}
\begin{tabular}{l}
A. Bazavov et al. [FNAL/MILC] \(\quad\) [Eur. Phys. J. C 82, 1141 (2022), arXiv:2105.14019] \\
J. Harrison \& T.H. Davies [HPQCD] \(\quad\) [arXiv:2304.03137 [hep-lat]]
\end{tabular}

After more than 10 years in the making, we have beyond zero recoil LQCD predictions for \(B \rightarrow D^{*} \ell \bar{\nu}_{\ell}\)

Three groups: One published, One freshly on arxiv, One preliminary :

Tension with measured shapes .

\section*{BGL is much better, model independent}

So is it ok to just present results with Boyd Grinstein Lebed (BGL) ?
BGL looks great:
- it removes the relation between slope and curvature on the leading form factor; data can pull it.
- Slop and curvature of the form factor ratios \(R_{1 / 2}\) are not constrained, data can pull it.

Beautiful unbinned 4D fit (!) from BaBar [Phys. Rev. Lett. 123, 091801 (2019)]

\begin{tabular}{c|c|c|c|c|c}
\hline \hline\(a_{0}^{f} \times 10^{2}\) & \(a_{1}^{f} \times 10^{2}\) & \(a_{1}^{F_{1}} \times 10^{2}\) & \(a_{0}^{g} \times 10^{2}\) & \(a_{1}^{g} \times 10^{2}\) & \(\left|V_{c b}\right| \times 10^{3}\) \\
\hline 1.29 & 1.63 & 0.03 & 2.74 & 8.33 & 38.36 \\
\(\pm 0.03\) & \(\pm 1.00\) & \(\pm 0.11\) & \(\pm 0.11\) & \(\pm 6.67\) & \(\pm 0.90\) \\
\hline \hline
\end{tabular}

TABLE I. The \(N=1\) BGL expansion results of this analysis, including systematic uncertainties.
\begin{tabular}{c|c|c|c}
\hline \hline\(\rho_{D^{*}}^{2}\) & \(R_{1}(1)\) & \(R_{2}(1)\) & \(\left|V_{c b}\right| \times 10^{3}\) \\
\hline \(0.96 \pm 0.08\) & \(1.29 \pm 0.04\) & \(0.99 \pm 0.04\) & \(38.40 \pm 0.84\) \\
\hline \hline
\end{tabular}

TABLE II. The CLN fit results from this analysis, including systematic uncertainties.

\section*{Truncation Order}

Model independence is a step forward, but choices have to be made here as well..
\[
g(z)=\frac{1}{P_{g}(z) \phi_{g}(z)} \sum_{n=0}^{N} a_{n} z^{n}, \quad f(z)=\frac{1}{P_{f}(z) \phi_{f}(z)} \sum_{n=0}^{N} b_{n} z^{n}, \quad \mathcal{F}_{1}(z)=\frac{1}{P_{\mathcal{F}_{1}}(z) \phi_{\mathcal{F}_{1}}(z)} \sum_{n=0}^{N} c_{n} z^{n}
\]

One Problem you face as an experimentalist: where do you truncate?

Truncate too soon:
- Model dependence in extracted result for \(\left|V_{c b}\right|\) ?

Truncate too late:
- Unnecessarily increase variance on \(\left|V_{c b}\right|\) ?

Is there an ideal truncation order?

What about additional constraints?

\section*{Nested Hypothesis Tests or Saturation Constraints}

\section*{Z. Ligeti, D. Robinson, M. Papucci, FB} [arXiv:1902.09553, PRD100,013005 (2019)]

Use a nested hypothesis test (NHT) to determine optimal truncation order

Challenge nested fits

Test statistics \& Decision boundary
\[
\Delta \chi^{2}=\chi_{N}^{2}-\chi_{N+1}^{2} \quad \Delta \chi^{2}>1
\]

Distributed like a \(\chi^{2}\)-distribution with 1 dof (Wilk's theorem)

