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• Non-perturbative renormalization by decoupling. [arXiv: 1912.06001]
• Determination of αs(mZ) by the non-perturbative decoupling method. [arXiv: 2209.14204]
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Motivation The problem Heavy quarks Renormalizaton in 3M Conclusions

Motivation

I Take some experimental observable O(µ; p).
I Work hard to get

O(µ; p) = A(p)αMS(µ) + B(p)α2
MS(µ) + . . .

I Determine αMS(µ) by comparing experiment and theory computation

ge − 2 : αem = 7.297 352 5698(24)× 10−3

recoil : αem = 7.297 352 585(48)× 10−3

τ : αs(MZ) = 0.1198(15)

e+e− : αs(MZ) = 0.1172(37)

Computing the strength of fundamental interactions

I Asymptotic states are not quarks/gluons (“hadronization”, . . . ).
I αs is larger. Sometimes extracted at a few GeV (αs ≈ 0.3!). What about the . . .?

I Perturbative corrections?
I Non-perturbative corrections?

Caveats
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Determinations of αs(mZ) [PDG ’21]

αs(MZ
2) = 0.1179 ± 0.0009
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precise (!!?)
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Determinations of αs

O(Q)
Q→∞∼ αs(Q) +

N∑
n=2

cnαn
s (Q) +O(αN+1

s (Q)) +O
(

Λp

Qp

)
+ . . .

O(Q) (lattice, experiment) =⇒ αs(Q)

All uncertainties from this step (N ∼ 2, 3)

I Run to a convenient scale (i.e. MZ)

αs(Q) −→ αs(MZ)

I Quote the RGI invariant
αs(Q) −→ ΛMS

No uncertainties here (5-loop running in MS)

I Non-perturbative uncertainties ∝
(

Λ
Q

)p
I Perturbative uncertainties ∝ αN+1

s (Q)

Uncertainties in αs(MZ):
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The problem: Summary

O(Q)
Q→∞∼ αs(Q) +

∑
n=2

cnαn
s (Q) +O(αN+1

s (Q)) +O
(

Λp

Qp

)
+ . . .

I Difficult to compute (NP physics is difficult!)
I Better use smaller α =⇒ (larger Q)

Non-perturbative corrections

I Difficult to estimate (i.e. scale variation might fail)
I Main source of uncertainty in most lattice QCD extractions of αs

I Better use smaller α =⇒ (exponentially larger Q)

Perturbative corrections
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Computing path integrals: Lattice field theory
Lattice field theory −→ Non Perturbative definition of QFT.
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Uµ(x) = eiagAµ(x) ψ(x)
I Discretize space-time in an hyper-cubic lattice

(spacing a)
I Path integral −→multiple integral (one

variable for each field at each point)
I Compute the integral numerically→Monte

Carlo sampling.

〈O〉 =
1

Nconf

Nconf∑
i=1

O(Ui) +O(1/
√

Nconf)

Observable computed averaging over samples
I This works both in the perturbative and

non-perturbative regimes!

SG[U] =
β

6
∑

p∈Plaquettes
Tr(1− Up − U+

p ) −−−→
a→0

−1
2

∫
d4x Tr(FµνFµν)
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The problem: αs extractions are a multi-scale problem

O(Q)
Q→∞∼ αs(Q) +

∑
n=2

cnαn
s (Q) +O(αN+1

s (Q)) +O
(

Λp

Qp

)
+ . . .

Experimentalist: At large Q the effect you are trying to measure is “weak” =⇒
Larger uncertainties

Latticero: In all simulations a−1 � Q� L−1. You need mπL ≈ 4, so with
current computers (L/a ≈ 128) we have Q� 4 GeV. In fact:
I Computer cost ∝ (L/a)7

I Non-perturbative uncertainties ∝ (a/L)p

I Perturbative uncertainties ∝ 1/ log(L/a)

Why not just use larger Q?
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The strength of YM

r

q q

αqq(µ) =
3r2

4
F(r)

∣∣∣
µ=1/r

a � 1
µmax

< 1
µmin

� L

a{ L

I Take O(Q) = 3r2
4 F(r)

∣∣∣
Q=1/r

I This defines the “potential scheme”. Non-perturbative coupling definition.

αqq(Q) =
3r2

4
F(r)

∣∣∣
Q=1/r

Q→∞∼ αMS(Q) + . . .

