Decoupling of heavy quarks as a tool to determine α*^s*

Alberto Ramos <alberto.ramos@ific.uv.es>

Mattia Dalla Brida, Roman Hollwieser, Francesco Knechtli, Tomasz Korzec, Rainer Sommer, Stefan ¨ Sint.

- *Non-perturbative renormalization by decoupling*. [arXiv: 1912.06001]
- Determination of $\alpha_s(m_Z)$ by the non-perturbative decoupling method. [arXiv: 2209.14204]

- \blacktriangleright Asymptotic states are not quarks/gluons ("hadronization", ...).
- \triangleright α_s is larger. Sometimes extracted at a few GeV ($\alpha_s \approx 0.3!$). What about the ...?
	- \blacktriangleright Perturbative corrections?
	- \blacktriangleright Non-perturbative corrections?

DETERMINATIONS OF $\alpha_s(m_Z)$ [PDG '21]

Low energy determinations are more precise (!!?)

The problem: Summary

$$
O(Q) \stackrel{Q\to\infty}{\sim} \alpha_s(Q) + \sum_{n=2} c_n \alpha_s^n(Q) + O(\alpha_s^{N+1}(Q)) + O\left(\frac{\Lambda^p}{Q^p}\right) + \dots
$$

Non-perturbative corrections

- Difficult to compute (NP physics is difficult!)
- Better use smaller $\alpha \Longrightarrow$ (larger *Q*)

Perturbative corrections

- \triangleright Difficult to estimate (i.e. scale variation might fail)
- \blacktriangleright Main source of uncertainty in most lattice QCD extractions of α_s
- $▶$ Better use smaller $\alpha \Longrightarrow$ (exponentially larger *Q*)

Computing path integrals: Lattice field theory

Lattice field theory \longrightarrow Non Perturbative definition of QFT.

r l. r **L** r r r r r r r r r ✲ ✻ ✛ ❄ ✻ l I *T* <u></u> *L* ❄✻*a* $U_{\mu}(x) = e^{iagA_{\mu}(x)} \quad \psi(x)$

- \triangleright Discretize space-time in an hyper-cubic lattice (spacing *a*)
- \triangleright Path integral \longrightarrow multiple integral (one variable for each field at each point)
- \triangleright Compute the integral numerically \rightarrow Monte Carlo sampling.

$$
\langle O\rangle = \frac{1}{N_{\text{conf}}} \sum_{i=1}^{N_{\text{conf}}} O(U_i) + \mathcal{O}(1/\sqrt{N_{\text{conf}}})
$$

Observable computed averaging over samples

 \blacktriangleright This works both in the perturbative and non-perturbative regimes!

$$
S_G[U] = \frac{\beta}{6} \sum_{p \in \text{Plaquettes}} \text{Tr}(1 - U_p - U_p^+) \xrightarrow[a \to 0]{} -\frac{1}{2} \int d^4x \, \text{Tr}(F_{\mu\nu}F_{\mu\nu})
$$

The problem: α_s extractions are a multi-scale problem

THE STRENGTH OF YM

$$
\triangleright \text{ Take } O(Q) = \frac{3r^2}{4} F(r) \Big|_{Q=1/r}
$$

 \blacktriangleright This defines the "potential scheme". Non-perturbative coupling definition.

$$
\alpha_{qq}(Q) = \frac{3r^2}{4} F(r) \Big|_{Q=1/r} \stackrel{Q \to \infty}{\sim} \alpha_{\overline{\text{MS}}}(Q) + \dots
$$

 \blacktriangleright Useful to define convenient scales. i.e. the CERN scale

$$
\alpha_{qq}(\mu_{\rm CERN})=12.34/(4\pi)
$$

(**NOTE:** Many lattice scales are basically this!: $r_0, t_0, w_0, r_1, \ldots$)

The soution: Finite size scaling **[Luscher, Weisz, Wolff '91] ¨**

Finite volume renormalization schemes: fix *QL* = constant

- \triangleright Coupling $\alpha(Q)$ depends on no other scale but *L* (Notation: $\alpha(L)$, $\alpha(1/L)$).
- \blacktriangleright Small $L \Longrightarrow$ small $\alpha(L)$
- \blacktriangleright *a* \lt 1/*Q* easily achieved: *L*/*a* ∼ 10 − 40
- In Step scaling function: How much changes the coupling when we change the renormalization scale:

$$
\sigma(u) = g^2(Q/2) \Big|_{g^2(Q) = u}
$$

achieved by simple changing $L/a \rightarrow 2L/a!$

- ▶ 1/*L* is a IR cutoff \Rightarrow simulate directly $m_q = 0$
- I We need dedicated simulations of the **femto-universe**