\section*{Gambino, Jung, Schacht [arXiv:1905.08209, PLB]}

Constrain contributions from higher order coefficients using unitarity bounds
\[
\sum_{n=0}^{N}\left|a_{n}\right|^{2} \leq 1 \quad \sum_{n=0}^{N}\left(\left|b_{n}\right|^{2}+\left|c_{n}\right|^{2}\right) \leq 1
\]
e.g.
\[
\chi^{2} \rightarrow \chi^{2}+\chi_{\text {penalty }}^{2}
\]
\(\chi_{\text {penalty }}^{2}\)

\section*{Nesting Procedure}

\section*{Steps:}

1
Carry out nested fits with one parameter added

Accept descendant over parent fit, if \(\Delta \chi^{2}>1\)

Repeat 1 and 2 until you find stationary points

\section*{If multiple stationary points}
remain, choose the one with
smallest \(N\), then smallest \(\chi^{2}\)

> Reject scenarios that
> produce strong correlations
> (= blind directions)
> 5

\section*{Nesting Procedure}

\section*{Steps:}

1
Carry out nested fits with one parameter added

2

\section*{Repeat 1 and 2 until you}
find stationary points

If multiple stationary points
remain, choose the one with smallest \(N\), then smallest \(\chi^{2}\)

Reject scenarios that produce strong correlations (= blind directions)

\section*{Nesting Procedure}

\section*{Steps:}

1
Carry out nested fits with one parameter added

2
Accept descendant over parent fit, if \(\Delta \chi^{2}>1\)

3
Repeat 1 and 2 until you find stationary points

If multiple stationary points
remain, choose the one with smallest \(N\), then smallest \(\chi^{2}\)

\section*{Nesting Procedure}

\section*{Steps:}

1
Carry out nested fits with one parameter added

2
Accept descendant over parent fit, if \(\Delta \chi^{2}>1\)

3
Repeat 1 and 2 until you find stationary points

If multiple stationary points remain, choose the one with smallest \(N\), then smallest \(\chi^{2}\)

Reject scenarios that produce strong correlations (= blind directions)

\section*{Nesting Procedure}

\section*{Steps:}

1
Carry out nested fits with one parameter added

2
Accept descendant over parent fit, if \(\Delta \chi^{2}>1\)

Repeat 1 and 2 until you find stationary points

If multiple stationary points remain, choose the one with smallest \(N\), then smallest \(\chi^{2}\)

Reject scenarios that produce strong correlations (= blind directions)

\section*{Toy study to illustrate possible bias}

\section*{Toy study to illustrate possible bias}

Use the central values of the BGL222 fit as a starting point
to add fine structure
fit \(=\) fit to prel. 2017 Belle data

\section*{Toy Test}

Produce ensemble of toy measurements using meas. covariance \& BGL3зз central values

Each toy is fitted to build the descendant tree and carry out a
NHT to select its preferred \(B G L n_{a} n_{b} n_{c}\)
\[
\xrightarrow{\text { Construct Pulls }}
\]
\begin{tabular}{c|c|c}
\multicolumn{3}{c}{} \\
'1-times' & '10-times' \\
\hline \hline Parameter & Value \(\times 10^{2}\) & Value \(\times 10^{2}\) \\
\hline\(\tilde{a}_{2}\) & 2.6954 & 26.954 \\
\(\tilde{b}_{2}\) & -0.2040 & -2.040 \\
\(\tilde{c}_{3}\) & 0.5350 & 5.350 \\
\hline \hline \multicolumn{3}{c}{\(\downarrow\)}
\end{tabular}

Create a "true" higher order Hypothesis of order BGLззз

As calculated from selected \(B G L n_{a} n_{b} n_{c}\) fit of each toy

If methodology unbiased, should follow a standard normal distribution (mean 0, width 1)

\section*{Bias}

\(\rightarrow\) Procedure produces unbiased \(\left|\mathrm{V}_{\mathrm{cb}}\right|\) values, just picking a given hypothesis (\(\mathrm{BGL}_{122}\)) does not

