# Decoupling of heavy quarks as a tool to determine $\alpha_s$

Alberto Ramos <alberto.ramos@ific.uv.es>

Mattia Dalla Brida, Roman Höllwieser, Francesco Knechtli, Tomasz Korzec, Rainer Sommer, Stefan Sint.

- Non-perturbative renormalization by decoupling. [arXiv: 1912.06001]
- Determination of  $\alpha_s(m_Z)$  by the non-perturbative decoupling method. [arXiv: 2209.14204]







| Motivation | Тне                                  | PROBLEM                                      | Heavy quarks                                      | Renormalizaton in                                   | 3M         | Conclusions |  |  |
|------------|--------------------------------------|----------------------------------------------|---------------------------------------------------|-----------------------------------------------------|------------|-------------|--|--|
| Мотг       | VATION                               |                                              |                                                   |                                                     |            |             |  |  |
| C          | Computing                            | ; the strength of f                          | undamental intera                                 | ctions                                              |            |             |  |  |
|            | ► Take some                          | e experimental ob                            | servable $O(\mu; p)$ .                            |                                                     |            |             |  |  |
|            | <ul> <li>Work hard to get</li> </ul> |                                              |                                                   |                                                     |            |             |  |  |
|            |                                      | $O(\mu; p) =$                                | $= A(p)\alpha_{\overline{\mathrm{MS}}}(\mu) + B($ | $(p)\alpha_{\overline{\mathrm{MS}}}^2(\mu) + \dots$ |            |             |  |  |
|            | ► Determine                          | $lpha_{\overline{\mathrm{MS}}}(\mu)$ by comp | paring experiment                                 | and theory comp                                     | utation    |             |  |  |
|            | $g_e - 2: \alpha_{em}$               | = 7.297 352 569                              | $98(24) \times 10^{-3}$                           | $\tau : \alpha_s(M_Z) =$                            | 0.1198(15) |             |  |  |
|            | recoil : $\alpha_{em}$               | = 7.297 352 585                              | $6(48) \times 10^{-3}$ $e^+$                      | $e^-: \alpha_s(M_Z) =$                              | 0.1172(37) |             |  |  |
| ſ          | Caveats <ul> <li>Asymptot</li> </ul> | ic states are not q                          | uarks/gluons ("ha                                 | dronization",)                                      |            |             |  |  |

- $\alpha_s$  is larger. Sometimes extracted at a few GeV ( $\alpha_s \approx 0.3$ !). What about the ...?

  - Perturbative corrections?
     Non-perturbative corrections?

## Determinations of $\alpha_s(m_Z)$ [PDG '21]



 Low energy determinations are more precise (!!?)



| Motivation | The problem                                                                   | Heavy quarks                                                                                 | Renormalizaton in 3M                                                                    | Conclusions |
|------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------|
| Detern     | MINATIONS OF $lpha_s$                                                         |                                                                                              |                                                                                         |             |
| 6          | All uncertainties from thi                                                    | s step ( $N \sim 2, 3$ )                                                                     |                                                                                         |             |
|            | $O(Q) \stackrel{Q \to \infty}{\sim} \alpha_s(Q) +$                            | $\sum_{n=2}^{N} c_n \alpha_s^n(Q) + \mathcal{O}(c)$                                          | $\mathcal{L}_{s}^{N+1}(Q)) + \mathcal{O}\left(\frac{\Lambda^{p}}{Q^{p}}\right) + \dots$ |             |
| C          | Q(Q) (lattice, experiment) =                                                  | $\Rightarrow \alpha_s(Q)$                                                                    |                                                                                         | J           |
|            | No uncertainties here (5-<br>Run to a convenient scal Quote the RGI invariant | loop running in $\overline{MS}$<br>e (i.e. $M_Z$ )<br>$\alpha_s(Q) \longrightarrow \alpha_s$ | $\overline{b}$                                                                          |             |
| Ļ          | $\mathbf{L}$                                                                  |                                                                                              | - MS                                                                                    |             |
|            | Uncertainties in $\alpha_s(MZ)$ :                                             |                                                                                              |                                                                                         |             |
|            | <ul> <li>Non-perturbative uncert</li> </ul>                                   | tainties $\propto \left(\frac{\Lambda}{Q}\right)^p$                                          |                                                                                         |             |
|            | <ul> <li>Perturbative uncertaintie</li> </ul>                                 | $es \propto \alpha_s^{N+1}(Q)$                                                               |                                                                                         |             |
| _          |                                                                               |                                                                                              |                                                                                         |             |

| Motivation | The problem | Heavy quarks | Renormalizaton in 3M | Conclusion |
|------------|-------------|--------------|----------------------|------------|
| The proble | m: Summary  |              |                      |            |

$$O(Q) \overset{Q \to \infty}{\sim} \alpha_s(Q) + \sum_{n=2} c_n \alpha_s^n(Q) + \mathcal{O}(\alpha_s^{N+1}(Q)) + \mathcal{O}\left(\frac{\Lambda^p}{Q^p}\right) + \dots$$

Non-perturbative corrections

- Difficult to compute (NP physics is difficult!)
- Better use smaller  $\alpha \Longrightarrow (\text{larger } Q)$

#### Perturbative corrections

- Difficult to estimate (i.e. scale variation might fail)
- Main source of uncertainty in most lattice QCD extractions of α<sub>s</sub>
- Better use smaller  $\alpha \implies$  (exponentially larger *Q*)

# Computing path integrals: Lattice field theory

Lattice field theory  $\longrightarrow$  Non Perturbative definition of QFT.