RESULTS FOR $\alpha_{s}(M_{Z})$ [ALPHA '17. Phys.Rev.Lett (2017) 119. [ARXIV:1706.03821]]

- I Non-perturbative running from 200 MeV to 140 GeV
- \blacktriangleright Many technical improvements:
	- \blacktriangleright Gradient flow couplings
	- \triangleright Symanzik analysis of cutoff effects

$$
\blacktriangleright_{\mathbb{Z}_2}
$$

 $\alpha_s(M_Z) = 0.11852(84)$ [0.7%].

Checkpoint

- Extraction of α_s is a very difficult multi-scale problem on the lattice.
- \blacktriangleright Computational cost grows like $(L/a)^7$
- \blacktriangleright Perturbative uncertainties decrease as $\log \mu$
- \triangleright Perturbative uncertainties \approx 1 − 2% for most large volume approaches [L. Del **Debbio, A. Ramos. Phys.Rep. (2021) 970 [arXiv:2101.04762]]**
- I Dedicated approach: step scaling. **Solves** the multi-scale problem.

 $\alpha_s(M_Z) = 0.11852(84)$ [0.7%].

[Motivation](#page-1-0) [The problem](#page-3-0) **[Heavy quarks](#page-11-0)** Renormalization in 3M [Conclusions](#page-42-0)

Massless renormalization schemes: Tremendous advantages

Renormalization group functions are mass independent

$$
\mu \frac{\mathrm{d}\bar{g}^2(\mu)}{\mathrm{d}\mu} = \beta(\bar{g}, m).
$$

F RGI invariants that characterize the running (i.e Λ , M , B_K , ...) **only** exists in massless schemes

$$
\Lambda_{s} = \mu \left[b_{0} \bar{g}_{s}^{2}(\mu) \right]^{\frac{-b_{1}}{2b_{0}^{2}}} e^{-\frac{1}{2b_{0} \bar{g}_{s}^{2}(\mu)}} \exp \left\{-\int_{0}^{\bar{g}_{s}(\mu)} dx \left[\frac{1}{\beta_{s}(x)} + \frac{1}{b_{0} x^{3}} - \frac{b_{1}}{b_{0} x} \right] \right\}
$$

 \blacktriangleright Precision: high loop computations available in perturbation theory

$$
\beta_{\overline{\rm MS}}(\bar{g})\stackrel{\bar{g}\to 0}{\sim} -\bar{g}^3(b_0+b_1\bar{g}^2+b_2^{\overline{\rm MS}}\bar{g}^4+b_3^{\overline{\rm MS}}\bar{g}^6+b_4^{\overline{\rm MS}}\bar{g}^8+\rm{unknown})
$$

Always universal but universal only in massless schemes

In LQCD: easier to define the chiral point ($m_q = 0$) than the physical point $(m_q = ??)$

▶ Nothing works!!!!!

Decoupling of heavy quarks: Perturbation theory p $p \longrightarrow p$ \overline{p} $m₁$ $T = \frac{\alpha_{\overline{\rm MS}}(\mu)}{4}$ $\frac{\overline{S}(\mu)}{\pi} + \frac{\alpha_{\overline{\rm MS}}^2(\mu)}{\pi^2}$ π^2 $\sqrt{2}$ $T_1(p, m) + \frac{1}{6}$ $\frac{1}{6} \log \frac{m_h^2(\mu)}{\mu^2}$ $\frac{2}{\mu^2}(\mu)$ + c $+{\cal O}(\alpha^3)$ Quark-Quark scattering with *N*_l light and one heavy alice: Look, If I only could say that $\alpha'(\mu)$ $\frac{\alpha_{\overline{\rm MS}}(\mu)}{\pi} = \frac{\alpha_{\overline{\rm MS}}(\mu)}{\pi}$ $\frac{\overline{\mathrm{MS}}(\mu)}{\pi} + \frac{\alpha_{\overline{\mathrm{MS}}}^2(\mu)}{\pi^2}$ $\overline{\pi^2}$ 1 $\frac{1}{6} \log \frac{m_h^2(\mu)}{\mu^2}$ $\overline{\mu^2}$ Then everything would make sense: $T = \frac{\alpha'(\mu)}{\mu}$ $\frac{(\mu)}{\pi}+\frac{\alpha'^2(\mu)}{\pi^2}$ $\frac{f''(\mu)}{\pi^2}$ [T₁(p, m) + c] + $\mathcal{O}(\alpha^3)$ But then the coupling would depend on *m*h! Five Stages of understanding: (III) Bargaining

