Knowns and Unknowns

 in $B \rightarrow D^{*}$ FFs
Martin Jung

Flavour@TH 2023
CERN, 9th of May 2023

Lepton-non-Universality in $b \rightarrow c \tau \nu$

- Partial cancellation of uncertainties
\leftrightarrows Precise predictions (and measurements)
- $R\left(D^{(*)}\right)$: BaBar, Belle, LHCb
\rightarrow average $\sim 3-4 \sigma$ from SM
More flavour $b \rightarrow c \tau \nu$ observables:
- τ-polarization ($\tau \rightarrow$ had) [1608.06391]
- $B_{c} \rightarrow J / \psi \tau \nu$ [1711.05623] : huge
- Differential rates from Belle, BaBar
- Total width of B_{c}
- $b \rightarrow X_{c} \tau \nu$ by LEP
- D^{*} polarization (Belle)
- $R\left(\Lambda_{c}\right) \rightarrow$ below SM

Note: only 1 result $\geq 3 \sigma$ from SM
In the following: discuss SM + NP predictions

Lepton-non-Universality in $b \rightarrow c \tau \nu$

$$
R(X) \equiv \frac{\operatorname{Br}(B \rightarrow X \tau \nu)}{\operatorname{Br}(B \rightarrow X \ell \nu)} \quad \text { - Partial cancellation of uncertainties }
$$

- $R\left(D^{(*)}\right)$: BaBar, Belle, LHCb

4 average $\sim 3-4 \sigma$ from SM
More flavour $b \rightarrow c \tau \nu$ observables:

- τ-polarization ($\tau \rightarrow$ had) [1608.06391]
- $B_{c} \rightarrow J / \psi \tau \nu$ [1711.05623] : huge
- Differential rates from Belle, BaBar
- Total width of B_{c}
- $b \rightarrow X_{c} \tau \nu$ by LEP
- D^{*} polarization (Belle)
- $R\left(\Lambda_{c}\right) \rightarrow$ below SM

Note: only 1 result $\geq 3 \sigma$ from SM
In the following: discuss SM + NP predictions

q^{2} dependence

- q^{2} range can be large, e.g. $q^{2} \in[0,12] \mathrm{GeV}^{2}$ in $B \rightarrow D$
- Calculations give usually one or few points
\rightarrow Knowledge of functional dependence on q^{2} crucial
- This is where discussions start...
\leftrightarrows Most $B \rightarrow D^{*}$ data not usable due to model dependence!

Give as much information as possible independently of this choice!

q^{2} dependence

- q^{2} range can be large, e.g. $q^{2} \in[0,12] \mathrm{GeV}^{2}$ in $B \rightarrow D$
- Calculations give usually one or few points
\rightarrow Knowledge of functional dependence on q^{2} crucial
- This is where discussions start...
\rightarrow Most $B \rightarrow D^{*}$ data not usable due to model dependence!
Give as much information as possible independently of this choice!

Even with FF-model-dependent data:
Consistent HFLAV $B \rightarrow D^{*}$ fit in CLN
\rightarrow Experimental w-dependence well established!

In the following: mostly BGL and HQE $(\rightarrow$ CLN $)$ parametrizations

HQE parametrization

Heavy-Quark Expansion (HQE) employs additional information:

- $m_{b, c} \rightarrow \infty$: all $B \rightarrow D^{(*)}$ FFs given by 1 Isgur-Wise function
- Systematic expansion in $1 / m_{b, c}$ and α_{s}
- Higher orders in $1 / m_{b, c}$: FFs remain related

4 Parameter reduction, necessary for NP analyses!

HQE parametrization

Heavy-Quark Expansion (HQE) employs additional information:

- $m_{b, c} \rightarrow \infty$: all $B \rightarrow D^{(*)}$ FFs given by 1 Isgur-Wise function
- Systematic expansion in $1 / m_{b, c}$ and α_{s}
- Higher orders in $1 / m_{b, c}$: FFs remain related

