B-meson lifetimes vs. hadronic B-meson decays

Maria Laura Piscopo
CPPS, Theoretische Physik 1, Universität Siegen

Flavour@TH 2023
CERN, 12 May 2023

Inclusive B-meson decays

Motivation

\diamond The lifetime $\tau=\Gamma^{-1}$ is a fundamental property of particles
\diamond For heavy hadrons H_{Q}, systematic framework to compute Γ

$$
m_{Q} \gg \Lambda_{Q C D}
$$

\diamond Focus on the B-system $m_{b} \sim 4.5 \mathrm{GeV} \gg 0.5 \mathrm{GeV} \sim \Lambda_{Q C D}$

* Experimental precision very high $\mathcal{O}(\%)$ [Hflav, pdg]
* Aim at competitive theoretical precision to both
* Test the SM and the framework used
* Perform indirect NP searches

The total decay width of a B-meson

\diamond Start from the definition

$$
\left.\Gamma(B)=\frac{1}{2 m_{B}} \sum_{n} \int_{\mathrm{PS}}(2 \pi)^{4} \delta^{(4)}\left(p_{n}-p_{B}\right)\left|\langle n| \mathcal{H}_{e f f}\right| B\right\rangle\left.\right|^{2}
$$

\diamond Use optical theorem to rewrite [Shifman, Voloshin '85]

$$
\Gamma(B)=\frac{1}{2 m_{B}} \operatorname{Im}\langle B| i \int d^{4} x \mathrm{~T}\left\{\mathcal{H}_{e f f}(x), \mathcal{H}_{e f f}(0)\right\}|B\rangle
$$

$\diamond \mathcal{H}_{e f f}$ - weak effective Hamiltonian describing b-quark decays

The heavy quark expansion ($H Q E$)

\diamond The b-quark carries most of the hadron momentum $p_{B}^{\mu}=m_{B} v^{\mu}$
\diamond Convenient parametrisation

$$
p_{b}^{\mu}=m_{b} v^{\mu}+k^{\mu} \quad k \sim \Lambda_{Q C D} \ll m_{b}
$$

\diamond Introduce rescaled b-quark field

$$
b(x)=e^{-i m_{b} v \cdot x} b_{v}(x)
$$

\diamond Action of the covariant derivative becomes

$$
i D_{\mu} b(x)=e^{-i m_{b} v \cdot x}\left(m_{b} v_{\mu}+i D_{\mu}\right) b_{v}(x)
$$

$$
D_{\mu}=\partial_{\mu}-i A_{\mu}^{a}(x) t^{a}
$$

The HQE

\diamond Obtain systematic expansion

$$
\Gamma(B)=\underbrace{\Gamma_{3}}_{\Gamma(b)}+\underbrace{\Gamma_{5} \frac{\left\langle\mathcal{O}_{5}\right\rangle}{m_{b}^{2}}+\Gamma_{6} \frac{\left\langle\mathcal{O}_{6}\right\rangle}{m_{b}^{3}}+\ldots+16 \pi^{2}\left[\tilde{\Gamma}_{6} \frac{\left\langle\tilde{\mathcal{O}}_{6}\right\rangle}{m_{b}^{3}}+\tilde{\Gamma}_{7} \frac{\left\langle\tilde{\mathcal{O}}_{7}\right\rangle}{m_{b}^{4}}+\ldots\right]}_{\delta \Gamma(B)}
$$

* $\Gamma_{d}, \tilde{\Gamma}_{d}$ - short distance coefficients
* $\mathcal{O}_{d}, \tilde{\mathcal{O}}_{d}$ - local operators bilinear in the heavy quark field
* $\Gamma(b)$ - total decay width of free b quark
* $\delta \Gamma(B)$ - effects due to interaction with soft gluons and quarks

The HQE

$$
\Gamma(B)=\Gamma_{3}+\Gamma_{5} \frac{\left\langle\mathcal{O}_{5}\right\rangle}{m_{b}^{2}}+\Gamma_{6} \frac{\left\langle\mathcal{O}_{6}\right\rangle}{m_{b}^{3}}+\ldots+16 \pi^{2}\left[\tilde{\Gamma}_{6} \frac{\left\langle\tilde{\mathcal{O}}_{6}\right\rangle}{m_{b}^{3}}+\tilde{\Gamma}_{7} \frac{\left\langle\tilde{\mathcal{O}}_{7}\right\rangle}{m_{b}^{4}}+\ldots\right]
$$