[Motivation](#page-1-0) [The problem](#page-3-0) **[Heavy quarks](#page-11-0)** Renormalization in 3M [Conclusions](#page-42-0)

[Motivation](#page-1-0) [The problem](#page-3-0) **[Heavy quarks](#page-11-0)** Renormalization in 3M [Conclusions](#page-42-0) Decoupling of heavy quarks: Perturbation theory p $p \longrightarrow p$ \overline{p} m_h $T = \frac{\alpha_{\overline{\rm MS}}(\mu)}{4}$ $\frac{\overline{S}(\mu)}{\pi} + \frac{\alpha_{\overline{\rm MS}}^2(\mu)}{\pi^2}$ π^2 $\sqrt{ }$ $T_1(p, m) + \frac{1}{6}$ $\frac{1}{6} \log \frac{m_h^2(\mu)}{\mu^2}$ $\frac{2}{\mu^2}(\mu)$ + c $+{\cal O}(\alpha^3)$ Quark-Quark scattering with *N*_l light and one heavy bob: And this coupling of yours... $\alpha'(\mu)$ $\frac{\alpha_{\overline{\rm MS}}(\mu)}{\pi} = \frac{\alpha_{\overline{\rm MS}}(\mu)}{\pi}$ $\frac{\overline{\mathrm{MS}}(\mu)}{\pi} + \frac{\alpha_{\overline{\mathrm{MS}}}^2(\mu)}{\pi^2}$ $\overline{\pi^2}$ 1 $\frac{1}{6} \log \frac{m_h^2(\mu)}{\mu^2}$ $\overline{\mu^2}$ How would it run? Five Stages of understanding: (IV) The right question

$$
\frac{\alpha'(\mu)}{\pi} = \frac{\alpha_{\overline{\text{MS}}}(\mu)}{\pi} + \frac{\alpha_{\overline{\text{MS}}}^2(\mu)}{\pi^2} \frac{1}{6} \log \frac{m_h^2(\mu)}{\mu^2}
$$

And determine

$$
\beta' = \mu^2 \frac{d}{d\mu^2} \alpha'(\mu) = \left(\mu^2 \frac{\partial}{\partial \mu^2} + \beta \frac{\partial}{\partial \alpha} + \gamma \frac{\partial}{\partial m_h}\right) \left[\alpha'_{\overline{\text{MS}}}(\mu) + \frac{\alpha_{\overline{\text{MS}}}^2(\mu)}{\pi} \frac{1}{6} \log \frac{m_h^2(\mu)}{\mu^2}\right]
$$

Five Stages of understanding: (V) All fits nicely

$$
\frac{\alpha'(\mu)}{\pi} = \frac{\alpha_{\overline{\text{MS}}}(\mu)}{\pi} + \frac{\alpha_{\overline{\text{MS}}}^2(\mu)}{\pi^2} \frac{1}{6} \log \frac{m_h^2(\mu)}{\mu^2}
$$

And determine

 $p \rightarrow p$

$$
\beta' = \mu^2 \frac{d}{d\mu^2} \alpha'(\mu) \stackrel{\alpha' \to 0}{\sim} \beta - \frac{\alpha'^2(\mu)}{6\pi} + \mathcal{O}(\alpha^3)
$$

[Motivation](#page-1-0) [The problem](#page-3-0) **[Heavy quarks](#page-11-0)** Renormalization in 3M [Conclusions](#page-42-0) Decoupling of heavy quarks: Perturbation theory p \overline{p} m_h $T = \frac{\alpha_{\overline{\rm MS}}(\mu)}{4}$ $\frac{\overline{S}(\mu)}{\pi} + \frac{\alpha_{\overline{\rm MS}}^2(\mu)}{\pi^2}$ π^2 $\sqrt{ }$ $T_1(p, m) + \frac{1}{6}$ $\frac{1}{6} \log \frac{m_h^2(\mu)}{\mu^2}$ $\frac{2}{\mu^2}(\mu)$ + c $+{\cal O}(\alpha^3)$ Quark-Quark scattering with *N*_l light and one heavy

Five Stages of understanding: (V) All fits nicely

$$
\frac{\alpha'(\mu)}{\pi} = \frac{\alpha_{\overline{\text{MS}}}(\mu)}{\pi} + \frac{\alpha_{\overline{\text{MS}}}^2(\mu)}{\pi^2} \frac{1}{6} \log \frac{m_h^2(\mu)}{\mu^2}
$$

And determine

 $p \longrightarrow p$

$$
\beta' = \mu^2 \frac{d}{d\mu^2} \alpha'(\mu) \stackrel{\alpha' \to 0}{\sim} -\frac{\alpha'^2(\mu)}{\pi} \left(\frac{11}{4} - \frac{1}{6} N_f + \frac{1}{6} \right) + \mathcal{O}(\alpha^3)
$$

π

 $\alpha'(\mu)$ is the running coupling with $N_l = N_f - 1$ flavors!