4 Parameter reduction, necessary for NP analyses!
CLN parametrization [Caprini+'97]:
HQE to order $1 / m_{b, c}, \alpha_{s}$ plus (approx.) constraints from unitarity [Bernlochner/Ligeti/Papucci/Robinson'17] : identical approach, updated and consistent treatment of correlations

Problem: Contradicts Lattice QCD (both in $B \rightarrow D$ and $B \rightarrow D^{*}$)
Dealt with by varying calculable ($@ 1 / m_{b, c}$) parameters, e.g. $h_{A_{1}}(1)$
4 Not a systematic expansion in $1 / m_{b, c}$ anymore!
\leftrightarrows Related uncertainty remains $\mathcal{O}\left[\Lambda^{2} /\left(2 m_{c}\right)^{2}\right] \sim 5 \%$, insufficient

HQE parametrization

Heavy-Quark Expansion (HQE) employs additional information:

- $m_{b, c} \rightarrow \infty$: all $B \rightarrow D^{(*)}$ FFs given by 1 Isgur-Wise function
- Systematic expansion in $1 / m_{b, c}$ and α_{s}
- Higher orders in $1 / m_{b, c}$: FFs remain related

4 Parameter reduction, necessary for NP analyses!
CLN parametrization [Caprini+'97]:
HQE to order $1 / m_{b, c}, \alpha_{s}$ plus (approx.) constraints from unitarity [Bernlochner/Ligeti/Papucci/Robinson'17] : identical approach, updated and consistent treatment of correlations

Problem: Contradicts Lattice QCD (both in $B \rightarrow D$ and $B \rightarrow D^{*}$)
Dealt with by varying calculable ($@ 1 / m_{b, c}$) parameters, e.g. $h_{A_{1}}(1)$
4 Not a systematic expansion in $1 / m_{b, c}$ anymore!
\rightarrow Related uncertainty remains $\mathcal{O}\left[\Lambda^{2} /\left(2 m_{c}\right)^{2}\right] \sim 5 \%$, insufficient
Solution: Include systematically $1 / m_{c}^{2}$ corrections
[Bordone/MJ/vDyk'19,Bordone/Gubernari/MJ/vDyk'20], using [Falk/Neubert'92]
[Bernlochner+'22] : model for $1 / m_{c}^{2}$ corrections \rightarrow fewer parameters

Theory determination of $b \rightarrow c$ Form Factors

[Bordone/MJ/vanDyk'19,Bordone/Gubernari/MJ/vanDyk'20]
For general NP analysis, FF shapes needed from theory!
Fit to all $B \rightarrow D^{(*)}$ FFs, using lattice, LCSR, QCDSR and unitarity [CLN,BGL,HPQCD'15'17,FNAL/MILC'14'15,Gubernari+'18,Ligeti+'92'93]
$\mathrm{k} / \mathrm{I} / \mathrm{m}$: order in z for leading/subleading/subsubleading IW functions
$42 / 1 / 0$ works, but only $3 / 2 / 1$ captures uncertainties
4 Consistent $V_{c b}$ value from Belle'17+'18
4 Predictions for diff. rates, perfectly confirmed by data

Comparison with new lattice calculations

Comparison with new lattice calculations

Comparison with new lattice calculations

Comparison with new lattice calculations

Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1$! $\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- HQE@1/ m_{c}^{2}
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\rightarrow Compatible

- HPQCD and BGJvD compatible

Comparison with new lattice calculations

- FNAL/MILC'21
- HQE@1/me
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\rightarrow Compatible

- HPQCD and BGJvD compatible
- Slope HPQCD-FNAL/MILC?

