Global fits to $b \rightarrow$ sll data

Flavour@TH 2023-11/05/2023

Méril Reboud

Based on:

- Gubernari, van Dyk, JV 2011.09813
- Gubernari, Reboud, van Dyk, JV 2206.03797
- Ahmis, Bordone, Reboud 2208.08937
- Gubernari, Reboud, van Dyk, JV 2305.06301

Introduction

- Previously in Flavour@TH 2023:
- Local and non-local form factors are the main source of uncertainties in $b \rightarrow$ sel decays
- Both follow the same analytic structure:

- The GRvDV parametrization diagonalizes the dispersive bounds:

$$
\hat{z}\left(q^{2}\right)=\frac{\sqrt{\hat{t}_{\Gamma}-q^{2}}-\sqrt{\hat{t}_{\Gamma}}}{\sqrt{\hat{t}_{\Gamma}-q^{2}}+\sqrt{\hat{t}_{\Gamma}}}
$$

$$
\widehat{\mathcal{H}}(\hat{z})=\sum_{n=0}^{\infty} \beta_{n} p_{n}(\hat{z})
$$

Introduction and Outline

- I will cover three types of global $b \rightarrow s \ell e$ fits:
- The fit of the local form factors using dispersive bounds
- The fit of the non local contributions charm loops
- The fit of WET coefficients based on experimental data
- Given the discussion we had so far [esp. during Jonathan's, Paolo's and Martin's talk], I will start with discussing the parametrization in practice with $\wedge_{b} \rightarrow \wedge^{*} e \ell$

I. The method in practice

Example with $\wedge_{b} \rightarrow \wedge(1520) \ell \ell$

- Inputs:
- LQCD estimates at $q^{2}=16.3$ and $16.5 \mathrm{GeV}^{2}$ [Meinel, Rendon '21]
- no LCSR available
\rightarrow use (loose) SCET relations [Descotes-Genon, M. Novoa-Brunet '19]

$$
\begin{aligned}
f_{\perp^{\prime}}(0) & =0 \pm 0.2, & g_{\perp^{\prime}}(0) & =0 \pm 0.2, & h_{\perp^{\prime}}(0) & =0 \pm 0.2, \\
\tilde{h}_{\perp^{\prime}}(0) & =0 \pm 0.2, & f_{+}(0) / f_{\perp}(0) & =1 \pm 0.2, & f_{\perp}(0) / g_{0}(0) & =1 \pm 0.2,
\end{aligned} \quad \mathrm{O}\left(a_{s} / \pi, \Lambda_{\mathrm{QCD}} / \mathrm{m}_{\mathrm{b}}\right)
$$

- 14 form factors: 17 parameters ($\mathrm{N}=1$), 31 parameters ($\mathrm{N}=2$)

21 LQCD inputs + 9 SCET relations: 30 constraints

P
2 * $14-7$ endpoint relations at $\mathrm{q}^{2}{ }_{\text {max }}$

- $N=1$ does not give a good fit (p value ~ 0)
- Use an under-constrained fit ($\mathrm{N}>1$) and allows for saturation of the dispersive bound
\rightarrow The uncertainties are truncation order independent: increasing the order does not change their size
- Same conclusions were found for $\Lambda_{b} \rightarrow \Lambda$ form factors [Blake, Meinel, Rahimi, van Dyk '22]

[Ahmis, MR, Bordone '22]
- Uncertainties are large but under control and systematically improvable
- LHCb analysis confirmed the usual $b \rightarrow$ see tension at low q^{2}

II. Improved dispersive bounds

Correlator and Helicities

- Main idea: Compute the inclusive $e^{+} e^{-} \rightarrow \bar{b} s$ cross-section and relate it to the form factors [Bharucha, Feldmann, Wick '10]

Insertion of a scalar, vector or tensor current

+ other diagrams: loops, quark and gluon condensates...
- Usually, the correlator $\Pi_{\Gamma}^{\mu \nu}(q) \equiv i \int d^{4} x e^{i q \cdot x}\langle 0| \mathcal{T}\left\{J_{\Gamma}^{\mu}(x) J_{\Gamma}^{\dagger, \nu}(0)\right\}|0\rangle$ is decomposed as:

$$
\Pi_{\Gamma}^{\mu \nu}(q) \equiv \frac{q^{\mu} q^{\nu}}{q^{2}} \Pi_{\Gamma}^{(J=0)}+\frac{1}{D-1}\left(\frac{q^{\mu} q^{\nu}}{q^{2}}-g^{\mu \nu}\right) \Pi_{\Gamma}^{(J=1)}
$$