Decoupling of heavy quarks in massless schemes

Matching between theories

- \blacktriangleright At energy scales *Q* just forget about all quarks with $m > 0$
- I "Nice" perturtbative expressions if you only use **active** quarks
- I Matching between effective theory (with **active quarks**) and fundamental theory (with **active** and heavy quarks)

Decoupling of heavy quarks in massless schemes

Matching between theories

- \blacktriangleright At energy scales *Q* just forget about all quarks with $m > 0$
- I "Nice" perturtbative expressions if you only use **active** quarks
- **In Matching between effective theory (with active quarks) and fundamental** theory (with **active** and heavy quarks)

$$
\alpha_{\overline{\rm MS}}^{(N_{\rm f}-1)}(\mu)=\alpha_{\overline{\rm MS}}^{(N_{\rm f})}(\mu)\times\left\{1+a_1(m_h/\mu)\alpha_{\overline{\rm MS}}^{(N_{\rm f})}(\mu)+\dots\right\}
$$

Abuse of language: A single $\alpha_{\overline{\text{MS}}}(\mu)$ that "jumps" at quark thresholds

- \triangleright $\alpha_{\overline{\rm MS}}(4 \,\text{GeV})$: This is the four flavor coupling
- \triangleright $\alpha_{\overline{\text{MS}}}$ (10 GeV) : This is the five flavor coupling
- \triangleright $\alpha_{\overline{\text{MS}}}(M_Z)$: This is the five flavor coupling

Caveats

Power corrections are neglected (more later)

 μ

Decoupling of heavy quarks in massless schemes

$$
\Delta \frac{\Lambda_{\overline{\rm MS}}^{(N_{\rm f})}}{\rm Melation between \Lambda parameters}
$$
\nIf you happen to know $\Lambda_{\overline{\rm MS}}^{(6)}$, then\n
$$
1. \text{ Determine } \alpha_{\overline{\rm MS}}^{(6)}(\mu) = \bar{g}_{\overline{\rm MS}}^{2}(\mu)/(4\pi) \text{ at some scale } \mu \approx m_{\rm t}
$$
\n
$$
\frac{\Lambda_{\overline{\rm MS}}^{(6)}}{\mu} = \left[b_{0} \bar{g}_{\overline{\rm MS}}^{2}(\mu) \right]^{\frac{-b_{1}}{2b_{0}^{2}}}{e^{-\frac{b_{0}}{2b_{0}^{2}\bar{g}_{\overline{\rm MS}}^{2}(\mu)}} \exp\left\{-\int_{0}^{\bar{g}_{\overline{\rm MS}}(\mu)} dx \left[\frac{1}{\beta_{\overline{\rm MS}}^{(6)}(x)} + \frac{1}{b_{0}x^{3}} - \frac{b_{1}}{b_{0}x} \right] \right\}
$$
\n2. Match across the top threshold (4 loops known!)\n
$$
\frac{\bar{g}^{\prime 2}(\mu)}{4\pi} = \alpha_{\overline{\rm MS}}^{(5)}(\mu) = \alpha_{\overline{\rm MS}}^{(6)}(\mu) \times \left\{1 + a_{1}(m_{\rm t}/\mu)\alpha_{\overline{\rm MS}}^{(6)}(\mu) + \dots \right\}
$$
\n3. Determine the Λ parameter of the 5 flavor theory\n
$$
\frac{\Lambda_{\overline{\rm MS}}^{(5)}}{\mu} = \left[b_{0} \bar{g}_{\overline{\rm MS}}^{2}(\mu) \right]^{\frac{-b_{1}}{2b_{0}^{2}}} e^{-\frac{1}{2b_{0}g_{\overline{\rm MS}}^{2}(\mu)}} \exp\left\{-\int_{0}^{\bar{g}_{\overline{\rm MS}}^{2}(\mu)} dx \left[\frac{1}{\beta_{\overline{\rm MS}}^{(5)}(x)} + \frac{1}{b_{0}x^{3}} - \frac{b_{1}}{b_{0}x} \right] \right\}
$$