Relative Frequency of selected Hypothesis:
\begin{tabular}{c|ccccccccccc}
\hline \hline & BGL \(_{122}\) & BGL \(_{212}\) & BGL \(_{221}\) & BGL \(_{222}\) & BGL \(_{223}\) & BGL \(_{232}\) & BGL \(_{322}\) & BGL \(_{233}\) & BGL \(_{323}\) & BGL \(_{332}\) & BGL \(_{333}\) \\
\hline 1-times & \(6 \%\) & \(0 \%\) & \(37 \%\) & \(27 \%\) & \(6 \%\) & \(6 \%\) & \(11 \%\) & \(0 \%\) & \(2 \%\) & \(4 \%\) & \(0.4 \%\) \\
10-times & \(0 \%\) & \(0 \%\) & \(8 \%\) & \(38 \%\) & \(14 \%\) & \(8 \%\) & \(16 \%\) & \(3 \%\) & \(4 \%\) & \(8 \%\) & \(1 \%\) \\
\hline \hline
\end{tabular}

\section*{New HPQCD}

Is it meaningful to combine LQCD and data that do not agree in shape? What does this mean for our \(\left|V_{c b}\right|\) values? Can we trust \(\mathscr{F}(1)\) ?

Same data / MC disagreement?

\section*{Omnifold}

\[
p_{\text {unfolded }}^{(n)}(t)=\nu_{n}(t) p_{\text {Gen. }}(t) .
\]
- UniFold: A single observable as input. This is an unbinned version of IBU.
- MultiFold: Many observables as input. Here, we use the six jet substructure observables in Fig. 2 to derive the detector response.
- OmniFold: The full event (or jet) as input, using the full phase space information.

Measurement of partial branching fractions of inclusive \(B \rightarrow X_{u} \ell \bar{\nu}_{\ell}\) decays with hadronic tagging [PRD 104, 012008 (2021), arXiv:2102.00020]

Use full Belle data set of 711/fb

Hadronic tagging with neural networks (ca. 0.2-0.3\% efficiency)

Use machine learning (BDTs) to suppress backgrounds with 11 training features, e.g. \(m_{\text {miss }}^{2}, \# K^{ \pm}, \# K s\), etc.

\[
m_{\mathrm{miss}}^{2}=\left(p_{\mathrm{sig}}-p_{X}-p_{\ell}\right)^{2} \approx m_{\nu}^{2}=0 \mathrm{GeV}^{2}
\]

Fit kinematic distributions and measure partial BF
3 phase-space regions
\[
\left|V_{u b}\right|=\sqrt{\frac{\Delta \mathcal{B}\left(B \rightarrow X_{u} \ell^{+} \nu_{\ell}\right)}{\tau_{B} \cdot \Delta \Gamma\left(B \rightarrow X_{u} \ell^{+} \nu_{\ell}\right)}}
\]
\begin{tabular}{l}
\hline \hline Phase-space region \\
\hline\(M_{X}<1.7 \mathrm{GeV}\) \\
\(M_{X}<1.7 \mathrm{GeV}, q^{2}>8 \mathrm{GeV}^{2}\) \\
\(E_{\ell}^{B}>1 \mathrm{GeV}\) \\
\hline \hline
\end{tabular}

4 predictions of the partial rate
 region with \(E_{\ell}^{B}>1 \mathrm{GeV}\)

Arithmetic average:
\[
\left|V_{u b}\right|=(4.10 \pm 0.09 \pm 0.22 \pm 0.15) \times 10^{-3}
\]

Stability as a function of BDT cut:

Measurement of differential branching fractions of inclusive \(B \rightarrow X_{u} \ell \bar{\nu}_{\ell}\) decays with hadronic tagging [Phys. Rev. Lett. 127, 261801 (2021), arXiv:2107.13855]

Measurement of 6 kinematic variables characterizing \(B \rightarrow X_{u} \ell \bar{\nu}_{\ell}\) in \(E_{\ell}^{B}>1 \mathrm{GeV}\) region of PS
Selection and reconstruction analogous to partial BF measurement
Apply additional selections to improve resolution and background shape uncertainties