 $U_{\mu}(x) = e^{iagA_{\mu}(x)} \quad \psi(x)$ l a Т

- Discretize space-time in an hyper-cubic lattice (spacing *a*)
- ▶ Path integral → multiple integral (one variable for each field at each point)
- ► Compute the integral numerically → Monte Carlo sampling.

$$\langle O \rangle = \frac{1}{N_{\rm conf}} \sum_{i=1}^{N_{\rm conf}} O(U_i) + \mathcal{O}(1/\sqrt{N_{\rm conf}})$$

Observable computed averaging over samples

This works both in the perturbative and non-perturbative regimes!

$$S_G[U] = \frac{\beta}{6} \sum_{p \in \text{Plaquettes}} Tr(1 - U_p - U_p^+) \xrightarrow[a \to 0]{} -\frac{1}{2} \int d^4x \operatorname{Tr}(F_{\mu\nu}F_{\mu\nu})$$

The problem:  $\alpha_s$  extractions are a multi-scale problem



| Motivation | The problem   | Heavy quarks | Renormalizaton in 3M | Conclusions |
|------------|---------------|--------------|----------------------|-------------|
| The st     | TRENGTH OF YM |              |                      |             |
| q          | • • • •       | a{           |                      | <b>↑</b>    |



• Take 
$$O(Q) = \frac{3r^2}{4}F(r)\Big|_{Q=1/r}$$

► This defines the "potential scheme". Non-perturbative coupling definition.

$$\alpha_{qq}(Q) = \frac{3r^2}{4}F(r)\Big|_{Q=1/r} \overset{Q\to\infty}{\sim} \alpha_{\overline{\mathrm{MS}}}(Q) + \dots$$

Useful to define convenient scales. i.e. the CERN scale

$$\alpha_{qq}(\mu_{\text{CERN}}) = 12.34/(4\pi)$$

(**NOTE:** Many lattice scales are basically this!:  $r_0, t_0, w_0, r_1, ...$ )

8/33

### THE SOUTION: FINITE SIZE SCALING [Lüscher, Weisz, Wolff '91]



Finite volume renormalization schemes: fix QL = constant

- Coupling  $\alpha(Q)$  depends on no other scale but *L* (Notation:  $\alpha(L), \alpha(1/L)$ ).
- Small  $L \Longrightarrow$  small  $\alpha(L)$
- $a \ll 1/Q$  easily achieved:  $L/a \sim 10 40$
- Step scaling function: How much changes the coupling when we change the renormalization scale:

$$\sigma(u) = g^2(Q/2)\Big|_{g^2(Q)=u}$$

achieved by simple changing  $L/a \rightarrow 2L/a!$ 

- 1/L is a IR cutoff  $\Rightarrow$  simulate directly  $m_q = 0$
- We need dedicated simulations of the femto-universe





- ► Non-perturbative running from 200 MeV to 140 GeV
- Many technical improvements:
  - Gradient flow couplings
  - Symanzik analysis of cutoff effects

 $\alpha_s(M_Z) = 0.11852(84) \ [0.7\%].$ 

| Motivation | The problem | Heavy quarks | Renormalizaton in 3M | Conclusions |
|------------|-------------|--------------|----------------------|-------------|
| Checkpoint |             |              |                      |             |

- Extraction of  $\alpha_s$  is a very difficult multi-scale problem on the lattice.
- ► Computational cost grows like (*L/a*)<sup>7</sup>
- Perturbative uncertainties decrease as  $\log \mu$
- ▶ Perturbative uncertainties ≈ 1 − 2% for most large volume approaches [L. Del Debbio, A. Ramos. Phys.Rep. (2021) 970 [arXiv:2101.04762]]
- Dedicated approach: step scaling. **Solves** the multi-scale problem.

 $\alpha_s(M_Z) = 0.11852(84) \ [0.7\%].$ 

MOTIVATION The problem RENORMALIZATON IN 3M HEAVY QUARKS CONCLUSIONS Massless renormalization schemes: Tremendous advantages Renormalization group functions are mass independent  $\mu \frac{\mathrm{d}\bar{g}^2(\mu)}{\mathrm{d}\mu} = \beta(\bar{g}, \mathcal{M}) \,.$ RGI invariants that characterize the running (i.e  $\Lambda$ , M,  $B_K$ , ...) **only** exists in ► massless schemes  $\Lambda_{s} = \mu \left[ b_{0} \bar{g}_{s}^{2}(\mu) \right]^{\frac{-b_{1}}{2b_{0}^{2}}} e^{-\frac{1}{2b_{0} \bar{g}_{s}^{2}(\mu)}} \exp \left\{ -\int_{0}^{\bar{g}_{s}(\mu)} dx \left[ \frac{1}{\beta_{s}(x)} + \frac{1}{b_{0} x^{3}} - \frac{b_{1}}{b_{0} x} \right] \right\}$ Precision: high loop computations available in perturbation theory  $\beta_{\overline{\text{MS}}}(\overline{g}) \stackrel{\overline{g} \to 0}{\sim} - \overline{g}^3(b_0 + b_1\overline{g}^2 + b_2^{\overline{\text{MS}}}\overline{g}^4 + b_3^{\overline{\text{MS}}}\overline{g}^6 + b_4^{\overline{\text{MS}}}\overline{g}^8 + \text{unknown})$ 

Always universal but universal only in massless schemes

• In LQCD: easier to define the chiral point  $(m_q = 0)$  than the physical point  $(m_q = ??)$ 