Very advanced framework thanks to huge effort of big community

Status of the HQE: perturbative side

$$
\Gamma_{d}=\Gamma_{d}^{(0)}+\left(\frac{\alpha_{s}\left(m_{b}\right)}{4 \pi}\right) \Gamma_{d}^{(1)}+\left(\frac{\alpha_{s}\left(m_{b}\right)}{4 \pi}\right)^{2} \Gamma_{d}^{(2)}+\ldots
$$

Semileptonic modes (SL)	
$\Gamma_{3}^{(3)}$	Fael, Schönwald, Steinhauser '20 Czakon, Czarnecki, Dowling '21
$\Gamma_{5}^{(1)}$	Alberti, Gambino, Nandi '13 Mannel, Pivovarov, Rosenthal '15
$\Gamma_{6}^{(1)}$	Mannel, Moreno, Pivovarov '19
$\Gamma_{7}^{(0)}$	Dassinger, Mannel, Turczyk '06
$\Gamma_{8}^{(0)}$	Mannel, Turczyk, Uraltsev '10
$\tilde{\Gamma}_{6}^{(1)}$	Lenz, Rauh '13

[^0]** Only massless final states

Non-leptonic modes (NL)				
$\Gamma_{3}^{(2)}$	Czarnecki, Slusarczyk, Tkachov '05 *			
$\Gamma_{3}^{(1)}$	Ho-Kim, Pham '83; Altarelli, Petrarca '91 Bagan et al. '94; Krinner, Lenz, Rauh '13 Lenz, Nierste, Ostermaier '97			
$\Gamma_{5}^{(1)}$	Mannel, Moreno, Pivovarov '23 **	$	$	Lenz, MLP, Rusov '20
:---				

Status of the HQE: non-perturbative side

	B_{d}, B^{+}	B_{s}
$\left\langle\mathcal{O}_{5}\right\rangle$	Fits to SL data ${ }^{\diamond}$ Lattice QCD $^{+}$ HQET sum rules ${ }^{*}$	Spectroscopy relations $^{* *}$
$\left\langle\mathcal{O}_{6}\right\rangle$	Fits to SL data ${ }^{\diamond}$ EOM relation to $\left\langle\tilde{\mathcal{O}}_{6}\right\rangle$	Sum rules estimates ${ }^{* *}$ EOM relation to $\left\langle\tilde{\mathcal{O}}_{6}\right\rangle$
$\left\langle\tilde{\mathcal{O}}_{6}\right\rangle$	HQET sum rules \ddagger	HQET sum rules ${ }^{\ddagger}$
$\left\langle\tilde{\mathcal{O}}_{7}\right\rangle$	Vacuum insertion approximation	

[^1]
The dim-6 two-quark operator contributions

\diamond Sizeable contribution to $\Gamma(B)$ due to Darwin operator

$$
\Gamma(B)=\Gamma_{0}\left[5.53-0.14 \frac{\mu_{\pi}^{2}(B)}{\mathrm{GeV}^{2}}-0.24 \frac{\mu_{G}^{2}(B)}{\mathrm{GeV}^{2}}-1.35 \frac{\rho_{D}^{3}(B)}{\mathrm{GeV}^{3}}+\ldots\right]
$$

where

$$
\rho_{D}^{3}(B)=\frac{\langle B| \bar{b}_{v}\left(i D_{\mu}\right)(i v \cdot D)\left(i D^{\mu}\right) b_{v}|B\rangle}{2 m_{B}}
$$

\diamond Potential large effect, particularly in $\tau\left(B_{s}\right) / \tau\left(B_{d}\right)$

What is the value of ρ_{D}^{3} ?