Comparison with new lattice calculations
Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1$! $\left(B_{s}:[\right.$ Harrison+'22] $)$

- FNAL/MILC'21
- HQE@1/me
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\rightarrow Compatible

- HPQCD and BGJvD compatible
- Slope HPQCD-FNAL/MILC?
- JLQCD "diplomatic"

Comparison with new lattice calculations

Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@w >1 ! $\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- HQE@1/me
- Exp (BGL)
- JLQCD prel
- HPQCD'23
- Compatible

- Similar pattern in h_{V} and $h_{A_{3}}$
- Tension between BGJvD and FNAL/MILC in $h_{A_{2}}$

Comparison with new lattice calculations
Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1$! $\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- HQE@1/ m_{c}^{2}
- Exp (BGL)
- JLQCD prel
- HPQCD'23

Comparison with new lattice calculations
Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1$! $\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- HQE@1/ m_{c}^{2}
- $\operatorname{Exp}(B G L)$
- JLQCD prel
- HPQCD'23

Comparison with new lattice calculations
Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1$! $\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- HQE@1/ m_{c}^{2}
- $\operatorname{Exp}(B G L)$
- JLQCD prel
- HPQCD'23

Comparison with new lattice calculations
Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1$! $\left(B_{s}:[\right.$ Harrison+'22] $)$

- FNAL/MILC'21
- HQE@1/me
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\rightarrow Compatible. Slope?

Comparison with new lattice calculations
Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1$! $\left(B_{s}:[\right.$ Harrison+'22] $)$

- FNAL/MILC'21
- HQE@1/me
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\rightarrow Compatible. Slope?

- Deviation HPQCD-BGJvD

Comparison with new lattice calculations
Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1$! $\left(B_{s}:[\right.$ Harrison+'22] $)$

- FNAL/MILC'21
- HQE@1/me
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\rightarrow Compatible. Slope?

- Deviation HPQCD-BGJvD
- FNAL/MILC close to HPQCD

Comparison with new lattice calculations

Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@ $w>1$! $\left(B_{s}:\right.$ [Harrison+'22] $)$

- FNAL/MILC'21
- HQE@1/me
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\rightarrow Compatible. Slope?

- Deviation HPQCD-BGJvD
- FNAL/MILC close to HPQCD
- Deviation wrt experiment $\left(R_{2}^{\text {HFLAV }}(1)=0.853(17)\right)$
\rightarrow Requires further investigation!

Comparison with new lattice calculations

Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@w >1 ! $\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- HQE@1/me
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\rightarrow Compatible. Slope?

- Deviation HPQCD-BGJvD
- FNAL/MILC close to HPQCD
- Deviation wrt experiment $\left(R_{2}^{\mathrm{HFLAV}}(1)=0.853(17)\right)$
\rightarrow Requires further investigation!
- JLQCD "diplomatic"

Comparison with new lattice calculations

Major improvement: $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs@w >1 ! $\left(B_{s}:[H a r r i s o n+' 22]\right)$

- FNAL/MILC'21
- HQE@1/me
- Exp (BGL)
- JLQCD prel
- HPQCD'23
\rightarrow Compatible. Slope?

- Also in R_{0} deviation wrt BGJvD
- JLQCD again "diplomatic"
\leftrightarrows Requires further investigation!
\rightarrow Correlations?

Binned $V_{c b}$ from Belle'18 data: FNAL/MILC vs HPQCD

7 / 14

Binned $V_{c b}$ from Belle'18 data: FNAL/MILC vs JLQCD

Overview over predictions for $R\left(D^{*}\right)$

Overall consistent SM predictions!
"Explaining" $R\left(D^{*}\right)$ by FM/HPQCD \rightarrow NP in $B \rightarrow D^{*}(e, \mu) \nu$!

Form-factor truncation

Form-factor truncation

Key question: Where do we truncate our expansions?
\rightarrow A [Bernlochner+'19] : include parameter only if χ^{2} decreases significantly
4 B (GJS, BGJvD): include one "unnecessary" order
Comments:

- Large difference, $\sim 50 \%$ difference in uncertainty
- Motivation for A: convergence, avoid overfitting
- Motivation for B : avoid underestimating uncertainties
\rightarrow Different perspectives: only describing data, A is ok.
However: we extrapolate to regions where we lack sensitivity
Example: $g(w)$ from FNAL/MILC
- perfect description at $\mathcal{O}(z)$
- large impact from $\mathcal{O}\left(z^{2}\right)$
- Nevertheless: $\mathcal{O}\left(z^{2}\right) \leq 6 \% \times \mathcal{O}(z) \frac{{\underset{\Xi}{3}}^{0.25}}{0.20}$