MOTIVATION THE PROBLEM HEAVY QUARKS RENORMALIZATON IN 3M CONCLUSIONS DECOUPLING OF HEAVY QUARKS: PERTURBATION THEORY pQuark-Quark scattering with  $N_1$  light and one heavy  $T = \frac{\alpha_{\overline{\text{MS}}}(\mu)}{\pi} + \frac{\alpha_{\overline{\text{MS}}}^2(\mu)}{\pi^2} \left\{ \frac{T_1(p,m)}{\pi} + \frac{1}{6} \log \frac{m_h^2(\mu)}{\mu^2} + c \right\} + \mathcal{O}(\alpha^3)$ mı. p $\overline{p}$ Five Stages of understanding: (III) Bargaining ALICE: Look, If I only could say that  $\frac{\alpha'(\mu)}{\tau} = \frac{\alpha_{\overline{\text{MS}}}(\mu)}{\pi} + \frac{\alpha_{\overline{\text{MS}}}^2(\mu)}{\pi^2} \frac{1}{6} \log \frac{m_h^2(\mu)}{\mu^2}$ Then everything would make sense:  $T = \frac{\alpha'(\mu)}{\pi} + \frac{\alpha'^2(\mu)}{\pi^2} \left[ T_1(p,m) + c \right] + \mathcal{O}(\alpha^3)$ But then the coupling would depend on  $m_{\rm h}!$ 



| Motivation | The problem                                                                                                     | Heavy quarks                                                                                                     | Renormalizaton in 3M                                                                                                                          | Conclusion                               |
|------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Decouplin  | NG OF HEAVY QUA                                                                                                 | rks: Perturbati                                                                                                  | ON THEORY                                                                                                                                     |                                          |
| p          |                                                                                                                 | Quark-Quark scatter                                                                                              | ing with N <sub>l</sub> light and one he                                                                                                      | avy                                      |
|            | T =                                                                                                             | $= \frac{\alpha_{\overline{\text{MS}}}(\mu)}{\pi} + \frac{\alpha_{\overline{\text{MS}}}^2(\mu)}{\pi^2}$          | $\left\{ T_{1}(p,m) + \frac{1}{6}\log\frac{m_{h}^{2}(\mu)}{\mu^{2}} + c \right\}$                                                             | $\left.\right\} + \mathcal{O}(\alpha^3)$ |
| <i>p</i>   |                                                                                                                 |                                                                                                                  |                                                                                                                                               |                                          |
| Fi         | ve Stages of understar                                                                                          | nding: (V) All fits nic                                                                                          | ely                                                                                                                                           |                                          |
|            | $rac{lpha'(\mu)}{\pi}$                                                                                         | $= \frac{\alpha_{\overline{\rm MS}}(\mu)}{\pi} + \frac{\alpha_{\overline{\rm MS}}^2(\mu)}{\pi^2}$                | $\frac{\mu}{6} \frac{1}{6} \log \frac{m_h^2(\mu)}{\mu^2}$                                                                                     |                                          |
| And c      | determine                                                                                                       |                                                                                                                  |                                                                                                                                               |                                          |
| $\beta' =$ | $\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \alpha'(\mu) = \left(\mu^2 \frac{\mathrm{d}}{\partial \mu^2} \right)$ | $\frac{\partial}{\mu^2} + \beta \frac{\partial}{\partial \alpha} + \gamma \frac{\partial}{\partial m_h} \right)$ | $\int \left[ \alpha'_{\overline{\mathrm{MS}}}(\mu) + \frac{\alpha^2_{\overline{\mathrm{MS}}}(\mu)}{\pi} \frac{1}{6} \log \frac{n}{2} \right]$ | $\frac{l_h^2(\mu)}{\mu^2} \bigg]$        |
|            |                                                                                                                 |                                                                                                                  |                                                                                                                                               |                                          |

| Motivation | The problem                | Heavy quarks                                                                                                                | Renormalizaton in 3M                                               | Conclusion                                   |
|------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|
| Decoupling | G OF HEAVY QUA             | rks: Perturbatic                                                                                                            | ON THEORY                                                          |                                              |
| p {        | p [                        | Quark-Quark scatteri                                                                                                        | ng with <mark>N<sub>l</sub> light</mark> and one he                | eavy                                         |
|            | $m_{\rm h}$ $T =$          | $= \frac{\alpha_{\overline{\mathrm{MS}}}(\mu)}{\pi} + \frac{\alpha_{\overline{\mathrm{MS}}}^2(\mu)}{\pi^2} \left\{ \right.$ | ${T_1(p,m)} + {1 \over 6} \log {{m_h^2(\mu)} \over {\mu^2}} + {0}$ | $c \left\{ + \mathcal{O}(\alpha^3) \right\}$ |
| p          | <i>p</i>                   |                                                                                                                             |                                                                    |                                              |
| Five       | Stages of understan        | ding: (V) All fits nice                                                                                                     | ly                                                                 |                                              |
|            | $\frac{\alpha'(\mu)}{\pi}$ | $= \frac{\alpha_{\overline{\mathrm{MS}}}(\mu)}{\pi} + \frac{\alpha_{\overline{\mathrm{MS}}}^2(\mu)}{\pi^2}$                 | $\frac{1}{6} \frac{1}{6} \log \frac{m_h^2(\mu)}{\mu^2}$            |                                              |
| And de     | termine                    |                                                                                                                             |                                                                    |                                              |
|            | $\beta' = \mu^2$           | $rac{\mathrm{d}}{\mathrm{d}\mu^2} lpha'(\mu) \stackrel{lpha' 	o 0}{\sim} eta - rac{lpha}{-}$                              | $\frac{e'^2(\mu)}{6\pi} + \mathcal{O}(\alpha^3)$                   |                                              |
|            |                            |                                                                                                                             |                                                                    |                                              |