\diamond Tension between different extractions of ρ_{D}^{3} from fits see talk by K. Vos
[Bordone et al, 21; Bernlochner et al. '22]
\diamond Alternatively, use EOM for gluon field strength tensor
e.g. [Bigi, Mannel, Uraltsev '11]
$\mathcal{O}_{\rho_{D}}=\frac{1}{4 m_{B}} \bar{b}_{v}\left[i D_{\mu},\left[i D^{\rho}, i D^{\mu}\right]\right] v_{\rho} b_{v}=-\frac{g_{s}^{2}}{4 m_{B}}\left(\bar{b}_{v} \gamma^{\mu} t^{a} b_{v}\right) \sum_{q}\left(\bar{q}_{\mu} t^{a} q\right)+\mathcal{O}\left(\frac{1}{m_{b}}\right)$

* Determine ρ_{D}^{3} from dim-6 four-quark matrix elements
* However obtain large $\mathrm{SU}(3)_{F}$ breaking effects $\sim 50 \%$!

$$
\frac{\rho_{D}^{3}\left(B_{s}\right)}{\rho_{D}^{3}\left(B_{d}\right)}=\frac{f_{B_{s}}^{2} m_{B_{s}}}{f_{B}^{2} m_{B}} \approx 1.5
$$

The observables

\diamond Compute total widths

$$
\Gamma(B)=\Gamma_{3}+\Gamma_{5} \frac{\left\langle\mathcal{O}_{5}\right\rangle}{m_{b}^{2}}+\Gamma_{6} \frac{\left\langle\mathcal{O}_{6}\right\rangle}{m_{b}^{3}}+\ldots+16 \pi^{2}\left[\tilde{\Gamma}_{6} \frac{\left\langle\tilde{\mathcal{O}}_{6}\right\rangle}{m_{b}^{3}}+\tilde{\Gamma}_{7} \frac{\left\langle\tilde{\mathcal{O}}_{7}\right\rangle}{m_{b}^{4}}+\ldots\right]
$$

\diamond And lifetime ratios

$$
\tau\left(B_{(s)}^{+}\right) / \tau\left(B_{d}\right)=1+\left[\delta \Gamma\left(B_{d}\right)^{\mathrm{HQE}}-\delta \Gamma\left(B_{(s)}^{+}\right)^{\mathrm{HQE}}\right] \tau\left(B_{(s)}^{+}\right)^{\exp }
$$

\diamond No two-quark contributions for $\tau\left(B^{+}\right) / \tau\left(B_{d}\right)$ in isospin limit
\diamond Crucial role of $\mathrm{SU}(3)_{\mathrm{F}}$ breaking effects for $\tau\left(B_{s}\right) / \tau\left(B_{d}\right)$

Results

Scenario A

\diamond Larger inputs for B_{d}
[Bordone et al. '21]
\diamond Larger $\operatorname{SU}(3)_{\mathrm{F}}$ breaking

Scenario B

\diamond Smaller inputs for B_{d}
[Bernlochner et al. '22]
\diamond Smaller $\operatorname{SU}(3)_{\mathrm{F}}$ breaking

Results

\diamond Overall good agreement of HQE and data for B-system
\diamond For the total decay widths

* Large uncertainties, dominated by scale variation in Γ_{3}

Only NLO-QCD corrections included so far

* Crucial the computation of α_{s}^{2}-corrections to NL b-decays
[Egner, Fael, Schönwald, Steinhauser (in progress)]
\diamond For the ratio $\tau\left(B^{+}\right) / \tau\left(B_{d}\right)$
* Dominant uncertainties due to four-quark matrix elements

Lattice determination of bag parameters highly desirable
\diamond For the ratio $\tau\left(B_{s}\right) / \tau\left(B_{d}\right)$

* Dominant uncertainties due to two-quark matrix elements
* Tension with data in one scenario

What about other heavy hadrons?

HQE for b-baryons

\diamond Very good agreement of HQE predictions with data
\diamond Main sources of uncertainties

* For total widths - scale variation in leading term Γ_{3}
* For lifetime ratios - dim-6 four-quark matrix-elements

No first principle determinations for all baryons, rely on simplified models of QCD

Test the HQE in the charm sector

$\left[\mathrm{ps}^{-1}\right]$

\diamond HQE able to explain observed pattern
\diamond But very large uncertainties, mainly due to

* Charm quark mass
* Poorly known non-perturbative inputs see also [Gratrex, Melić, Nis̆andz̆ić '22; Dulibic̈, Gratrex, Melić, Nis̆andz̆ić '23]

Back to the B-system

B-lifetime ratios

\diamond Lifetime ratios are theoretically more clean
\diamond In presence of NP effects

$$
\begin{aligned}
\frac{\tau\left(B^{+}\right)}{\tau\left(B_{d}\right)} & =1-\underbrace{\tau\left(B^{+}\right)\left[\delta \Gamma\left(B^{+}\right)-\delta \Gamma\left(B_{d}\right)\right]^{\mathrm{HQE}}}_{\text {exp. }} \\
& -\underbrace{\tau\left(B^{+}\right)\left[\delta \Gamma\left(B^{+}\right)-\delta \Gamma\left(B_{d}\right)\right]^{\mathrm{NP}}}_{\text {theory }}
\end{aligned}
$$