\section*{Differential Spectra}

\section*{Differential Spectra}

Full experimental correlations

Can be used for future
NNVub [arXiv:1604.07598]
shape-function
independent \(\left|V_{u b}\right|\) determinations

\section*{\(\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}\) modelling}
- Update excl. branching ratios to PDG 2020 and the masses and widths of D** \(^{* *}\) decays
- Generate additional MC samples to fill the gap between the exclusive \& inclusive measurement (assign 100\% BR uncertainty in systematics covariance matrix)
\begin{tabular}{|c|c|c|c|c|c|}
\hline BR & \(\mathrm{B}^{+}\) & \(B^{0}\) & & & \\
\hline \multicolumn{6}{|l|}{\(B \rightarrow X_{c} \ell^{+} \nu_{\ell}\)} \\
\hline \(B \rightarrow D \ell^{+} \nu_{\ell} \quad \mathrm{D}, \mathrm{D} *\) & \((2.5 \pm 0.1) \times 10^{-2}\) & \((2.3 \pm 0.1) \times 10^{-2}\) & & & \\
\hline \(B \rightarrow D^{*} \ell^{+} \nu_{\ell}\) & \((5.4 \pm 0.1) \times 10^{-2}\) & \((5.1 \pm 0.1) \times 10^{-2}\) & & & \\
\hline \[
\begin{aligned}
B & \rightarrow D_{0}^{*} \ell^{+} \nu_{\ell} \\
(& \rightarrow D \pi)
\end{aligned}
\] & \((0.420 \pm 0.075) \times 10^{-2}\) & \((0.390 \pm 0.069) \times 10^{-2}\) & BR & \(\mathrm{B}^{+}\) & \(B^{0}\) \\
\hline \[
\begin{aligned}
B & \rightarrow D_{1}^{*} \ell^{+} \nu_{\ell} \\
(& \left(D^{*} \pi\right)
\end{aligned}
\] & \((0.423 \pm 0.083) \times 10^{-2}\) & \((0.394 \pm 0.077) \times 10^{-2}\) & \(B \rightarrow D_{0}^{*} \ell^{+} \nu_{\ell}\) & \((0.03 \pm 0.03) \times 10^{-2}\) & \((0.03 \pm 0.03) \times 10^{-2}\) \\
\hline \[
\begin{gathered}
B \rightarrow D_{1} \ell^{+} \nu_{\ell} \\
\left(\rightarrow D^{*} \pi\right)
\end{gathered} \quad D * *
\] & \((0.422 \pm 0.027) \times 10^{-2}\) & \((0.392 \pm 0.025) \times 10^{-2}\) & \[
\begin{aligned}
& (\hookrightarrow D \pi \pi) \\
& B \rightarrow D_{1}^{*} \ell^{+} \nu_{\ell}
\end{aligned}
\] & \((0.03 \pm 0.03) \times 10^{-2}\) & \((0.03 \pm 0.03) \times 10^{-2}\) \\
\hline \(B \rightarrow D_{2}^{*} \ell^{+} \nu_{\ell}\) & \((0.116 \pm 0.011) \times 10^{-2}\) & \((0.107 \pm 0.010) \times 10^{-2}\) & \((\rightarrow D \pi \pi)\) & & \\
\hline \[
\begin{gathered}
\left(\hookrightarrow D^{*} \pi\right) \\
B \rightarrow D_{2}^{*} \ell^{+} \nu_{\ell}
\end{gathered}
\] & \((0.178 \pm 0.024) \times 10^{-2}\) & \((0.165 \pm 0.022) \times 10^{-2}\) & \[
\begin{gathered}
B \rightarrow D_{0}^{*} \pi \pi \ell^{+} \nu_{\ell} \\
\left(\hookrightarrow D^{*} \pi \pi\right)
\end{gathered}
\] & \((0.108 \pm 0.051) \times 10^{-2}\) & \((0.101 \pm 0.048) \times 10^{-2}\) \\
\hline \((\hookrightarrow D \pi)\)
\(\rho\left(D_{2}^{*} \rightarrow D^{*} \pi, D_{2}^{*} \rightarrow D \pi\right)=0.693\) & & & \[
\begin{aligned}
& \left(\hookrightarrow D^{*} \pi \pi\right) \\
& B \rightarrow D_{1}^{*} \pi \pi \ell^{+} \nu_{\ell}
\end{aligned}
\] & \((0.108 \pm 0.051) \times 10^{-2}\) & \((0.101 \pm 0.048) \times 10^{-2}\) \\
\hline \[
\begin{array}{cc}
B \rightarrow D_{1} \ell^{+} \nu_{\ell} \\
(\leftrightarrow D \pi \pi)
\end{array} \quad \text { Gap }
\] & \((0.242 \pm 0.100) \times 10^{-2}\) & \((0.225 \pm 0.093) \times 10^{-2}\) & & \((0.396+0.396) \times 10^{-2}\) & \((0.399+0.399) \times 10^{-2}\) \\
\hline \(B \rightarrow D \pi \pi \ell^{+} \nu_{\ell}\) & \((0.06 \pm 0.06) \times 10^{-2}\) & \((0.06 \pm 0.06) \times 10^{-2}\) & & & \\
\hline \(B \rightarrow D^{*} \pi \pi \ell^{+} \nu_{\ell}\)
\(B \rightarrow D^{+}{ }^{+}\) & \((0.216 \pm 0.102) \times 10^{-2}\) & \((0.201 \pm 0.095) \times 10^{-2}\) & \((\hookrightarrow D \eta)\)
\(B \rightarrow D_{1}^{*} \ell^{+} \nu_{\ell}\) & & \\
\hline \(B \rightarrow D \eta \ell^{+} \nu_{\ell}\)
\(B \rightarrow D^{*} \eta \ell^{+} \nu_{\ell}\) & \((0.396 \pm 0.396) \times 10^{-2}\)
\((0.396 \pm 0.396) \times 10^{-2}\) & \((0.399 \pm 0.399) \times 10^{-2}\)
\((0.399 \pm 0.399) \times 10^{-2}\) & \[
\begin{gathered}
B \rightarrow D_{1}^{*} \ell^{+} \nu_{\ell} \\
\left(\mapsto D^{*} \eta\right)
\end{gathered}
\] & \((0.396 \pm 0.396) \times 10^{-2}\) & \((0.399 \pm 0.399) \times 10^{-2}\) \\
\hline
\end{tabular}