| Motivation | The problem                                         | Heavy quarks                                                                                                              | Renormalizaton in 3M                                                               | Conclusion               |
|------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------|
| Decou      | PLING OF HEAVY QUA                                  | ARKS: PERTURBATIO                                                                                                         | ON THEORY<br>ing with N <sub>l</sub> light and one hea                             | vy                       |
|            |                                                     | $= \frac{\alpha_{\overline{\mathrm{MS}}}(\mu)}{\pi} + \frac{\alpha_{\overline{\mathrm{MS}}}^2(\mu)}{\pi^2} \cdot$         | $\left\{T_1(p,m)+\frac{1}{6}\log\frac{m_h^2(\mu)}{\mu^2}+c\right\}$                | $+\mathcal{O}(\alpha^3)$ |
| p          | p                                                   |                                                                                                                           |                                                                                    |                          |
| C          | Five Stages of understa                             | nding: (V) All fits nic                                                                                                   | ely                                                                                |                          |
|            | $rac{lpha'(\mu)}{\pi}$                             | $\frac{1}{\pi} = \frac{\alpha_{\overline{\mathrm{MS}}}(\mu)}{\pi} + \frac{\alpha_{\overline{\mathrm{MS}}}^2(\mu)}{\pi^2}$ | $\frac{1}{6} \frac{1}{6} \log \frac{m_h^2(\mu)}{\mu^2}$                            |                          |
| A          | and determine                                       |                                                                                                                           |                                                                                    |                          |
|            | $eta'=\mu^2rac{\mathrm{d}}{\mathrm{d}\mu^2}lpha'($ | $\mu) \stackrel{\alpha' \to 0}{\sim} - \frac{\alpha'^2(\mu)}{\pi} \left(\frac{1}{4}\right)$                               | $\frac{1}{6} - \frac{1}{6}N_{\rm f} + \frac{1}{6} \right) + \mathcal{O}(\alpha^3)$ |                          |
|            |                                                     |                                                                                                                           |                                                                                    |                          |

| Motivation      | The problem                                                     | Heavy quarks                                                                                                                           | Renormalizaton in 3M                                                                                                      | Conclusion               |
|-----------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Decoupling      | g of heavy qua                                                  | rks: Perturbatic                                                                                                                       | ON THEORY                                                                                                                 |                          |
| <i>p</i>        | p<br>$m_{\rm h}$ $T =$                                          | Quark-Quark scatteri $= \frac{\alpha_{\overline{\rm MS}}(\mu)}{\pi} + \frac{\alpha_{\overline{\rm MS}}^2(\mu)}{\pi^2} \left\{ \right.$ | ng with N <sub>l</sub> light and one heav $\left\{T_{l}(p,m) + \frac{1}{6}\log\frac{m_{h}^{2}(\mu)}{\mu^{2}} + c\right\}$ | $+\mathcal{O}(\alpha^3)$ |
| p<br>Five       | p<br>e Stages of understar                                      | nding: (V) All fits nice                                                                                                               | ely                                                                                                                       |                          |
|                 | $rac{lpha'(\mu)}{\pi}$                                         | $=\frac{\alpha_{\overline{\rm MS}}(\mu)}{\pi}+\frac{\alpha_{\overline{\rm MS}}^2(\mu)}{\pi^2}$                                         | $\frac{1}{6} \log \frac{m_h^2(\mu)}{\mu^2}$                                                                               |                          |
| And de          | termine                                                         |                                                                                                                                        |                                                                                                                           |                          |
|                 | $\beta' = \mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \alpha'(\mu$ | $\alpha' \stackrel{\alpha' \to 0}{\sim} - \frac{\alpha'^2(\mu)}{\pi} \left[ \frac{11}{4} \right]$                                      | $-rac{1}{6}(N_{\mathrm{f}}-1) ight]+\mathcal{O}(lpha^{3})$                                                               |                          |
| $lpha'(\mu)$ is | s the running coupli                                            | ng with $N_l = N_f - 1$ fl                                                                                                             | lavors!                                                                                                                   |                          |
|                 |                                                                 |                                                                                                                                        |                                                                                                                           |                          |

Matching between theories

- At energy scales *Q* just forget about all quarks with m > Q
- "Nice" perturbative expressions if you only use active quarks
- Matching between effective theory (with active quarks) and fundamental theory (with active and heavy quarks)





| $\Lambda$ | 07 |      |     | -  |   |  |
|-----------|----|------|-----|----|---|--|
| VI.       | 01 | 11/2 | 711 | Or | N |  |

Matching between theories

- At energy scales *Q* just forget about all quarks with m > Q
- "Nice" perturbative expressions if you only use active quarks
- Matching between effective theory (with active quarks) and fundamental theory (with active and heavy quarks)

$$\alpha_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}}-1)}(\mu) = \alpha_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}(\mu) \times \left\{ 1 + a_{1}(m_{h}/\mu)\alpha_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}(\mu) + \dots \right\}$$

Abuse of language: A single  $\alpha_{\overline{\rm MS}}(\mu)$  that "jumps" at quark thresholds

- $\alpha_{\overline{\text{MS}}}(4 \text{ GeV})$  : This is the four flavor coupling
- $\alpha_{\overline{\text{MS}}}(10 \,\text{GeV})$  : This is the five flavor coupling
- $\alpha_{\overline{\text{MS}}}(M_Z)$  : This is the five flavor coupling

Caveats

Power corrections are neglected (more later)