Correlator and Helicities

- Main idea: Compute the inclusive $e^{+} e^{-} \rightarrow \bar{b} s$ cross-section and relate it to the form factors [Bharucha, Feldmann, Wick '10]

Insertion of a scalar, vector or tensor current

+ other diagrams: loops, quark and gluon condensates...
- We suggest the more generic decomposition:

$$
\Pi_{\Gamma}^{\mu \nu}(q) \equiv \sum_{\lambda, \lambda^{\prime}} \epsilon^{\mu}(\lambda) \epsilon^{\nu *}\left(\lambda^{\prime}\right) \Pi_{\Gamma}^{\left(\lambda, \lambda^{\prime}\right)}\left(q^{2}\right)
$$

Correlator and Helicities

- Main advantage:
- The OPE calculation is independent of the helicities:

$$
\left.\Pi_{\Gamma}^{(J=1)}\right|_{\mathrm{OPE}}=\left.\Pi_{\Gamma}^{(0)}\right|_{\mathrm{OPE}}=\left.\Pi_{\Gamma}^{(\|)}\right|_{\mathrm{OPE}}=\left.\Pi_{\Gamma}^{(\perp)}\right|_{\mathrm{OPE}}
$$

\rightarrow The calculation of Ref. [Bharucha, Feldmann, Wick '10] still applies!

- Remove spurious correlations between form factors:
- e.g. A_{1} and A_{12} now fulfill different bounds
- decorrelate completely $B \rightarrow K$ from ($B \rightarrow K^{*}, B_{s} \rightarrow \varphi$)

Correlator and Helicities

- In equations:
- This is the bound used in the literature:
$\left.\chi_{A}^{(J=1)}\right|_{B K^{*}}=\frac{\eta^{B \rightarrow K^{*}}}{24 \pi^{2}} \int_{\left(M_{B}+M_{K^{*}}\right)^{2}}^{\infty} d s \frac{\lambda_{\text {kin }}^{1 / 2}}{s^{2}\left(s-Q^{2}\right)^{3}}\left[\left.s\left(M_{B}+M_{K^{*}}\right)^{2} A_{1}^{B \rightarrow K^{*}}\right|^{2}+32 M_{B}^{2} M_{K *}^{2}\left|A_{12}^{B \rightarrow K^{*}}\right|^{2}\right]$
- And this is what we propose:

$$
\begin{aligned}
\left.\chi_{A}^{(0)}\right|_{\bar{B} K^{*}} & =\frac{\eta^{B \rightarrow K^{*}}}{\pi^{2}} \int_{\left(M_{B}+M_{\left.K^{*}\right)^{2}}\right.}^{\infty} d s \frac{\lambda_{\mathrm{kin}}^{1 / 2}}{s^{2}\left(s-Q^{2}\right)^{3}} 4 M_{B}^{2} M_{K^{*}}^{2}{\left|A_{12}^{B \rightarrow K^{*}}\right|^{2}}^{\left.\chi_{A}^{(\|)}\right|_{\bar{B} K^{*}}}=\frac{\eta^{B \rightarrow K^{*}}}{8 \pi^{2}} \int_{\left(M_{B}+M_{\left.K^{*}\right)^{2}}\right.}^{\infty} d s \frac{\lambda_{\mathrm{kin}}^{1 / 2}}{s^{2}\left(s-Q^{2}\right)^{3}} s\left(M_{B}+M_{K^{*}}\right)^{2} A_{1}^{\left.B \rightarrow K^{*}\right|^{2}},
\end{aligned}
$$

Local form factors fit

- With this framework we perform a combined fit of $B \rightarrow K, B \rightarrow K^{*}$ and $B_{s} \rightarrow \varphi$ LCSR and lattice QCD inputs:
- B \rightarrow K:
- [HPQCD '13 and '22; FNAL/MILC '17]
- ([Khodjamiriam, Rusov '17]) \rightarrow large uncertainties, not used in the fit
- $B \rightarrow K^{*}$:
- [Horgan, Liu, Meinel, Wingate '15]
- [Gubernari, Kokulu, van Dyk '18] (B-meson LCSRs)
$-\mathrm{B}_{\mathrm{s}} \rightarrow \varphi$:
- [Horgan, Liu, Meinel, Wingate '15]
- [Gubernari, van Dyk, Virto '20] (B-meson LCSRs)
- Baryonic decays should be added, but there are currently only few constraints
- Bayesian analysis using EOS
- Implementation of the dispersive bound:

$$
-2 \log P(r)= \begin{cases}0 & \text { if } r<1 \\ \frac{(r-1)^{2}}{\sigma^{2}} & \text { otherwise }, \\ \text { 10\% uncertainty on the OPE calculation } \\ \text { [Bharucha, Feldmann, Wick '10] }\end{cases}
$$