\begin{tabular}{ccccccccc}
\hline \hline \multicolumn{3}{c}{ Values } & \multicolumn{7}{c}{ Correlations } \\
\hline\(\left|V_{c b}\right| \times 10^{3}\) & \(39.8 \pm 1.1\) & 1 & -0.16 & 0.02 & -0.1 & -0.61 & -0.16 & 0.11 \\
\(a_{0} \times 10^{3}\) & \(28.3 \pm 1.0\) & -0.16 & 1 & -0.09 & -0.2 & 0.17 & 0.11 & -0.03 \\
\(a_{1} \times 10^{3}\) & \(-45.9 \pm 65.7\) & 0.02 & -0.09 & 1 & -0.85 & -0.04 & -0.09 & 0.14 \\
\(a_{2}\) & \(-4.8 \pm 2.4\) & -0.1 & -0.2 & -0.85 & 1 & 0.12 & 0.13 & -0.17 \\
\(b_{0} \times 10^{3}\) & \(13.3 \pm 0.2\) & -0.61 & 0.17 & -0.04 & 0.12 & 1 & 0.11 & -0.13 \\
\(c_{1} \times 10^{3}\) & \(-3.2 \pm 1.4\) & -0.16 & 0.11 & -0.09 & 0.13 & 0.11 & 1 & -0.91 \\
\(c_{2} \times 10^{3}\) & \(59.1 \pm 29.9\) & 0.11 & -0.03 & 0.14 & -0.17 & -0.13 & -0.91 & 1 \\
\hline \hline
\end{tabular}

Belle II \(\quad \int \mathcal{L d t}=189 \mathrm{fb}^{-1}\)

Welle II \(\int \mathcal{L} d t=189 \mathrm{fb}^{-1}\)```