$$\begin{split} & \Lambda_{\overline{\text{MS}}}^{(N_{f})} \xrightarrow{P(M/\Lambda)} \Lambda_{\overline{\text{MS}}}^{(N_{f}')} \\ \hline \text{Relation between } \Lambda \text{ parameters} \\ \hline \text{If you happen to know } \Lambda_{\overline{\text{MS}}}^{(6)} \text{ then} \\ 1. \text{ Determine } \alpha_{\overline{\text{MS}}}^{(6)}(\mu) = \bar{g}_{\overline{\text{MS}}}^{2}(\mu)/(4\pi) \text{ at some scale } \mu \approx m_{t} \\ & \frac{\Lambda_{\overline{\text{MS}}}^{(6)}}{\mu} = \left[ b_{0} \bar{g}_{\overline{\text{MS}}}^{2}(\mu) \right]^{\frac{-b_{1}}{2b_{0}^{2}}} e^{-\frac{1}{2b_{0}g_{\overline{\text{MS}}}^{2}(\mu)}} \exp \left\{ -\int_{0}^{\bar{g}_{\overline{\text{MS}}}(\mu)} dx \left[ \frac{1}{\beta_{\overline{\text{MS}}}^{(6)}(x)} + \frac{1}{b_{0}x^{3}} - \frac{b_{1}}{b_{0}x} \right] \right\} \\ 2. \text{ Match across the top threshold (4 loops known!)} \\ & \frac{\bar{g}'^{2}(\mu)}{4\pi} = \alpha_{\overline{\text{MS}}}^{(5)}(\mu) = \alpha_{\overline{\text{MS}}}^{(6)}(\mu) \times \left\{ 1 + a_{1}(m_{t}/\mu)\alpha_{\overline{\text{MS}}}^{(6)}(\mu) + \dots \right\} \\ 3. \text{ Determine the } \Lambda \text{ parameter of the 5 flavor theory} \\ & \frac{\Lambda_{\overline{\text{MS}}}^{(5)}}{\mu} = \left[ b_{0} \bar{g}_{\overline{\text{MS}}}^{\prime 2}(\mu) \right]^{\frac{-b_{1}}{2b_{0}^{2}}} e^{-\frac{1}{2b_{0}g_{\overline{\text{MS}}}^{\prime 2}(\mu)}} \exp \left\{ -\int_{0}^{\overline{g}_{\overline{\text{MS}}}^{\prime}(\mu)} dx \left[ \frac{1}{\beta_{\overline{\text{MS}}}^{(5)}(x)} + \frac{1}{b_{0}x^{3}} - \frac{b_{1}}{b_{0}x} \right] \right\} \end{split}$$

$$\begin{split} \frac{\Lambda_{\overline{\text{MS}}}^{(N_f)}}{\mu} &= \left[ b_0 \bar{g}_{\overline{\text{MS}}}^2(\mu) \right]^{\frac{-b_1}{2b_0^2}} e^{-\frac{1}{2b_0 \bar{g}_{\overline{\text{MS}}}^2(\mu)}} \exp \left\{ -\int_0^{\bar{g}_{\overline{\text{MS}}}(\mu)} dx \left[ \frac{1}{\beta_{\overline{\text{MS}}}^{(N_f)}(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0 x} \right] \right\} \end{split}$$
Some numerical examples
Start with  $\Lambda_{\overline{\text{MS}}}^{(6)} \approx 91.1 \text{ MeV}$ 
Determine  $\alpha_{\overline{\text{MS}}}^{(6)}(m_t) \Longrightarrow \alpha_{\overline{\text{MS}}}^{(5)}(m_t)$ 
Get  $\Lambda_{\overline{\text{MS}}}^{(5)} \approx 215 \text{ MeV}$ 
Determine  $\alpha_{\overline{\text{MS}}}^{(5)}(m_b) \Longrightarrow \alpha_{\overline{\text{MS}}}^{(4)}(m_b)$ 
Get  $\Lambda_{\overline{\text{MS}}}^{(4)} \approx 298 \text{ MeV}$ 
Determine  $\alpha_{\overline{\text{MS}}}^{(4)}(m_c) \Longrightarrow \alpha_{\overline{\text{MS}}}^{(3)}(m_c)$ 
Get  $\Lambda_{\overline{\text{MS}}}^{(3)} \approx 312 \text{ MeV}$ 
We cannot get  $\Lambda_{\overline{\text{MS}}}^{(2)}$ : No valid perturbative matching at  $\mu \approx m_s < \Lambda$ 
Perturbative uncertainties ridiculously small in this game! [ALPHA '18]

| [ ▶ ] | Large coefficients in PT                                                                 | is a problem of PT                                                |                                   |  |  |  |
|-------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------|--|--|--|
| ▶ ]   | In Lattice QCD we can                                                                    | use as many (heavy)                                               | flavors as we want                |  |  |  |
| ► 5   | Sometimes useful to consider massive schemes:                                            |                                                                   |                                   |  |  |  |
|       | C                                                                                        | $\alpha_{qq}(\mu, M_u^{\mathrm{phys}}, M_d^{\mathrm{phys}}, N_d)$ | $M_s^{\rm phys}, M_c^{\rm phys})$ |  |  |  |
| • 1   | But simulating heavy q<br>$hightarrow m_h$ is large<br>$hightarrow am_h$ has to be small | uarks is challenging:                                             |                                   |  |  |  |
| ]     | Requires large computa                                                                   | ational resources!                                                |                                   |  |  |  |



| Motivation | The problem | Heavy quarks | RENORMALIZATON IN 3M | Conclusions |
|------------|-------------|--------------|----------------------|-------------|
| Checkpoint |             |              |                      |             |

- Massless schemes are needed for precision.
- One should use perturbative expressions with only the number of **active** quarks
- Matching between theories

$$\alpha_{\overline{\mathrm{MS}}}^{(3)} \to \alpha_{\overline{\mathrm{MS}}}^{(4)} \to \alpha_{\overline{\mathrm{MS}}}^{(5)} \to \alpha_{\overline{\mathrm{MS}}}^{(6)}$$
.

Non perturbatively one can use massless or massive schemes.