4 overfitting limited
Just because you're not sensitive,

Priors and potential biases I

Common error estimate:

$$
\delta X \sim \mathcal{O}(1) \times \text { known factor }
$$

4 What's " $\mathcal{O}(1)$ "?

- Answer seems to be community-dependent
- Often in lattice analyses: gaussian around 0 , width 1
- BGJvD HQET FFs: flat range [-20, 20]
- JLQCD: $d_{w}\left(h_{A_{2}}\right)=10.3(7.1)$
\rightarrow potentially large differences
\rightarrow needs to be checked and communicated
Similarly: treatment of BGL coefficients
- FNAL/MILC and HPQCD:
series in $(w-1)^{n}$
- Priors can be strong in BGL space
- Plot: prior information, only (HPQCD)
\rightarrow Comparable to final result

Priors and potential biases II

Different conclusions starting from identical information Example: $R\left(D^{*}\right)$ extraction from FNAL/MILC data

$R\left(D^{*}\right)$ including kinematical identities and weak unitarity

$$
R\left(D^{*}\right) \stackrel{\mathrm{WU}}{=} 0.269_{-0.008}^{+0.020} \quad \stackrel{\mathrm{FM}}{=} 0.274 \pm 0.010 \quad \stackrel{\text { Rome }}{=} 0.275 \pm 0.008
$$

Difference WU-FM: FM apply prior on BGL coefficients
Difference WU-Rome (educated guess): iterated "unitarity filter" + different error estimate

Applying data: $R\left(D^{*}\right)=0.249 \pm 0.001(!)$ universally.

Uncertainty determination

MC points together with χ^{2} profile (minimizing for each FF value) Vertical: CV MC, " $1 \sigma^{\prime \prime}$ MC, symmetric 68.3% interval MC, $\Delta \chi^{2}=1$

The Dispersive Matrix (DM) Method

Alternative implementation of unitarity [Bourrely+'81,Lellouch'95] :

- Identical starting point as BGL: dispersion relation
- Known information in a matrix with positive determinant

4 Form-factor bounds, equivalent to GJS [Caprini'19]

- Enables parametrization-free analysis

Implemented recently for $B \rightarrow{ }^{20} D^{*} \ell \nu$ [DiCarlo+'21,Martinelli+' $\left.{ }^{40} 21,22\right]$:

- Use DM w/ new FNAL/MILC data to obtain FF bands
- Calculate $V_{c b}$ bin-wise, combine $d \Gamma / d x$ bins $\left(x=q^{2}, \cos \theta, \ldots\right)$ (including experimental and theoretical correlations)
$\Rightarrow 2 \times 4 V_{c b}$ values. Claim: 0.5σ to $V_{c b}^{\text {incl }}, 1.3 \sigma$ to $R\left(D^{*}\right)$

The Dispersive Matrix (DM) Method

Differences between DM and GJS [Gambino/MJ/Schacht'19]:

- GJS: Combined fit of lattice and experiment, imposing unitarity
- DM: Unweighted, uncorrelated average of the $4 V_{c b}$ values:

$$
\mu=\frac{1}{N} \sum_{k=1}^{N} x_{k}, \quad \sigma_{x}^{2}=\frac{1}{N} \sum_{k=1}^{N} \sigma_{k}^{2}+\frac{1}{N} \sum_{k=1}^{N}\left(x_{k}-\mu_{x}\right)^{2}
$$

$\leftrightarrows V_{c b}^{\mathrm{GJS}}=\left(39.2_{-1.2}^{+1.4}\right) \times 10^{-3}, \quad V_{c b}^{\mathrm{DM}}=(40.8 \pm 1.7) \times 10^{-3}$

Conclusions

We have work ahead of us!