 \mathbf{I}

J 15/33

Decoupling of heavy quarks in massless schemes

$$
\frac{\Lambda_{\overline{\rm MS}}^{(N_{\rm f})}}{\mu} = \left[b_0 \bar{g}_{\overline{\rm MS}}^2(\mu) \right]^{\frac{-b_1}{2b_0^2}} e^{-\frac{1}{2b_0 \bar{g}_{\overline{\rm MS}}^2(\mu)}} \exp \left\{ - \int_0^{\bar{g}_{\overline{\rm MS}}(\mu)} dx \left[\frac{1}{\beta_{\overline{\rm MS}}^{(N_{\rm f})}(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0 x} \right] \right\}
$$
\nSome numerical examples

\nSet $\Lambda_{\overline{\rm MS}}^{(6)} \approx 91.1$ MeV

\nDetermine $\alpha_{\overline{\rm MS}}^{(6)}(m_{\rm t}) \Longrightarrow \alpha_{\overline{\rm MS}}^{(5)}(m_{\rm t})$

\nCet $\Lambda_{\overline{\rm MS}}^{(5)} \approx 215$ MeV

\nDetermine $\alpha_{\overline{\rm MS}}^{(5)}(m_{\rm b}) \Longrightarrow \alpha_{\overline{\rm MS}}^{(4)}(m_{\rm b})$

\nCet $\Lambda_{\overline{\rm MS}}^{(4)} \approx 298$ MeV

\nDetermine $\alpha_{\overline{\rm MS}}^{(4)}(m_{\rm c}) \Longrightarrow \alpha_{\overline{\rm MS}}^{(3)}(m_{\rm c})$

\nCet $\Lambda_{\overline{\rm MS}}^{(4)} \approx 312$ MeV

\nWe cannot get $\Lambda_{\overline{\rm MS}}^{(2)}$: No valid perturbative matching at $\mu \approx m_s < \Lambda$

\nPertrubative uncertainties ridiculously small in this game! [ALPHA'18]

Decoupling of heavy quarks: Non-perturbatively

- ▶ Large coefficients in PT is a problem of PT
- \blacktriangleright In Lattice QCD we can use as many (heavy) flavors as we want
- \blacktriangleright Sometimes useful to consider massive schemes:

 $\alpha_{qq}(\mu, M_u^{\rm phys}, M_d^{\rm phys})$ $\binom{phys}{d}$, *M*_c^{phys}</sub>, *M*_c^{phys}</sub>)

- But simulating heavy quarks is challenging:
	- \blacktriangleright m_h is large
	- \blacktriangleright *am*_h **has to be** small

Requires large computational resources!

CHECKPOINT

- \blacktriangleright Massless schemes are needed for precision.
- I One should use perturbative expressions with only the number of **active** quarks
- \blacktriangleright Matching between theories

$$
\alpha_{\overline{\rm MS}}^{(3)} \to \alpha_{\overline{\rm MS}}^{(4)} \to \alpha_{\overline{\rm MS}}^{(5)} \to \alpha_{\overline{\rm MS}}^{(6)}.
$$

 \triangleright Non perturbatively one can use massless or massive schemes.

3M: A universe with three heavy degenerate quarks $(M \gg \Lambda)$

Alice uses fundamental theory

$$
S_{\rm fund}[A_{\mu},\psi,\bar{\psi}]=\int \mathrm{d}^4x\, \left\{ -\frac{1}{2g^2} {\rm Tr}\left(F_{\mu\nu}F_{\mu\nu}\right)+\sum_{i=1}^3 \bar{\psi}_i(\gamma_{\mu}D_{\mu}+M)\psi_i\right\}
$$

Bob uses effective theory

$$
S_{\text{eff}}[A_{\mu}] = -\frac{1}{2g_{\text{eff}}^2} \int d^4x \, \{ \text{Tr} \, (F_{\mu\nu}F_{\mu\nu}) \} + \frac{1}{M^2} \sum_{k} \omega_k \int d^4x \, \mathcal{L}_k^{(6)} + \dots
$$

3M: A universe with three heavy degenerate quarks $(M \gg \Lambda)$

Alice uses fundamental theory

$$
S_{\rm fund}[A_{\mu},\psi,\bar{\psi}]=\int \mathrm{d}^4x\, \left\{-\frac{1}{2g^2}{\rm Tr}\left(F_{\mu\nu}F_{\mu\nu}\right)+\sum_{i=1}^3 \bar{\psi}_i(\gamma_{\mu}D_{\mu}+M)\psi_i\right\}
$$