I Useful to define convenient scales. i.e. the CERN scale

αqq(µCERN) = 12.34/(4π)

(NOTE: Many lattice scales are basically this!: r0, t0,w0, r1, . . . )
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The soution: Finite size scaling [Lüscher, Weisz, Wolff ’91]

r

q q

L

r

q q

L

r
q q

L

I Coupling α(Q) depends on no other scale but L (Notation: α(L), α(1/L)).
I Small L =⇒ small α(L)

I a� 1/Q easily achieved: L/a ∼ 10− 40
I Step scaling function: How much changes the coupling when we change the

renormalization scale:
σ(u) = g2(Q/2)

∣∣∣
g2(Q)=u

achieved by simple changing L/a→ 2L/a!
I 1/L is a IR cutoff⇒ simulate directly mq = 0
I We need dedicated simulations of the femto-universe

Finite volume renormalization schemes: fix QL = constant
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Results for αs(MZ) [ALPHA ’17. Phys.Rev.Lett (2017) 119. [arXiv:1706.03821]]
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I Non-perturbative running from 200 MeV to 140 GeV
I Many technical improvements:

I Gradient flow couplings
I Symanzik analysis of cutoff effects
I . . .

αs(MZ) = 0.11852(84) [0.7%] .
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Checkpoint

I Extraction of αs is a very difficult multi-scale problem on the lattice.
I Computational cost grows like (L/a)7

I Perturbative uncertainties decrease as log µ

I Perturbative uncertainties ≈ 1− 2% for most large volume approaches [L. Del
Debbio, A. Ramos. Phys.Rep. (2021) 970 [arXiv:2101.04762]]

I Dedicated approach: step scaling. Solves the multi-scale problem.

αs(MZ) = 0.11852(84) [0.7%] .
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Massless renormalization schemes: Tremendous advantages
I Renormalization group functions are mass independent

µ
dḡ2(µ)

dµ
= β(ḡ,�m) .

I RGI invariants that characterize the running (i.e Λ,M,BK , . . . ) only exists in
massless schemes

Λs = µ
[
b0ḡ2

s (µ)
]−b1

2b20 e
− 1

2b0 ḡ2
s (µ) exp

{
−
∫ ḡs(µ)

0
dx
[

1
βs(x)

+
1

b0x3 −
b1
b0x

]}
I Precision: high loop computations available in perturbation theory

βMS(ḡ)
ḡ→0∼ − ḡ3(b0 + b1ḡ2 + bMS

2 ḡ4 + bMS
3 ḡ6 + bMS

4 ḡ8 + unknown)

Always universal but universal only in massless schemes
I In LQCD: easier to define the chiral point (mq = 0) than the physical point

(mq =??)
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Decoupling of heavy quarks: Perturbation theory
p

p p

p

mh

T =
αMS(µ)

π
+
α2

MS
(µ)

π2

{
Tl(p,m) +

1
6

log
m2

h(µ)

µ2 + c
}

+O(α3)

Quark-Quark scattering with Nl light and one heavy

I If I choose µ ≈ mh(µ) the Tl(p,m) gets large...
I The computation has to be wrong, because this heavy quark cannot break

perturbation theory

Five Stages of understanding: (I) Denial
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Decoupling of heavy quarks: Perturbation theory
p

p p

p

mh

T =
αMS(µ)

π
+
α2

MS
(µ)

π2

{
Tl(p,m) +

1
6

log
m2

h(µ)

µ2 + c
}

+O(α3)

Quark-Quark scattering with Nl light and one heavy

I So the existence of a quark with mh ∼ 2000 TeV is breaking perturbation theory
at scale p ≈ µ ≈ 20 GeV.

I Nonsense!!!!!!
I Nothing works!!!!!

Five Stages of understanding: (II) Anger
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Decoupling of heavy quarks: Perturbation theory
p

p p

p

mh

T =
αMS(µ)

π
+
α2

MS
(µ)

π2

{
Tl(p,m) +

1
6

log
m2

h(µ)

µ2 + c
}

+O(α3)

Quark-Quark scattering with Nl light and one heavy

alice: Look, If I only could say that

α′(µ)

π
=
αMS(µ)

π
+
α2

MS
(µ)

π2
1
6

log
m2

h(µ)

µ2

Then everything would make sense:

T =
α′(µ)

π
+
α′2(µ)

π2 [Tl(p,m) + c] +O(α3)

But then the coupling would depend on mh!