- To many constraint to perform an under-constrained fit \rightarrow Stability criterion: truncate the series expansion to $N=2,3,4$ and compare the form factor uncertainties
- All the samples are considered to be correlated only via the dispersive bounds
- Since $B \rightarrow K$ and $\left(B \rightarrow K^{*}, B_{s} \rightarrow \varphi\right)$ are decoupled, we perform 3 separated fits
- $B \rightarrow K^{*}$ and $B_{s} \rightarrow \varphi$ samples are combined with a weighting procedure:

$$
w\left(r_{\Gamma, \lambda}^{B \rightarrow K^{*}}\right)=\int \operatorname{dr} p_{\Gamma, \lambda}^{B_{s} \rightarrow \phi}(r) \times P\left(\text { dispersive bound for } \Gamma, \lambda \mid r_{\Gamma, \lambda}^{1 \mathrm{pt}}+r_{\Gamma, \lambda}^{B \rightarrow K^{*}}+r\right)
$$

Integration over the $\mathrm{B}_{\mathrm{s}} \rightarrow \varphi$ saturations PDF

$$
w^{B \rightarrow K^{*}}=\prod w\left(r_{\Gamma, \lambda}^{B \rightarrow K^{*}}\right)
$$

Results

Main conclusions:

- Fits are very good already at $\mathrm{N}=2$ (p -values $>77 \%$)
- LCSR and LQCD combine nicely and still dominate the uncertainties
- Progresses in LQCD will eventually make LCSR irrelevant (?)

- Saturations are small for $\mathrm{N}=2$, in agreement with [Bharucha, Feldmann, Wick '10]

- The low saturations in $r_{t, v}$ and $r_{o, v}$ are probably due to large contributions in the baryonic decays, as discussed in the first part of this talk

Comparison plots

EOS

- For comparison purposes I normalize the form factors to our $\mathrm{N}=3$ best-fit point
- Uncertainties for $B \rightarrow K$ are now well below 5% in the physical region

Comparison plots

EOS

- For comparison purposes I normalize the form factors to our $\mathrm{N}=3$ best-fit point
- Uncertainties for $B \rightarrow K$ are now well below 5% in the physical region
- We compare the different values of the truncation order N

Comparison plots

- For comparison purposes I normalize the form factors to our $\mathrm{N}=3$ best-fit point
- Uncertainties for $B \rightarrow K$ are now well below 5% in the physical region
- We compare the different values of the truncation order N
- I also add the result of a usual Simplified Series Expansion à la [Bharucha, Feldmann, Wick '10; Bharucha, Straub, Zwicky '15]

$$
f(t)=\frac{1}{P(t)} \sum_{k} \tilde{\alpha}_{k} z^{k}\left(t, t_{0}\right)
$$

This is the generic result, namely:

- $\mathrm{N}=2$ shows a peculiar behaviour
- For $\mathrm{N}>2$ the uncertainties are stable
- BSZ is a good approximation in the physical range, but underestimates the uncertainties at negative q^{2}

\rightarrow The dispersive bounds stabilizes regions of the phase space with few theory constraints
\rightarrow This is particularly useful at negative q^{2} to estimate the non-local form factors
- For $\mathrm{N}=2$, the bounds are not saturated and the parameters follow Gaussian distributions to a good approximation (perplexities > 95\%)
- Already at $\mathrm{N}=3$, distortions of the distribution are clearly visible

- All the plots are available here: github.com/eos/analysis-2023-02
- We also added
- the updated posterior distributions for $\mathrm{N}=2$ in our parametrization and using a SSE as YAML files
- All the tools/documentation to reproduce our results
- These results are also available in EOS v1.0.7:
- /eos/constraints/B-to-P-P-form-factors.yaml
- /eos/constraints/B-to-P-P-form-factors.yaml

III. Parametrization of non-local form factors

\rightarrow I will stick to the conclusions of our paper and defer all discussion to this afternoon's session

Non-local form factors

$$
\mathcal{A}_{\lambda}^{L, R}\left(B \rightarrow M_{\lambda} \ell \ell\right)=\mathcal{N}_{\lambda}\left\{\left(C_{9} \mp C_{10}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\frac{2 m_{b} M_{B}}{q^{2}}\left[C_{7} \mathcal{F}_{\lambda}^{T}\left(q^{2}\right)-16 \pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}\left(q^{2}\right)\right]\right\}
$$

$$
\mathcal{H}_{\mu}(k, q)=i \int d^{4} x e^{i q \cdot x}\langle\bar{M}(k)| T\left\{\mathcal{J}_{\mu}^{\mathrm{em}}(x), \mathcal{C}_{i} \mathcal{O}_{i}\right\}|\bar{B}(q+k)\rangle
$$