Bob uses effective theory

$$
S_{\text{eff}}[A_{\mu}] = -\frac{1}{2g_{\text{eff}}^2} \int d^4x \, \{ \text{Tr} \, (F_{\mu\nu}F_{\mu\nu}) \} + \frac{1}{M^2} \sum_{k} \omega_k \int d^4x \, \mathcal{L}_k^{(6)} + \dots
$$

Decoupling

▶ Dimensionless "low energy quantities" $\sqrt{t_0}/r_0$, $w_0/\sqrt{8t_0}$, r_0/w_0 , . . . from effective theory

$$
\frac{\mu_1^{\text{fund}}(M)}{\mu_2^{\text{fund}}(M)} = \frac{\mu_1^{\text{eff}}}{\mu_2^{\text{eff}}} + \mathcal{O}\left(\frac{\mu^2}{M^2}\right)
$$

Renormalization in 3M: Alice determines the strong coupling

$$
\frac{\Lambda}{\mu} = \left[b_0 \bar{g}^2(\mu) \right]^{-\frac{b_1}{2b_0^2}} e^{-\frac{1}{2b_0 \bar{g}^2(\mu)}} \ \exp \left\{ - \int_0^{\bar{g}(\mu)} dx \left[\frac{1}{\beta(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x} \right] \right\} \,.
$$

- Determine non-perturbatively the β -function in the fundamental ($N_f = 3$) theory, mass-less scheme.
- Integral up to $\bar{g}^{(3)}(\mu_{\text{dec}})$ = value (in a mass-less scheme!) gives:

$\Lambda^{(3)}$

μ_{dec}

 \blacktriangleright Turn on quark masses and relate μ_{dec} with its massive version $(\bar{g}^{(3)}(\mu_{\text{dec}}(M), M) = \text{value})$

$$
\frac{\mu_{\text{dec}}(M)}{\mu_{\text{dec}}}
$$

$$
\blacktriangleright
$$
 Result

$$
\frac{\Lambda^{(3)}}{\mu_{\text{dec}}(M)} = \frac{\Lambda^{(3)}}{\mu_{\text{dec}}} \times \frac{\mu_{\text{dec}}(M)}{\mu_{\text{dec}}}
$$

Renormalization in 3M: Bob determines the strong coupling

$$
\frac{\Lambda}{\mu} = \left[b_0 \bar{g}^2(\mu) \right]^{-\frac{b_1}{2b_0^2}} e^{-\frac{1}{2b_0 \bar{g}^2(\mu)}} \exp \left\{ - \int_0^{\bar{g}(\mu)} dx \left[\frac{1}{\beta(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x} \right] \right\}.
$$

Determine non-perturbatively the *β*-function in the effective ($N_f = 0$) theory.

• Integral up to
$$
\bar{g}^{(0)}(\mu'_{\text{dec}}) = \text{value gives:}
$$

 $\Lambda^{(0)}$ $\mu_{\rm dec}'$

 \blacktriangleright Match across quark threshold to convert to $\Lambda^{(3)}$ (using perturbation theory)

$$
\frac{\Lambda^{(3)}}{\mu'_{\text{dec}}} = \frac{\Lambda^{(0)}}{\mu'_{\text{dec}}} \times \frac{1}{P(\Lambda/M)}.
$$

Relation between Alice and Bob computation

$$
\begin{array}{ll}\n\bar{g}^{(3)}(\mu_{\text{dec}}(M),M) & = \text{value} \\
\bar{g}^{(0)}(\mu_{\text{dec}}') & = \text{value}\n\end{array}\n\bigg\} \Longrightarrow \frac{\mu_{\text{dec}}(M)}{\mu_{\text{dec}}'} = 1 + \mathcal{O}(\mu_{\text{dec}}^2/M^2)
$$

Relation between Alice and Bob computations

$$
\frac{\Lambda^{(3)}}{\mu_{\text{dec}}(M)} = \frac{\Lambda^{(0)}}{\mu'_{\text{dec}}} \times \frac{1}{P(\Lambda/M)} + \mathcal{O}(\alpha^4(m^{\star})) + \mathcal{O}\left(\frac{\mu_{\text{dec}}^2}{M^2}\right)
$$

Bob is telling us that $\Lambda^{(3)}$ can be computed from $\Lambda^{(0)}$

$$
\Lambda^{(3)} = \lim_{M \to \infty} \mu_{\text{dec}}(M) \times \frac{\Lambda^{(0)}}{\mu'_{\text{dec}}} \times \frac{1}{P(\Lambda/M)}
$$

We need

P Running in pure gauge: $\Lambda^{(0)}/\mu_{\text{dec}}'$

A scale in a world with degenerate massive quarks: $\mu_{\text{dec}}(M)$ in fm/MeV.