\diamond Potential to constrain specific BSM operators
\diamond Mainly limited by theory uncertainties
\diamond Until further insights on $\tau\left(B_{s}\right) / \tau\left(B_{d}\right)$, use only $\tau\left(B^{+}\right) / \tau\left(B_{d}\right)$

BSM effects in $\tau\left(B^{+}\right) / \tau\left(B_{d}\right)$ and mixing

\diamond How large is space for NP in $b \rightarrow c \bar{u} d(s)$ decays ?
\diamond Repeat computation with 20 additional NP operators, also for $a_{s l}^{d}$

$$
\mathcal{H}_{e f f}=\mathcal{H}_{e f f}^{\mathrm{SM}}+\mathcal{H}_{e f f}^{\mathrm{NP}}
$$

Compare with study of decays like $\bar{B}_{s} \rightarrow D_{s}^{+} \pi^{-}$ [Cai, Deng, Li, Yang '21]

[Lenz, Müller, MLP, Rusov '22]

Conclusions

\diamond Up-to-date analysis of B-meson lifetimes (ratios) within HQE
\diamond Overall, good agreement with data but larger uncertainties
\diamond Plenty of room for improvement

* Higher order QCD corrections e.g. $\Gamma_{3}^{(2)}, \tilde{\Gamma}_{6}^{(2)}$

Planned by U. Nierste, M. Steinhauser et al. in Karlsruhe

* Determination of $\left\langle\tilde{O}_{6}\right\rangle$ by lattice QCD

Planned by O. Witzel, M. Black in Siegen

* Better control on two-quark non-perturbative inputs

$$
\text { Crucial impact on } \tau\left(B_{s}\right) / \tau\left(B_{d}\right)
$$

\diamond With higher precision, potential to constrain some NP operators

Study of the hadronic decays
 $$
\bar{B}_{(s)}^{0} \rightarrow D_{(s)}^{+} K^{-}\left(\pi^{-}\right)
$$
 within LCSRs
 [Balitsky, Braun, Kolesnischenko '89]

Work in progress in collaboration with A. Rusov

$$
\text { The non-leptonic decays } \bar{B}_{(s)}^{0} \rightarrow D_{(s)}^{+} K^{-}\left(\pi^{-}\right)
$$

\diamond Tree-level decays induced by $b \rightarrow c \bar{u} q$ transitions with $q=d, s$
\diamond Theoretically "clean" channels
no pollution due to penguin and annihilation topologies
\diamond Golden modes for QCD-factorisation (QCDF) framework
[Beneke, Buchalla, Neubert, Sachrajda '99 -'01]

A puzzling pattern

\diamond Tension between QCDF predictions and data ranging $(2-7) \sigma$

Status of power corrections

\diamond Systematic study of power corrections is challenging in QCDF
\diamond First estimates of $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ corrections
[Bordone, Gubernari, Huber, Jung, van Dyk '20]

* Computed non-factorisable soft-gluon exchange within LCSRs
* Found very small effect

$$
\frac{\mathcal{A}\left(\bar{B}_{(s)}^{0} \rightarrow D_{(s)}^{+} L^{-}\right)_{\mathrm{NLP}}}{\mathcal{A}\left(\bar{B}_{(s)}^{0} \rightarrow D_{(s)}^{+} L^{-}\right)_{\mathrm{LP}}} \simeq-[0.06,0.6] \%
$$

\diamond Can we obtain an alternative estimate?