## 3M: A universe with three heavy degenerate quarks $(M\gg\Lambda)$

Alice uses fundamental theory

$$S_{\rm fund}[A_{\mu},\psi,\bar{\psi}] = \int {\rm d}^4 x \, \left\{ -\frac{1}{2g^2} {\rm Tr} \, (F_{\mu\nu}F_{\mu\nu}) + \sum_{i=1}^3 \bar{\psi}_i (\gamma_{\mu}D_{\mu} + M)\psi_i \right\} \,$$

Bob uses effective theory

$$S_{\rm eff}[A_{\mu}] = -\frac{1}{2g_{\rm eff}^2} \int d^4x \, \{ {\rm Tr} \, (F_{\mu\nu}F_{\mu\nu}) \} + \frac{1}{M^2} \sum_k \omega_k \int d^4x \, \mathcal{L}_k^{(6)} + \dots$$

## 3M: A universe with three heavy degenerate quarks $(M\gg\Lambda)$

Alice uses fundamental theory

$$S_{\text{fund}}[A_{\mu},\psi,\bar{\psi}] = \int d^4x \left\{ -\frac{1}{2g^2} \text{Tr} \left(F_{\mu\nu}F_{\mu\nu}\right) + \sum_{i=1}^3 \bar{\psi}_i (\gamma_{\mu}D_{\mu} + M)\psi_i \right\}$$

Bob uses effective theory  $S_{\text{eff}}[A_{\mu}] = -\frac{1}{2g_{\text{eff}}^2} \int d^4x \, \{ \text{Tr} \left( F_{\mu\nu}F_{\mu\nu} \right) \} + \frac{1}{M^2} \sum_{k} \omega_k \int d^4x \, \mathcal{L}_k^{(6)} + \dots$ 

### Decoupling

▶ Dimensionless "low energy quantities"  $\sqrt{t_0}/r_0, w_0/\sqrt{8t_0}, r_0/w_0, \dots$  from effective theory

$$\frac{\mu_1^{\text{fund}}(M)}{\mu_2^{\text{fund}}(M)} = \frac{\mu_1^{\text{eff}}}{\mu_2^{\text{eff}}} + \mathcal{O}\left(\frac{\mu^2}{M^2}\right)$$

Renormalization in 3M: Alice determines the strong coupling

$$\frac{\Lambda}{\mu} = \left[ b_0 \bar{g}^2(\mu) \right]^{-\frac{b_1}{2b_0^2}} e^{-\frac{1}{2b_0 \bar{g}^2(\mu)}} \exp\left\{ -\int_0^{\bar{g}(\mu)} dx \left[ \frac{1}{\beta(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x} \right] \right\}$$

- Determine non-perturbatively the  $\beta$ -function in the fundamental ( $N_f = 3$ ) theory, mass-less scheme.
- ► Integral up to  $\bar{g}^{(3)}(\mu_{dec})$  = value (in a mass-less scheme!) gives:

# $\Lambda^{(3)}$

#### $\mu_{\text{dec}}$

► Turn on quark masses and relate  $\mu_{dec}$  with its massive version  $(\bar{g}^{(3)}(\mu_{dec}(M), M) = \text{value})$ 

$$\frac{\mu_{\text{dec}}(M)}{\mu_{\text{dec}}}$$

#### Result

$$\frac{\Lambda^{(3)}}{\mu_{\rm dec}(M)} = \frac{\Lambda^{(3)}}{\mu_{\rm dec}} \times \frac{\mu_{\rm dec}(M)}{\mu_{\rm dec}}$$

Renormalization in 3M: Bob determines the strong coupling

$$\frac{\Lambda}{\mu} = \left[ b_0 \bar{g}^2(\mu) \right]^{-\frac{b_1}{2b_0^2}} e^{-\frac{1}{2b_0 \bar{g}^2(\mu)}} \exp\left\{ -\int_0^{\bar{g}(\mu)} \mathrm{d}x \left[ \frac{1}{\beta(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x} \right] \right\}$$

• Determine non-perturbatively the  $\beta$ -function in the effective ( $N_f = 0$ ) theory.

• Integral up to 
$$\bar{g}^{(0)}(\mu'_{dec})$$
 = value gives:

 $\frac{\Lambda^{(0)}}{\mu_{\rm dec}'}$ 

• Match across quark threshold to convert to  $\Lambda^{(3)}$  (using perturbation theory)

$$\frac{\Lambda^{(3)}}{\mu'_{\rm dec}} = \frac{\Lambda^{(0)}}{\mu'_{\rm dec}} \times \frac{1}{P(\Lambda/M)} \,.$$

## Relation between Alice and Bob computation

$$\bar{g}^{(3)}(\mu_{\rm dec}(M), M) = \text{value} \\ \bar{g}^{(0)}(\mu'_{\rm dec}) = \text{value}$$
 
$$\} \Longrightarrow \frac{\mu_{\rm dec}(M)}{\mu'_{\rm dec}} = 1 + \mathcal{O}(\mu_{\rm dec}^2/M^2)$$

Relation between Alice and Bob computations

$$\frac{\Lambda^{(3)}}{\mu_{\rm dec}(M)} = \frac{\Lambda^{(0)}}{\mu'_{\rm dec}} \times \frac{1}{P(\Lambda/M)} + \mathcal{O}(\alpha^4(m^\star)) + \mathcal{O}\left(\frac{\mu^2_{\rm dec}}{M^2}\right)$$

Bob is telling us that  $\Lambda^{(3)}$  can be computed from  $\Lambda^{(0)}$ 

$$\Lambda^{(3)} = \lim_{M \to \infty} \mu_{\text{dec}}(M) \times \frac{\Lambda^{(0)}}{\mu'_{\text{dec}}} \times \frac{1}{P(\Lambda/M)}$$

We need

• Running in pure gauge:  $\Lambda^{(0)}/\mu'_{dec}$ 

A scale in a world with degenerate massive quarks:  $\mu_{dec}(M)$  in fm/MeV. Lattice QCD can simulate *unphysical* worlds

$$\mu_{\rm dec}(M) = M_p \times \frac{\mu_{\rm dec}(M)}{M_p} = M_p^{\rm PDG} \lim_{a \to 0} \frac{a\mu_{\rm dec}(M)}{aM_p}$$

| Motivation | The problem | Heavy quarks | RENORMALIZATON IN 3M | Conclusions |
|------------|-------------|--------------|----------------------|-------------|
| Managemera |             |              |                      |             |

### MATCHING WORLDS

All lattice simulations depends only on dimensionless input:  $g_0, am_i, L/a$ . No dimensionfull output possible!