- Problematic because they can mimic a BSM signal!
- \mathcal{H}_{λ} can be interpreted as a shift to C_{9} and C_{7}

- This shift is lepton-flavour universal (as now seen in the data)
- Notably harder to estimate, no lattice computation so far
- Different parametrizations are suggested

Theory inputs

\mathcal{H}_{λ} can still be calculated in two kinematics regions:

- Local OPE $|a|^{2} \gtrsim m_{b}{ }^{2}$ [Grinstein, Piryol '04; Beylich, Buchalla, Feldmann '11]
- Light Cone OPE $q^{2} \ll 4 m_{c}^{2}$ [Khodjamirian, Mannel, Pivovarov, Wang '10]

LO and a_{s} corrections

Analyticity properties

$$
\mathcal{H}_{\mu}(k, q)=i \int d^{4} x e^{i q \cdot x}\langle\bar{M}(k)| T\left\{\mathcal{J}_{\mu}^{\mathrm{em}}(x), \mathcal{C}_{i} \mathcal{O}_{i}\right\}|\bar{B}(q+k)\rangle
$$

Analyticity properties of the Q_{c} dependent part:

- Poles due to charmonium state
- Branch cut in the physical range due to on-shell D meson production: $\mathrm{B} \rightarrow$ MDD
- The branch cut in k^{2} makes the coefficients of the z -
 expansion complex-valued
- Still focusing on $B \rightarrow K, B \rightarrow K^{*}$ and $B_{s} \rightarrow \varphi$ Inputs:
- 4 theory point at negative q^{2} from the light cone OPE
- Experimental results at the J/ Ψ (we keep $\psi(2 S)$ for future work)
- Use again an under-constrained fit $(\mathrm{N}=5)$ and allows for saturation of the dispersive bound
\rightarrow The uncertainties are truncation order independent, increasing the expansion order does not change their size
\rightarrow All p-values are larger than 11\%
[Gubernari, MR, van Dyk, Virto '22]

SM predictions

- Good overall agreement with previous theoretical approaches [Beneke, Feldman, Seidel '01 \& '04]
- Small deviation in the slope of $B_{s} \rightarrow \phi \mu \mu$
- Larger but controlled uncertainties especially near the J/ ψ
\rightarrow The approach is systematically improvable (new channels, $\psi(2 S)$ data...)

- Conservatively accounting for the non-local form factors does not solve the $\mathrm{b} \rightarrow \mathrm{s} \mu \mu$ anomalies
- The largest source of theoretical uncertainty at low q^{2} still comes from local form factors

Experimental results:
[Babar: 1204.3933; Belle: 1908.01848, 1904.02440; ATLAS: 1805.04000, CMS: 1308.3409, 1507.08126, 2010.13968, LHCb: 1403.8044, 2012.13241,
2003.04831, 1606.04731, 2107.13428]

Effect of HPQCD 2022

With Khodjamirian-Rusov 2017

[Gubernari, MR, van Dyk, Virto '22]

Effect of HPQCD 2022

With HPQCD 2022

IV. BSM analysis: proof of concept

- A combined BSM analysis would be very CPU expensive (130 correlated, nonGaussian, nuisance parameters!)
- Fit C_{9} and C_{10} separately for the three channels:
- $B \rightarrow K \mu^{+} \mu^{-}+B_{s} \rightarrow \mu^{+} \mu^{-}$
- $B \rightarrow K^{*} \mu^{+} \mu^{-}$
- $\mathrm{B}_{\mathrm{s}} \rightarrow \varphi \mu^{+} \mu^{-}$

Effect of HPQCD 2022

Accounting for:

- CMS' $\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$measurement [2212.10311] \rightarrow SM-like, $\mathrm{C}_{10}{ }^{\mathrm{BSM}} \rightarrow 0$
- HPQCD '22 B $\rightarrow \mathrm{K}$ form factors

Conclusion

Discussing BSM models requires a solid understanding of the hadronic physics:

- Local form factors uncertainties can be controlled and reduced by using improved dispersive bound and a appropriate parametrization
- This is the first global analysis of $b \rightarrow s$ form factors
- It is reassuring as it confirms channel-specific analyses...
- ... and promising as dispersive effects start to be visible
- Non-local form factors can also be constrained by theory calculation and experimental measurements
\rightarrow In both cases:
- Uncertainties are still large, but controlled by dispersive bounds
- Our approach is systematically improvable

Back-up

$B \rightarrow \mathrm{~K}^{*} \mathrm{P}_{5}^{\prime}$