The decay amplitude

\diamond Use the weak effective Hamiltonian

$$
\begin{gathered}
\mathcal{A}\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} \pi^{-}\right)=-\frac{G_{F}}{\sqrt{2}} V_{c b}^{*} V_{u d}\left[C_{1}\left\langle O_{1}\right\rangle+C_{2}\left\langle O_{2}\right\rangle\right] \\
O_{1}=\left(\bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) b\right)\left(\bar{d} \gamma^{\mu}\left(1-\gamma_{5}\right) u\right) \quad O_{2}=\left(\bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) t^{a} b\right)\left(\bar{d} \gamma^{\mu}\left(1-\gamma_{5}\right) t^{a} u\right)
\end{gathered}
$$

\diamond In naive QCDF

$$
\left\langle O_{1}\right\rangle \stackrel{\mathrm{NQCDF}}{=} i f_{\pi}\left(m_{B_{s}}^{2}-m_{D_{s}}^{2}\right) f_{0}^{B_{s} D_{s}}\left(m_{\pi}^{2}\right) \quad\left\langle O_{2}\right\rangle \stackrel{\mathrm{NQCDF}}{=} 0
$$

\diamond First estimate of $\left\langle O_{2}\right\rangle$ beyond NQCDF using two-point sum rule
[Blok, Shifman '93]

$$
C_{2}\left\langle O_{2}\right\rangle / C_{1}\left\langle O_{1}\right\rangle \sim 13 \%
$$

New estimate of decay amplitude within LCSRs

\diamond Start from three-point correlation function see e.g. [Khodjamirian '00]

$$
\begin{gathered}
\mathcal{F}_{\mu}^{O_{i}}(p, q)=i^{2} \int d^{4} x \int d^{4} y e^{i p \cdot x} e^{i q \cdot y}\langle 0| T\left\{j_{5}^{D}(x), O_{i}(0), j_{\mu}^{\pi}(y)\right\}|\bar{B}(p+q)\rangle \\
j_{5}^{D}(x)=i m_{c}\left(\bar{s} \gamma_{5} c\right)(x) \quad j_{\mu}^{\pi}(y)=\left(\bar{u} \gamma_{\mu} \gamma_{5} d\right)(y)
\end{gathered}
$$

Light-cone OPE for the correlation functions

\diamond Consider the kinematical region of large and negative p^{2} and q^{2}

$$
P^{2} \equiv-p^{2} \quad Q^{2} \equiv-q^{2} \quad P^{2} \sim Q^{2} \sim m_{B} \Lambda
$$

\diamond Dominant contribution to the correlator comes from

$$
x^{2} \sim 0 \quad y^{2} \sim 0 \quad(x-y)^{2} \nsim 0
$$

x and y are aligned along different light-cone directions!
\diamond Double LC expansion of the correlator $\mathcal{F}_{\mu}^{O_{2}}$ not feasible

$$
\begin{gathered}
\langle 0| \bar{q}\left(z_{1} n\right) G_{\mu \nu}\left(z_{2} \bar{n}\right) h_{v}(0)|\bar{B}(v)\rangle=? \\
v^{\mu}=\left(n^{\mu}+\bar{n}^{\mu}\right) / 2 \quad n^{\mu}=(1,0,0,1) \quad \bar{n}^{\mu}=(1,0,0,-1)
\end{gathered}
$$

\diamond Perform instead LC-local expansion around $x^{2} \sim 0$ but $y^{\mu} \sim 0$

Light-cone OPE for the correlation functions

\diamond For light-quark loop use local expansion of propagator up to $G_{\mu \nu}$ e.g. [Balitsky, Braun '89]

$$
S_{i j}^{(q)}(x, y)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k(x-y)}\left[\frac{\delta_{i j} \nmid k}{k^{2}+i \varepsilon}-\frac{G_{\alpha \beta}^{a} t_{i j}^{a}}{4} \frac{\left(\not k \sigma^{\alpha \beta}+\sigma^{\alpha \beta} \nmid k\right)}{\left(k^{2}+i \varepsilon\right)^{2}}\right]+\ldots
$$

\diamond Use two- and three-particle B-meson LCDAs up to twist-six
[Braun, Ji, Manashov '17]

$$
\begin{aligned}
\langle 0| \bar{q}(x) G_{\mu \nu}(0) h_{v}(0)|\bar{B}(v)\rangle & \sim \int_{0}^{\infty} d \omega_{1} e^{-i \omega_{1} v \cdot x} f_{\mu \nu}\left(\left\{\phi_{3}, \phi_{4}, \ldots, \phi_{6}\right\}\left(\omega_{1}\right)\right) \\
\langle 0| \bar{q}(x) h_{v}(0)|\bar{B}(v)\rangle & \sim \int_{0}^{\infty} d \omega e^{-i \omega v \cdot x} f\left(\left\{\phi_{+}, \phi_{-}, g_{+}, g_{-}\right\}(\omega)\right)
\end{aligned}
$$