Lattice QCD can simulate *unphysical* worlds

$$
\mu_{\text{dec}}(M) = M_p \times \frac{\mu_{\text{dec}}(M)}{M_p} = M_p^{\text{PDG}} \lim_{a \to 0} \frac{a\mu_{\text{dec}}(M)}{aM_p}
$$

MATCHING WORLDS

All lattice simulations depends only on dimensionless input: *g*0, *ami*, *L*/*a*. No dimensionfull output possible!

$$
W1("our" world) : \n \frac{M_{\pi}}{M_p} = 0.14; \n \frac{M_K}{M_p} = 0.37.
$$
\n
$$
W2 : \n \frac{M_{\pi}}{M_p} = 0.5; \n \frac{M_K}{M_p} = 0.5.
$$

How much changes the proton mass between W1 and W2?

- \blacktriangleright Choose one g_0 , tune $am_i \ll 1$ to match LCP of W1, W2
- **IDED** Repeat for several values g_0 and perform continuum limit:

$$
\frac{M_p(W2)}{M_p(W1)} = \lim_{aM_p \to 0} \frac{aM(W2)}{aM(W1)}.
$$

▶ Since W1 is "our" world:

$$
M_p(W2) = M_p^{\exp} \times \lim_{aM_p \to 0} \frac{aM(W2)}{aM(W1)}
$$

.

Our setup: Choices optimized to be able to simulate heavy quarks

$$
\Lambda^{(3)} = \mu_{\rm dec}(M) \times \frac{\Lambda^{(0)}}{\mu_{\rm dec}} \times \frac{1}{P(\Lambda/M)} + \mathcal{O}(\alpha^4(m^\star)) + \mathcal{O}\left(\frac{\mu_{\rm dec}}{M}\right) + \mathcal{O}\left(\frac{\mu_{\rm dec}^2}{M^2}\right)
$$

- Work in finite volume schemes with Schrödinger Functional boundary conditions: *T* × *L*³ with Dirichlet bcs. in time. $(\mu \sim 1/L)$: "Only" two scales.
- \blacktriangleright Use Gradient Flow couplings

$$
\bar{g}^{2}(\mu) = \mathcal{N}^{-1}(c, a/L) t^{2} \langle E(t) \rangle \Big|_{\mu^{-1} = \sqrt{8t} = cL}.
$$

- ► Fix $\bar{g}^2(\mu_{\text{dec}})|_{N_f=3, M=0, T=L}$ = 3.95. This defines $\mu_{\text{dec}} = 1/L \sim 800 \text{ MeV}$
- **►** Small volume \Longrightarrow We can simulate heavy quarks (i.e. $a \sim 30 50$ GeV⁻¹)
- \blacktriangleright Matching condition ($\{N_f = 3, M\} \leftrightarrow \{N_f = 0\}$) between massive scheme and effective theory

$$
\bar{g}^2(\mu_{\text{dec}}(M))\Big|_{N_f=3,M,T=2L} = \bar{g}^2(\mu_{\text{dec}})\Big|_{N_f=0,T=2L}.
$$

Matching: QCD in a finite volume!

Convenient variable: $z = M/\mu_{\text{dec}}$

Our setup: Choices optimized to be able to simulate heavy quarks

$$
\Lambda^{(3)} = \mu_{\text{dec}}(M) \times \frac{\Lambda^{(0)}}{\mu_{\text{dec}}} \times \frac{1}{P(\Lambda/M)} + \mathcal{O}(\alpha^4(m^*)) + \mathcal{O}\left(\frac{\mu_{\text{dec}}^2}{M}\right) + \mathcal{O}\left(\frac{\mu_{\text{dec}}^2}{M^2}\right)
$$

We only need to fill in a table!

$$
\frac{\mu_{\text{dec}}(M) \text{ [MeV]} - M/\mu_{\text{dec}}(M)}{789(15)} = \frac{\pi}{1.972} \times \frac{\pi}{1.972} \times \frac{\pi}{1.972}
$$

$$
\frac{789(15)}{789(15)} = \frac{4}{10}
$$

$$
\frac{789(15)}{10} = \frac{1}{10}
$$

$$
\frac{789(15)}{789(15)} = \frac{1}{10}
$$

$$
\frac{789(15)}{10} = \frac{1}{10}
$$

 \blacktriangleright Difficult continuum extrapolations to determine $\bar{g}_z^2 = \bar{g}^2(\mu_{\text{dec}}(M))\Big|_{N_f=3,M,T=2L}$

▶ Use combined Heavy-Quark / Symanzik effective theories.

