Non-local Form Factors Discussion Flavour@TH

Danny van Dyk

May 11th, 2023

$$\mathcal{H}_{\lambda} = P(\lambda)_{\mu} \langle H_{s} | \int d^{4}x \, e^{iq \cdot x} \, \mathcal{T} \{ J^{\mu}_{\overline{c}c}(x), [C_{1}O^{c}_{1} + C_{2}O^{c}_{2}](0) \} | H_{b} \rangle$$

crucial for decision if $b
ightarrow s \mu^+ \mu^-$ anomalies are BSM physics!

$$\mathcal{H}_{\lambda} = P(\lambda)_{\mu} \langle H_{s} | \int d^{4}x \, e^{iq \cdot x} \, \mathcal{T} \{ J^{\mu}_{\bar{c}c}(x), [C_{1}O^{c}_{1} + C_{2}O^{c}_{2}](0) \} | H_{b} \rangle$$

- $\bullet \ O_{1,2}^c \sim [\overline{s} \Gamma b] \ [\overline{c} \Gamma' c]$ $\bullet \ J_{\overline{c}c}^{\mu} = Q_c \overline{c} \gamma^{\mu} c$

- leading contributions expressed through local form factors \mathcal{F}_{λ}
- correction suppressed by $1/(q^2 4m_c^2)$ can by systematically obtained

$$\mathcal{H}_{\lambda} = P(\lambda)_{\mu} \langle H_{s} | \int d^{4}x \, e^{iq \cdot x} \, \mathcal{T} \{ J^{\mu}_{\overline{c}c}(x), [C_{1}O^{c}_{1} + C_{2}O^{c}_{2}](0) \} | H_{b} \rangle$$

for q² = M²_{J/ψ} and q² = M²_{ψ(2S)}, spectrum dominated by hadronic decays
 experimental measurements provide additional information about H_λ

$$\mathcal{H}_{\lambda} = P(\lambda)_{\mu} \langle H_{s} | \int d^{4}x \, e^{iq \cdot x} \, \mathcal{T} \{ J^{\mu}_{\bar{c}c}(x), [C_{1}O^{c}_{1} + C_{2}O^{c}_{2}](0) \} | H_{b} \rangle$$

 $\blacktriangleright J^{\mu}_{\overline{c}c} = Q_c \overline{c} \gamma^{\mu} c$

[Bobeth,Chrzaszcz,DvD,Virto '17]

- compute \mathcal{H}_{λ} at spacelike q^2
- extrapolate to timelike $q^2 \leq 4M_D^2$ using suitable parametrization
- include information from hadronic decays to narrow charmonia J/ψ and $\psi(2S)$

Assumptions

- ▶ extrapolation from $q^2 < 0$ to $q^2 \ge 0$ relies on a limited number of assumptions
- crucially: reliance on the analytic structures
 - only singularities due to on-shell intermediate states; no "anomalous" cuts
 - two isolated poles due to charmonia J/ψ & $\psi(2S)$
 - numerically dominant branch cut starts at $q^2 = 4M_D^2$
 - "light hadron" branch cut starting at $q^2 = 0$ can be split off and treated in a model
- consequences:
 - \mathcal{H}_{λ} are complex-valued even at $q^2 < 0$

Parametrisation using z mapping

▶ map q^2 to new variable z that develops branch cut at $q^2 = 4M_D^2$ [Bobeth/Chrzaszcz/DvD/Virto '17]

- branch cut is mapped onto unit circle in z
- \blacktriangleright real-valued $q^2 \leq 4 M_D^2$ is mapped to real-valued z
 - data and theory live insides the unit circle
- expand in z
 - + resonances J/ψ , $\psi(2S)$ can be included (poles/Blaschke factors)
 - + easy to use in a fit to theory and data
 - + compatible with analyticity

Open Questions

Probably the biggest problem:

- > z param approach assumes that all cuts of the form factor are physical cuts
 - supported by two-loop OPE results, which do not show any anomalous cut(s)
 - \Rightarrow a-priori no reason to consider such cuts
- ▶ Rome group is concerned by "triangle diagrams" involving e.g. $D_s\overline{D}$ intermediate states
- no Lagrangian put forward that governs their calculation
- these diagrams, when taken at face value as Feynman diagrams, do produce anomalous cuts

How do these two approaches relate to each other?

NLO OPE – Diagrams

[Asatrian, Greub, Virto 1912.09099]

- AGV have tested their conclusions on the analytic structure by applying dispersion relations to their results
- no indication that anomalous cuts exist!
- topology of triangle diagrams can be found in OPE Feynman diagrams
 - these topologies produce a cut in p_B^2 as expected
 - lead to fact that OPE result is complex-valued even to the left of all physical cuts in q^2

Triangle Diagrams

[Ciuchini,Fedele,Franco,Paul,Silvestrini,Valli 2212.10516]

Triangle Diagrams

- \blacktriangleright diagram (c) can be expressed in terms of Passarino-Veltman function C_0
- ▶ in this diagram, an anomalous cut is present, starting from $q^2 = 4M_D^2$ to a point in the lower q^2 half plane.
 - infinite tower of such cuts is produced by all possible other mesonic intermediate states, but relation to the physical cut remain unchanged
 - ▶ to be shown: anomalous cuts are or are not singularities of the full amplitude

Different Points of View

Luca:

- We do know that rescattering invalidates QCD factorization results in non-leptonic B decays (QCD factorization without power corrections gives $B \rightarrow K\pi$ BR's a factor of two below exp value)
- The singularities of triangle diagrams correspond to long-distance contributions that do not admit an OPE

Danny:

- concern should be taken seriously and investigated
- currently no indication for any effect whatsoever
 - OPE result contains triangle topology
- is mesonic picture of rescattering the correct interpretation?
 - if yes, would invalidate basically all QCD factorization results in non-leptonic *B* decays