Non-local Form Factors
 Discussion Flavour@TH

Danny van Dyk

May 11th, 2023

Spectrum

$$
\mathcal{H}_{\lambda}=P(\lambda)_{\mu}\left\langle H_{s}\right| \int d^{4} x e^{i q \cdot x} \mathcal{T}\left\{J_{\bar{c} c}^{\mu}(x),\left[C_{1} O_{1}^{c}+C_{2} O_{2}^{c}\right](0)\right\}\left|H_{b}\right\rangle
$$

- $O_{1,2}^{c} \sim[\bar{S} \Gamma b]\left[\bar{c} \Gamma^{\prime} c\right]$
- $J_{\bar{c} c}^{\mu}=Q_{c} \bar{c} \gamma^{\mu}{ }_{c}$
crucial for decision if $b \rightarrow s \mu^{+} \mu^{-}$anomalies are BSM physics!

Spectrum

$$
\mathcal{H}_{\lambda}=P(\lambda)_{\mu}\left\langle H_{s}\right| \int d^{4} x e^{i q \cdot x} \mathcal{T}\left\{J_{\overline{c c}}^{\mu}(x),\left[C_{1} O_{1}^{c}+C_{2} O_{2}^{c}\right](0)\right\}\left|H_{b}\right\rangle
$$

- $O_{1,2}^{c} \sim[5 \Gamma b]\left[\bar{c} \Gamma^{\prime} c\right]$
- $J_{\bar{c} c}^{\mu}=Q_{c} \bar{c} \gamma^{\mu} c$
- leading contributions expressed through local form factors \mathcal{F}_{λ}
- correction suppressed by $1 /\left(q^{2}-4 m_{c}^{2}\right)$ can by systematically obtained

Spectrum

$$
\mathcal{H}_{\lambda}=P(\lambda)_{\mu}\left\langle H_{s}\right| \int d^{4} x e^{i q \cdot x} \mathcal{T}\left\{J_{\bar{c} c}^{\mu}(x),\left[C_{1} O_{1}^{c}+C_{2} O_{2}^{c}\right](0)\right\}\left|H_{b}\right\rangle
$$

- $O_{1,2}^{c} \sim[\bar{S} \Gamma b]\left[\bar{c} \Gamma^{\prime} c\right]$
- $J_{\bar{c} c}^{\mu}=Q_{c} \bar{c} \gamma^{\mu}{ }_{c}$
- for $q^{2}=M_{J / \psi}^{2}$ and $q^{2}=M_{\psi(2 S)}^{2}$, spectrum dominated by hadronic decays
- experimental measurements provide additional information about \mathcal{H}_{λ}

Spectrum

$$
\mathcal{H}_{\lambda}=P(\lambda)_{\mu}\left\langle H_{s}\right| \int d^{4} x e^{i q \cdot x} \mathcal{T}\left\{J_{c c}^{\mu}(x),\left[C_{1} O_{1}^{c}+C_{2} O_{2}^{c}\right](0)\right\}\left|H_{b}\right\rangle
$$

- $O_{1,2}^{c} \sim[5 \Gamma b]\left[c \Gamma^{\prime} c\right]$
- $j_{\bar{c} c}^{\mu}=Q_{c} \bar{c} \gamma^{\mu} c$
strategy
- compute \mathcal{H}_{λ} at spacelike q^{2}
- extrapolate to timelike $q^{2} \leq 4 M_{D}^{2}$ using suitable parametrization
- include information from hadronic decays to narrow charmonia J / ψ and $\psi(2 S)$

Assumptions

- extrapolation from $q^{2}<0$ to $q^{2} \geq 0$ relies on a limited number of assumptions
- crucially: reliance on the analytic structures
- only singularities due to on-shell intermediate states; no "anomalous" cuts
- two isolated poles due to charmonia $J / \psi \& \psi(2 S)$
- numerically dominant branch cut starts at $q^{2}=4 M_{D}^{2}$
- "light hadron" branch cut starting at $q^{2}=0$ can be split off and treated in a model
- consequences:
- \mathcal{H}_{λ} are complex-valued even at $q^{2}<0$

Parametrisation using z mapping

map q^{2} to new variable z that develops
branch cut at $q^{2}=4 M_{D}^{2}$
[Bobeth/Chrzaszcz/DvD/Virto '17]

- branch cut is mapped onto unit circle in z
\rightarrow real-valued $q^{2} \leq 4 M_{D}^{2}$ is mapped to real-valued z
- data and theory live insides the unit circle
- expand in z
+ resonances $J / \psi, \psi(2 S)$ can be included (poles/Blaschke factors)
+ easy to use in a fit to theory and data
+ compatible with analyticity

Open Questions

Probably the biggest problem:

- z param approach assumes that all cuts of the form factor are physical cuts
- supported by two-loop OPE results, which do not show any anomalous cut(s)
\Rightarrow a-priori no reason to consider such cuts
- Rome group is concerned by "triangle diagrams" involving e.g. $D_{s} \bar{D}$ intermediate states
- no Lagrangian put forward that governs their calculation
- these diagrams, when taken at face value as Feynman diagrams, do produce anomalous cuts

How do these two approaches relate to each other?

NLO OPE - Diagrams

NLO OPE - Dispersion Relations

- AGV have tested their conclusions on the analytic structure by applying dispersion relations to their results
- no indication that anomalous cuts exist!
- topology of triangle diagrams can be found in OPE Feynman diagrams
- these topologies produce a cut in p_{B}^{2} as expected
- lead to fact that OPE result is complex-valued even to the left of all physical cuts in q^{2}

Triangle Diagrams

(a)

(b)

(c)

Triangle Diagrams

- diagram (c) can be expressed in terms of Passarino-Veltman function C_{0}
- in this diagram, an anomalous cut is present, starting from $q^{2}=4 M_{D}^{2}$ to a point in the lower q^{2} half plane.
- infinite tower of such cuts is produced by all possible other mesonic intermediate states, but relation to the physical cut remain unchanged
- to be shown: anomalous cuts are or are not singularities of the full amplitude

Different Points of View

Luca:

- We do know that rescattering invalidates QCD factorization results in non-leptonic B decays (QCD factorization without power corrections gives $B \rightarrow K \pi$ BR's a factor of two below \exp value)
- The singularities of triangle diagrams correspond to long-distance contributions that do not admit an OPE

Danny:

- concern should be taken seriously and investigated
- currently no indication for any effect whatsoever
- OPE result contains triangle topology
- is mesonic picture of rescattering the correct interpretation?
- if yes, would invalidate basically all QCD factorization results in non-leptonic B decays