The OPE results

\diamond The correlators take the following form

$$
\mathcal{F}_{\mu}^{O_{i}}=\left(q_{\mu}(p \cdot q)-p_{\mu} q^{2}\right) \mathcal{F}^{O_{i}}\left(p^{2}, q^{2}\right)
$$

* Result is transversal with respect to q^{μ}
\diamond Arrive at OPE for the invariant amplitudes

$$
\left[\mathcal{F}_{q}^{O_{2}}\left(p^{2}, q^{2}\right)\right]_{\mathrm{OPE}} \sim \int_{0}^{\infty} d \omega_{1} \sum_{\psi=\phi_{3}, \ldots} \psi\left(\omega_{1}\right) \sum_{n=1}^{3} \frac{c_{n}^{\psi}\left(\omega_{1}, q^{2}\right)}{\left[\tilde{s}\left(\omega_{1}, q^{2}\right)-p^{2}-i \varepsilon\right]^{n}}
$$

* Similarly for $\mathcal{F}_{q}^{O_{1}}$ - including both 2- and 3-particle contributions

Link OPE to hadronic matrix elements

\diamond Derive double dispersion relations in p^{2} - and q^{2}-channels
\diamond Obtain sum-rule for hadronic matrix elements

$$
i\left\langle O_{2}\right\rangle=\frac{\left(m_{\pi}^{2}-q^{2}\right)}{f_{\pi} f_{D} m_{D}^{2}} \int_{m_{c}^{2}}^{s_{0}^{D}} d s \int_{0}^{\infty} d \omega_{1}\left[\sum_{\psi} \psi\left(\omega_{1}\right) \sum_{n=1}^{3} \frac{c_{n}^{\psi}\left(\omega_{1}, q^{2}\right)}{(n-1)!} e^{\left(m_{D}^{2}-s\right) / M^{2}} \delta_{s}^{(n-1)}\left(\tilde{s}\left(\omega_{1}, q^{2}\right)-s\right)\right]
$$

contribution due to π pole

$$
-\underbrace{\frac{\left(m_{\pi}^{2}-q^{2}\right)}{f_{\pi}} \int_{s_{h}^{\prime(\pi)}}^{\infty} d s^{\prime} \frac{\rho_{h}\left(s^{\prime}\right)}{\left(s^{\prime}-q^{2}\right)}}_{\text {excited states and continuum }}
$$

\diamond Analogously for $\left\langle O_{1}\right\rangle$, however use also QHD in q^{2}-channel

Inputs and preliminary results

\diamond Use exponential model for LCDAs

* For $\phi_{+}, \phi_{-}, g_{+}, \phi_{3}, \phi_{4}, \tilde{\psi}_{4}, \psi_{4}$ use models from [Braun, Ji, Manashov ${ }^{17]}$
* For $g_{-}, \tilde{\phi}_{5}, \psi_{5}, \tilde{\psi}_{5}, \phi_{6}$ use models from [Lï, Shen, Wang, Wei ' 18]
* Inclusion of $\tilde{\phi}_{5}, \ldots \psi_{6}$ necessary to preserve local limit of 3 p ME

Also lift of some cancellations between LCDAs!
\diamond Main limitations due to poorly known input parameters

* Dominant uncertainty coming from $\lambda_{H}^{2}, \lambda_{B}$
\diamond From preliminary analysis
* Non-factorisable corrections large and positive ~ (1-10)\%

Conclusions

\diamond Study of $\bar{B}_{(s)} \rightarrow D_{(s)} K^{-}\left(\pi^{-}\right)$decays within LCSRs
\diamond Estimate fact. and non-fact. contributions with same framework
Alternative to QCDF, however larger uncertainties
\diamond Non-factorisable contributions might be large (but positive)
\diamond Many non-perturbative inputs still poorly known
\diamond Much more to be understood and clarified

Thanks for the attention

[^0]: * Only partial result

[^1]: [Bordone, Capdevila, Gambino '21; Bernlochner, Fael, Olschewsky, Persson, van Tonder, Vos, Welsch '22]
 ${ }^{\text {[Gambino, Melis, Simula '17; Bazavov et al. '18] }}{ }^{*}{ }_{\text {[Ball, Braun '94; Neubert '96] }}$
 ** [Bigi, Mannel, Uraltsev '11] $\ddagger_{\text {[Kirk, Lenz, Rauh ' }}$ 18; King, Lenz, Rauh '20]