1. q^{2} dependence of FFs critical
\rightarrow Need parametrization-independent data
2. Inclusion of higher-order (theory) uncertainties essential
3. HQE: systematic expansion in $1 / m, \alpha_{s}$, relates FFs_{s}
$\rightarrow \mathcal{O}\left(1 / m_{c}\right)(\rightarrow$ CLN $)$ not sufficient anymore
4. Important first LQCD analyses in $B_{(s)} \rightarrow D_{(s)}^{*} @$ finite recoil
\rightarrow HPQCD: First $2+1+1$ results, full q^{2} range!
\leftrightarrows Tensions in ratios - correlations?
5. Despite complications: $R\left(D^{(*)}\right) \mathrm{SM}$ prediction robust!

Central lesson:
Experiment and theory (lattice + pheno) need to work closely together!

Exclusive decays: Form factors

In exclusive decays, hadronic information encoded in Form Factors They parametrize fundamental mismatch:

$\left\langle D_{q}\left(p^{\prime}\right)\right| \bar{c} \gamma^{\mu} b\left|\bar{B}_{q}(p)\right\rangle=\left(p+p^{\prime}\right)^{\mu} f_{+}^{q}\left(q^{2}\right)+\left(p-p^{\prime}\right)^{\mu} f_{-}^{q}\left(q^{2}\right), q^{2}=\left(p-p^{\prime}\right)^{2}$
Most general matrix element parametrization, given symmetries:
Lorentz symmetry plus P - and T-symmetry of QCD
$f_{ \pm}\left(q^{2}\right)$: real, scalar functions of one kinematic variable
How to obtain these functions?
4 Calculable w/ non-perturbative methods (Lattice, LCSR,...) Precision?
4 Measurable e.g. in semileptonic transitions Normalization? Suppressed FFs? NP?

The BGL parametrization [Boyd/Grinstein/Lebed, 90's]
FFs are parametrized by a few coefficients the following way:

1. Consider analytical structure, make poles and cuts explicit
2. Without poles or cuts, the rest can be Taylor-expanded in z
3. Apply QCD symmetries (unitarity, crossing)
\rightarrow dispersion relation
4. Calculate partonic part (mostly) perturbatively

The BGL parametrization [Boyd/Grinstein/Lebed, 90's]
FFs are parametrized by a few coefficients the following way:

1. Consider analytical structure, make poles and cuts explicit
2. Without poles or cuts, the rest can be Taylor-expanded in z
3. Apply QCD symmetries (unitarity, crossing)
\rightarrow dispersion relation
4. Calculate partonic part (mostly) perturbatively

Result: Model-independent parametrization

$$
F(t)=\frac{1}{P(t) \phi(t)} \sum_{n=0}^{\infty} a_{n}\left[z\left(t, t_{0}\right)\right]^{n}
$$

- a_{n} : real coefficients, the only unknowns
- $P(t)$: Blaschke factor(s), information on poles below t_{+}
- $\phi(t)$: Outer function, chosen such that $\sum_{n=0}^{\infty} a_{n}^{2} \leq 1$

Series in z with bounded coefficients (each $\left|a_{n}\right| \leq 1$)!
4 Uncertainty related to truncation is calculable!

$B \rightarrow D \ell \nu$

$B \rightarrow D \ell \nu$, aka "The teacher's pet":

- Excellent agreement between experiments [BaBar'09,Belle'16]
- Excellent agreement between two lattice determinations [FNAL/MILC'15,HPQCD'16]
\rightarrow Lattice data inconsistent with CLN parametrization! (but consistent w/HQE@1/m, discussed later)
- BGL fit [Bigi/Gambino'16]:

$$
R(D)=0.299(3)
$$

See also [Jaiswal+,Berlochner+'17,MJ/Straub'18,Bordone/MJ/vanDyk'19]

$f_{+, 0}(z)$, inputs:

- FNAL/MILC'15
- HPQCD'16
- BaBar'09
- Belle'16

$V_{c b}+R\left(D^{*}\right) \mathrm{w} /$ data + lattice + unitarity $[$ Gambino/MJ/Schacht'10]