W1("our" world) : 
$$\frac{M_{\pi}}{M_p} = 0.14; \quad \frac{M_K}{M_p} = 0.37.$$
  
W2 :  $\frac{M_{\pi}}{M_p} = 0.5; \quad \frac{M_K}{M_p} = 0.5.$ 

How much changes the proton mass between W1 and W2?

- Choose one  $g_0$ , tune  $am_i \ll 1$  to match LCP of W1, W2
- ▶ Repeat for several values *g*<sup>0</sup> and perform continuum limit:

$$\frac{M_p(W2)}{M_p(W1)} = \lim_{aM_p \to 0} \frac{aM(W2)}{aM(W1)}$$

Since W1 is "our" world:

$$M_p(W2) = M_p^{\exp} \times \lim_{aM_p \to 0} \frac{aM(W2)}{aM(W1)}$$

Our setup: Choices optimized to be able to simulate heavy quarks

$$\Lambda^{(3)} = \mu_{\rm dec}(M) \times \frac{\Lambda^{(0)}}{\mu_{\rm dec}} \times \frac{1}{P(\Lambda/M)} + \mathcal{O}(\alpha^4(m^{\star})) + \mathcal{O}\left(\frac{\mu_{\rm dec}}{M}\right) + \mathcal{O}\left(\frac{\mu_{\rm dec}^2}{M^2}\right)$$

- Work in <u>finite volume</u> schemes with Schrödinger Functional boundary conditions: T × L<sup>3</sup> with Dirichlet bcs. in time. (μ ~ 1/L): "Only" two scales.
- Use Gradient Flow couplings

$$\bar{g}^2(\mu) = \mathcal{N}^{-1}(c, a/L) t^2 \langle E(t) \rangle \Big|_{\mu^{-1} = \sqrt{8t} = cL}$$

- Fix  $\bar{g}^2(\mu_{dec}) |\Big|_{N_f=3, M=0, T=L} = 3.95$ . This defines  $\mu_{dec} = 1/L \sim 800$  MeV
- ► Small volume  $\implies$  We can simulate heavy quarks (i.e.  $a \sim 30 50 \text{ GeV}^{-1}$ )
- ▶ Matching condition ({ $N_f = 3, M$ }  $\leftrightarrow$  { $N_f = 0$ }) between massive scheme and effective theory

$$\left. \bar{g}^2(\mu_{\text{dec}}(M)) \right|_{N_{\text{f}}=3,M,T=2L} = \bar{g}^2(\mu_{\text{dec}}) \right|_{N_{\text{f}}=0,T=2L}$$

Matching: QCD in a finite volume!

• Convenient variable:  $z = M/\mu_{dec}$ 

Our setup: Choices optimized to be able to simulate heavy quarks

$$\Lambda^{(3)} = \mu_{\rm dec}(M) \times \frac{\Lambda^{(0)}}{\mu_{\rm dec}} \times \frac{1}{P(\Lambda/M)} + \mathcal{O}(\alpha^4(m^{\star})) + \mathcal{O}\left(\frac{\mu_{\rm dec}}{M}\right) + \mathcal{O}\left(\frac{\mu_{\rm dec}^2}{M^2}\right)$$

|                             |                      |               |                              | (=)                       |
|-----------------------------|----------------------|---------------|------------------------------|---------------------------|
| $\mu_{\text{dec}}(M)$ [MeV] | $M/\mu_{\rm dec}(M)$ | $\bar{g}_z^2$ | $\Lambda^{(0)}/\mu_{ m ref}$ | $\Lambda_{\rm eff}^{(3)}$ |
| 789(15)                     | 1.972                | -             | -                            | -                         |
| 789(15)                     | 4                    | -             | -                            | -                         |
| 789(15)                     | 6                    | -             | -                            | -                         |
| 789(15)                     | 8                    | -             | -                            | -                         |
| 789(15)                     | 10                   | -             | -                            | -                         |
| 789(15)                     | 12                   | -             | -                            | -                         |

► Difficult continuum extrapolations to determine  $\bar{g}_z^2 = \bar{g}^2(\mu_{dec}(M))\Big|_{N_f=3,M,T=2L}$ 

► Use combined Heavy-Quark / Symanzik effective theories.

| MOTIVATION:   |  |  |     |
|---------------|--|--|-----|
|               |  |  | C   |
| 1910119211019 |  |  | UN. |

The problem

Heavy quarks

RENORMALIZATON IN 3M

### CONTINUUM EXTRAPOLATION ANSATZE

Quadratic dependence on lattice spacing (a) via  $a\mu_{dec}$  and aM

For large enough masses, effective theory applies:

 $\bar{g}^2(z_i,a) = C_i + p_1[\alpha_{\overline{\mathrm{MS}}}(a^{-1})]^{\hat{\Gamma}}(a\mu_{\mathrm{dec}})^2 + p_2[\alpha_{\overline{\mathrm{MS}}}(a^{-1})]^{\hat{\Gamma}'}(aM_i)^2 \,.$ 

- Continuum values (our target quantity)
- Mass independent cutoff effects
- Mass dependent cutoff effects
- Loop corrections in effective theory:  $-1 \le \hat{\Gamma} \le 1$  and  $-1/9 \le \Gamma' \le 1$

Additional assumptions about O(aM) effects

Partial knowledge based on PT: **Propagate difference between last known orders as additional uncertainty** 

- Schrödinger functional boundaries: Small (negligible to our level of precision). Explicit computation.
- Quark mass improvement:  $b_m, b_A, b_P, \ldots$ . Very small effect.
- ▶ Improved bare coupling:  $b_g$ . Large effect at large masses (comparable to statistical uncertainties). Decreases as  $aM \rightarrow 0$ .