CONTINUUM EXTRAPOLATION ANSATZE

Quadratic dependence on lattice spacing (*a*) via $a\mu_{\text{dec}}$ and aM

For large enough masses, effective theory applies:

 $\overline{g}^2(z_i, a) = C_i + p_1[\alpha_{\overline{\text{MS}}}(a^{-1})]^{\hat{\Gamma}}(a\mu_{\text{dec}})^2 + p_2[\alpha_{\overline{\text{MS}}}(a^{-1})]^{\hat{\Gamma}'}(aM_i)^2$.

- \triangleright Continuum values (our target quantity)
- \blacktriangleright Mass independent cutoff effects
- **IMass dependent cutoff effects**
- ► Loop corrections in effective theory: $-1 \leq \hat{\Gamma} \leq 1$ and $-1/9 \leq \Gamma' \leq 1$

Additional assumptions about ^O(*aM*) effects

Partial knowledge based on PT: **Propagate difference between last known orders as additional uncertainty**

- \triangleright Schrödinger functional boundaries: Small (negligible to our level of precision). Explicit computation.
- \blacktriangleright Quark mass improvement: b_m, b_A, b_P, \ldots . **Very** small effect.
- Improved bare coupling: b_g . Large effect at large masses (comparable to statistical uncertainties). Decreases as $aM \rightarrow 0$.

25/33

CONTINUUM EXTRAPOLATIONS

Continuum extrapolations with *L*/*a* = 12, 16, 20, 24, 32, , 40, 48

CONTINUUM EXTRAPOLATIONS

Continuum extrapolations with *L*/*a* = 12, 16, 20, 24, 32, , 40, 48

Table can be filled

$$
\Lambda^{(3)} = \mu_{\text{dec}}(M) \times \frac{\Lambda^{(0)}}{\mu_{\text{dec}}} \times \frac{1}{P(\Lambda/M)} + \mathcal{O}(\alpha^4(m^*)) + \mathcal{O}\left(\frac{\mu_{\text{dec}}}{M}\right) + \mathcal{O}\left(\frac{\mu_{\text{dec}}^2}{M^2}\right)
$$

Perturbative uncertainties

 $\mathcal{O}(\alpha^4(m^{\star}))$

Completely negligible!. (Take difference between 4-loops and 2-loops as estimate)

Result

 $\alpha_s(m_Z) = 0.11823(69)(42)_{b_g}(20)_{\Gamma_{\rm m}}(6)_{3\to 5,\rm PT}(7)_{3\to 5,\rm NP} = 0.11823(84)$.

EXAMPLE

۳

- Extraction of α_s is a **very hard** multi-scale problem
	- ► Computational cost \implies $(L/a)^7$
	- ▶ Perturbative uncertainties \Longrightarrow $\log(L/a)^{\#}$
- \blacktriangleright Perturbative uncertainties hard to estimated with data in a limited range of scales
- \triangleright One should take "non-perturbative" limit seriously (i.e. $\alpha \to 0$)
- **Perturbative uncertainties using scale variation are a guide: Common** framework to all approaches? **[L. Del Debbio, A. Ramos Phys.Rep.(2021)190]**
- ▶ One **real solution**: Step scaling
	- \blacktriangleright Non-perturbative running from 200 MeV to 140 GeV: $\alpha_s(M_Z) = 0.1185(8)$
- ^I *Exponential* improvement (still a multi-scale problem): Decoupling of heavy quarks
	- **Perturbative uncertainties negligible** ($M \approx 10$ GeV)
	- \blacktriangleright Non-perturbative corrections can be extrapolated
	- \blacktriangleright Relies on *pure gauge determinations of* $\Lambda^{(0)}$
	- **Precise result:** $\alpha_s(M_Z) = 0.1182(8)$
- $\delta \alpha_s(M_Z) \approx 0.4\%$ certainly possible (uncertainties dominated by pure gauge (!!) and low energy running (!)).
- \blacktriangleright $\delta \alpha_s(M_Z) < 0.3\%$ requires serious thinking.
- ▶ Potential for **other lattice approaches**: How difficult to simulate high *M*?.