Belle'18(+'17) provide FF-independent data for 4 single-differential rates BGL analysis:

- Datasets compatible
- d'Agostini bias + syst. important
- Expand FFs to z^{2}
450% increased uncertainties

- Belle'18: no parametrization dependence
- Belle'17 never published \rightarrow replace w/ Belle'23, not available yet
- Tension w/ inclusive reduced, but not removed

$$
R\left(D^{*}\right)=0.253_{-0.006}^{+0.007} \quad \text { (including LCSR point) }
$$

Comparison to Bernlochner+'22

Bernlochner et al. also perform HQE analysis $@ 1 / m_{c}^{2}$. Differences:

- Postulate different counting within HQET

4 Highly constraining model for higher-order corrections

- Avoid use of LCSR (and mostly QCDSR) results
- Include partial α_{s}^{2} corrections
- Include FNAL/MILC results partially
- Expansion in z: 2/1/0 (justified in [Bernlochner+'19])

Observations:

- $1 / m_{c}^{2}$ corrections necessary
- Overall small uncertainties
- $V_{c b}=(38.7 \pm 0.6) \times 10^{-3}$

4 smaller due to larger $\mathcal{F}(1)$

- $R\left(D^{*}\right)$: agreement w/ BGJvD
- $R(D) \sim 3 \sigma$ from GJS + BGJvD
\rightarrow In my opinion due to model

$V_{c b}+R\left(D^{*}\right) \mathrm{w} /$ data + lattice + unitarity [Gambino/MJ/Schacht'19] Belle'17+'18 provide FF-independent data for 4 single-differential rates Analysis of these data with BGL form factors:
- Datasets roughly compatible
- d'Agostini bias + syst. important
- All FFs to z^{2} to include uncertainties 450% increased uncertainties
- 2018: no parametrization dependence

$$
\begin{aligned}
\left|V_{c b}^{D^{*}}\right| & =39.6_{-1.0}^{+1.1}\left[39.2_{-1.2}^{+1.4}\right] \times 10^{-3} \\
R\left(D^{*}\right) & =0.254_{-0.000}^{+0.007}\left[0.253_{-0.0006}^{+0.007}\right]
\end{aligned}
$$

In brackets: 2018 only ($\Delta V_{c b}^{\text {Belle }}=0.9$)

Updating the $\left|V_{c b}\right|$ puzzle:

- Tension 1.9σ (larger $\delta V_{c b}^{B \rightarrow D^{*}}$)
- $B_{s} \rightarrow D_{s}^{(*)}$ reduces tension further

- $V_{c b}^{B \rightarrow D^{*}}$ vs. $V_{c b}^{\text {incl }}$ still problematic

See also [Bigi+,Bernlocher+,Grinstein+'17,Jaiswal+'17'19,MJ/Straub'18,Bordone+'19/20]

Theory determination of $b \rightarrow c$ Form Factors
SM: BGL fit to data + FF normalization $\rightarrow\left|V_{c b}\right|$
NP: can affect the q^{2}-dependence, introduces additional FFs
4 To determine general NP, FF shapes needed from theory
[MJ/Straub'18,Bordone/MJ/vDyk'19] used all available theory input:

- Unitarity bounds (using results from [CLN, BGL])

4 non-trivial $1 / m$ vs. z expansions

- LQCD for $f_{+, 0}\left(q^{2}\right)(B \rightarrow D), h_{A_{1}}\left(q_{\max }^{2}\right)\left(B \rightarrow D^{*}\right)$ [HPQCD'15,'17,Fermilab/MILC'14,'15]
- LCSR for all FFs $\left(\bmod f_{T}\right)$ [Gubernari/Kokulu/vDyk'18]
- QCDSR results for $1 / m$ IW functions [Ligeti+'92'93]
- HQET expansion to $\mathcal{O}\left(\alpha_{s}, 1 / m_{b}, 1 / m_{c}^{2}\right)$