5/33

### CONTINUUM EXTRAPOLATIONS



Continuum extrapolations with L/a = 12, 16, 20, 24, 32, 40, 48

## CONTINUUM EXTRAPOLATIONS



Continuum extrapolations with L/a = 12, 16, 20, 24, 32, 40, 48

| Motivation | The problem | Heavy quarks | RENORMALIZATON IN 3M | Conclusio |
|------------|-------------|--------------|----------------------|-----------|
|            |             |              |                      |           |
|            |             |              |                      |           |

### TABLE CAN BE FILLED

$$\Lambda^{(3)} = \mu_{\rm dec}(M) \times \frac{\Lambda^{(0)}}{\mu_{\rm dec}} \times \frac{1}{P(\Lambda/M)} + \mathcal{O}(\alpha^4(m^{\star})) + \mathcal{O}\left(\frac{\mu_{\rm dec}}{M}\right) + \mathcal{O}\left(\frac{\mu_{\rm dec}^2}{M^2}\right)$$

| $\mu_{\rm dec}(M)$ [MeV] | $M/\mu_{\rm dec}(M)$ | $\overline{g}_z^2$ | $\Lambda^{(0)}/\mu_{ m ref}$ | $\Lambda_{\rm eff}^{(3)}$ [MeV] |
|--------------------------|----------------------|--------------------|------------------------------|---------------------------------|
| 789(15)                  | 1.972                | 5.076(56)          | 0.540(14)                    | 426(14)                         |
| 789(15)                  | 4                    | 5.316(70)          | 0.492(14)                    | 388(13)                         |
| 789(15)                  | 6                    | 5.408(69)          | 0.460(12)                    | 363(12)                         |
| 789(15)                  | 8                    | 5.530(76)          | 0.445(12)                    | 351(12)                         |
| 789(15)                  | 10                   | 5.713(90)          | 0.443(13)                    | 349(12)                         |
| 789(15)                  | 12                   | 5.80(10)           | 0.434(13)                    | 343(12)                         |

Perturbative uncertainties

 $\mathcal{O}(\alpha^4(m^\star))$ 

Completely negligible!. (Take difference between 4-loops and 2-loops as estimate)



| Motivation | The problem | Heavy quarks | RENORMALIZATON IN 3M | Conclusions |
|------------|-------------|--------------|----------------------|-------------|
| Result     |             |              |                      |             |

 $\alpha_s(m_Z) = 0.11823(69)(42)_{b_g}(20)_{\Gamma_m}(6)_{3\to 5, \text{PT}}(7)_{3\to 5, \text{NP}} = 0.11823(84) \,.$ 





| Motivation | ī    | The proi                 | BLEM | Н    | EAVY QUARKS              |      | Renormaliz | aton in 3M               |       | Conclusions |
|------------|------|--------------------------|------|------|--------------------------|------|------------|--------------------------|-------|-------------|
| Ехам       | IPLE |                          |      |      |                          |      |            |                          |       |             |
|            |      | $z \ge 4$                |      |      | $z \ge 6$                |      |            | $z \ge 8$                |       | -           |
|            | с    | $\Lambda \frac{(3)}{MS}$ | Q[%] | с    | $\Lambda \frac{(3)}{MS}$ | Q[%] | С          | $\Lambda \frac{(3)}{MS}$ | Q [%] |             |
|            | 0.30 | 349(11)                  | 2    | 0.30 | 340(12)                  | 11   | 0.30       | 338(13)                  | 4     |             |

338(12)

336(12)

335(12)

333(12)

13

16

16

15

0.33

0.36

0.39

0.42

338(13)

338(13)

338(13)

337(13)

8

16

21

23

0.33

0.36

0.39

0.42

0.33

0.36

0.39

0.42

345(11)

342(11)

339(11)

336(11)

4

6 7 7

| Motivation | The problem                                                                                                       | Heavy quarks                                                                            | Renormalizaton in 3M                    | Conclusions |
|------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|-------------|
| Conclus    | IONS                                                                                                              |                                                                                         |                                         |             |
| ►          | <ul> <li>Extraction of α<sub>s</sub> is a ve</li> <li>Computational cost</li> <li>Perturbative uncerta</li> </ul> | <b>ry hard</b> multi-scale p<br>$\implies (L/a)^7$<br>minties $\implies \log(L/a)^{\#}$ | roblem                                  |             |
| •          | Perturbative uncertain scales                                                                                     | ties hard to estimated                                                                  | with data in a limited range of         |             |
| •          | One should take "non-                                                                                             | -perturbative" limit se                                                                 | eriously (i.e. $\alpha \rightarrow 0$ ) |             |

- Perturbative uncertainties using scale variation are a guide: Common framework to all approaches? [L. Del Debbio, A. Ramos Phys.Rep.(2021)190]
- One real solution: Step scaling
  - ▶ Non-perturbative running from 200 MeV to 140 GeV:  $\alpha_s(M_Z) = 0.1185(8)$
- Exponential improvement (still a multi-scale problem): Decoupling of heavy quarks
  - Perturbative uncertainties negligible ( $M \approx 10 \text{ GeV}$ )
  - Non-perturbative corrections can be extrapolated
  - Relies on pure gauge determinations of  $\Lambda^{(0)}$
  - Precise result:  $\alpha_s(M_Z) = 0.1182(8)$
- $\delta \alpha_s(M_Z) \approx 0.4\%$  certainly possible (uncertainties dominated by pure gauge (!!) and low energy running (!)).
- $\delta \alpha_s(M_Z) < 0.3\%$  requires serious thinking.
- ▶ Potential for **other lattice approaches**: How difficult to simulate high *M*?.