FFs under control;
$R\left(D^{*}\right)=0.247(6)$
[Bordone/MJ/vDyk'19]

Robustness of the HQE expansion up to $1 / m_{c}^{2}$
[Bordone/MJ/vDyk'19]
Testing FFs by comparing to data and fits in BGL parametrization:

- Fits $3 / 2 / 1$ and $2 / 1 / 0$ are theory-only fits(!)
- $k / I / m$ denotes orders in z at $\mathcal{O}\left(1,1 / m_{c}, 1 / m_{c}^{2}\right)$
- w-distribution yields information on FF shape $\rightarrow V_{c b}$
- Angular distributions more strongly constrained by theory, only

4 Predicted shapes perfectly confirmed by $B \rightarrow D^{(*)} \ell \nu$ data
$\leftrightarrows V_{c b}$ from Belle'17 compatible between HQE and BGL!

Robustness of the HQE expansion up to $1 / m_{c}^{2}$
[Bordone/MJ/vDyk'19]
Testing FFs by comparing to data and fits in BGL parametrization:

- $B \rightarrow D^{*}$ BGL coefficient ratios from:

1. Data (Belle'17+'18) + weak unitarity (yellow)
2. HQE theory fit $2 / 1 / 0$ (red)
3. HQE theory fit $3 / 2 / 1$ (blue)
\rightarrow Again compatibility of theory with data
4 $2 / 1 / 0$ underestimates the uncertainties massively
\rightarrow For $b_{i}, c_{i}\left(\rightarrow f, \mathcal{F}_{1}\right)$ data and theory complementary

Including $\bar{B}_{s} \rightarrow D_{s}^{(*)}$ Form Factors [Bordone/Gubemari/MJ//Dyk'20]
Dispersion relation sums over hadronic intermediate states
\rightarrow Includes $B_{s} D_{s}^{(*)}$, included via $\mathrm{SU}(3)+$ conservative breaking
4 Explicit treatment can improve also $\bar{B} \rightarrow D^{(*)} \ell \nu$
Experimental progress in $\bar{B}_{s} \rightarrow D_{s}^{(*)} \ell \nu$:
2 new LHCb measurements [2001.03225, 2003.08453]
Improved theory determinations required, especially for NP
We extend our $1 / m_{c}^{2}$ analysis by including:

- Available lattice data:
$\left(2 \bar{B}_{s} \rightarrow D_{s}\right.$ FFs $\left(q^{2}\right.$ dependent), $1 \bar{B}_{s} \rightarrow D^{*}$ FF (only $\left.\left.q_{\max }^{2}\right)\right)$
- Adaptation of existing QCDSR results [Ligeti/Neubert/Nir'93'94], including SU(3) breaking
- New LCSR results extending [Gubernari+'18] to B_{s}, including SU(3) breaking
\rightarrow Fully correlated fit to $\bar{B} \rightarrow D^{(*)}, \bar{B}_{s} \rightarrow D_{s}^{(*)} \mathrm{FFs}$

Including $\bar{B}_{s} \rightarrow D_{s}^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}\left(1 / m_{c}^{2}\right)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable SU(3) breaking
- Slight influence of strengthened unitarity bounds
- Improved determination of $\bar{B}_{s} \rightarrow D_{s}^{(*)}$ FFs

Including $\bar{B}_{s} \rightarrow D_{s}^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}\left(1 / m_{c}^{2}\right)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable SU(3) breaking
- Slight influence of strengthened unitarity bounds
- Improved determination of $\bar{B}_{s} \rightarrow D_{s}^{(*)}$ FFs

Including $\bar{B}_{s} \rightarrow D_{s}^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}\left(1 / m_{c}^{2}\right)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable SU(3) breaking
- Slight influence of strengthened unitarity bounds
- Improved determination of $\bar{B}_{s} \rightarrow D_{s}^{(*)}$ FFs

Theory-only predictions:

$$
\begin{aligned}
R(D) & =0.299(3) & R\left(D^{*}\right)=0.247(5) \\
R\left(D_{s}\right) & =0.297(3) & R\left(D_{s}^{*}\right)=0.245(8)
\end{aligned}
$$

Theory+Experiment (Belle'17) predictions:

$$
\begin{aligned}
R(D) & =0.298(3) & R\left(D^{*}\right)=0.250(3) \\
R\left(D_{s}\right) & =0.297(3) & R\left(D_{s}^{*}\right)=0.247(8)
\end{aligned}
$$

Application: Flavour universality in $B \rightarrow D^{*}(e, \mu) \nu$
[Bobeth/Bordone/Gubernari/MJ/vDyk'21]
So far: Belle'18 data used in SM fits, flavour-averaged However: Bins 40×40 covariances given separately for $\ell=e, \mu$
\Rightarrow Belle'18: $R_{e / \mu}\left(D^{*}\right)=1.01 \pm 0.01 \pm 0.03$
4 What can we learn about flavour-non-universality? $\rightarrow 2$ issues:

1. $e-\mu$ correlations not given, but constructible from Belle'18
2. 3 bins linearly dependent, but covariances not singular

Two-step analysis:

1. 2×4 angular observables suffice for 2×30 angular bins

4 Model-independent description including NP!
2. Compare with SM predictions, using $\mathrm{FFs} @ 1 / m_{c}^{2}$ [Bordone+'19]

4 $\sim 4 \sigma$ discrepancy in $\Delta A_{\mathrm{FB}}=A_{\mathrm{FB}}^{\mu}-A_{\mathrm{FB}}^{e}$

Generalities regarding this anomaly

$\sim 15 \%$ of a SM tree decay $\sim V_{c b}$: This is a huge effect!
\rightarrow Need contribution of $\sim 5-10 \%$ (w/ interference) or $\gtrsim 40 \%$ (w/o interference) of SM

What do we do about this?

- Check the SM prediction!
[\rightarrow Bigi+,Bordone+,Gambino+,Grinstein+,Bernlochner+]
$4 \delta R\left(D^{*}\right)$ larger, anomaly remains

- Combined analysis of all $b \rightarrow c \tau \nu$ observables [100+ papers]
\rightarrow First model discrimination
- Related indirect bounds (partly model-dependent)
\rightarrow High p_{T} searches, lepton decays, LFV, EDMs, ...
- Analyze flavour structure of potential NP contributions
\rightarrow quark flavour structure, e.g. $b \rightarrow u$
4 lepton flavour structure, e.g. $b \rightarrow c \ell(=e, \mu) \nu$

A puzzle in non-leptonic $b \rightarrow c$ transitions

[Bordone/Gubernari/Huber/MJ/vDyk'20]
FFs also of central importance in non-leptonic decays:

- Complicated in general, $B \rightarrow M_{1} M_{2}$ dynamics
- Simplest cases: $\bar{B}_{d} \rightarrow D_{d}^{(*)} \bar{K}$ and $\bar{B}_{s} \rightarrow D_{s}^{(*)} \pi$ (5 diff. quarks)

4 Colour-allowed tree, $1 / m_{b}^{0} @ \mathcal{O}\left(\alpha_{s}^{2}\right)$ [Huber+'16], factorizes at $1 / m_{b}$
4 Amplitudes dominantly $\sim \bar{B}_{q} \rightarrow D_{q}^{(*)}$ FFs
\rightarrow Used to determine f_{s} / f_{d} at hadron colliders [Fleischer+'11]
Updated and extended calculation: tension of 4.4σ w.r.t. exp.!

2.

- Large effect, $\sim-30 \%$ for BRs
- Ratios of BRs ok
- QCDf uncertainty $\mathcal{O}\left(1 / m_{b}^{2}, \alpha_{s}^{3}\right)$
- Data consistent (too few abs. BRs)
- NP? $\Delta_{P} \sim \Delta_{V} \sim-20 \%$ possible
\leftrightarrows We will learn something important!