Five Stages of understanding: (III) Bargaining
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Decoupling of heavy quarks: Perturbation theory
p

p p

p

mh

T =
αMS(µ)

π
+
α2

MS
(µ)

π2

{
Tl(p,m) +

1
6

log
m2

h(µ)

µ2 + c
}

+O(α3)

Quark-Quark scattering with Nl light and one heavy

bob: And this coupling of yours...

α′(µ)

π
=
αMS(µ)

π
+
α2

MS
(µ)

π2
1
6

log
m2

h(µ)

µ2

How would it run?

Five Stages of understanding: (IV) The right question
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Decoupling of heavy quarks: Perturbation theory
p

p p

p

mh

T =
αMS(µ)

π
+
α2

MS
(µ)

π2

{
Tl(p,m) +

1
6

log
m2

h(µ)

µ2 + c
}

+O(α3)

Quark-Quark scattering with Nl light and one heavy

α′(µ)

π
=
αMS(µ)

π
+
α2

MS
(µ)

π2
1
6

log
m2

h(µ)

µ2

And determine

β′ = µ2 d
dµ2 α

′(µ) =

(
µ2 ∂

∂µ2 + β
∂

∂α
+ γ

∂

∂mh

)[
α′MS(µ) +

α2
MS

(µ)

π

1
6

log
m2

h(µ)

µ2

]

Five Stages of understanding: (V) All fits nicely
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Decoupling of heavy quarks: Perturbation theory
p

p p

p

mh

T =
αMS(µ)

π
+
α2

MS
(µ)

π2

{
Tl(p,m) +

1
6

log
m2

h(µ)

µ2 + c
}

+O(α3)

Quark-Quark scattering with Nl light and one heavy

α′(µ)

π
=
αMS(µ)

π
+
α2

MS
(µ)

π2
1
6

log
m2

h(µ)

µ2

And determine

β′ = µ2 d
dµ2 α

′(µ)
α′→0∼ β − α′2(µ)

6π
+O(α3)

Five Stages of understanding: (V) All fits nicely
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Decoupling of heavy quarks: Perturbation theory
p

p p

p

mh

T =
αMS(µ)

π
+
α2

MS
(µ)

π2

{
Tl(p,m) +

1
6

log
m2

h(µ)

µ2 + c
}

+O(α3)

Quark-Quark scattering with Nl light and one heavy

α′(µ)

π
=
αMS(µ)

π
+
α2

MS
(µ)

π2
1
6

log
m2

h(µ)

µ2

And determine

β′ = µ2 d
dµ2 α

′(µ)
α′→0∼ − α′2(µ)

π

(
11
4
− 1

6
Nf +

1
6

)
+O(α3)

Five Stages of understanding: (V) All fits nicely
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Decoupling of heavy quarks: Perturbation theory
p

p p

p

mh

T =
αMS(µ)

π
+
α2

MS
(µ)

π2

{
Tl(p,m) +

1
6

log
m2

h(µ)

µ2 + c
}

+O(α3)

Quark-Quark scattering with Nl light and one heavy

α′(µ)

π
=
αMS(µ)

π
+
α2

MS
(µ)

π2
1
6

log
m2

h(µ)

µ2

And determine

β′ = µ2 d
dµ2 α

′(µ)
α′→0∼ − α′2(µ)

π

[
11
4
− 1

6
(Nf − 1)

]
+O(α3)

α′(µ) is the running coupling with Nl = Nf − 1 flavors!

Five Stages of understanding: (V) All fits nicely
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Decoupling of heavy quarks in massless schemes

I At energy scales Q just forget about all quarks with m > Q
I “Nice” perturtbative expressions if you only use active quarks
I Matching between effective theory (with active quarks) and fundamental

theory (with active and heavy quarks)

α
(Nf−1)
MS

(µ) = α
(Nf)

MS
(µ)×

{
1 + a1(mh/µ)α

(Nf)

MS
(µ) + . . .

}

Matching between theories

Power corrections are neglected (more later)

Caveats
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Decoupling of heavy quarks in massless schemes

I At energy scales Q just forget about all quarks with m > Q
I “Nice” perturtbative expressions if you only use active quarks
I Matching between effective theory (with active quarks) and fundamental

theory (with active and heavy quarks)

α
(Nf−1)
MS

(µ) = α
(Nf)

MS
(µ)×

{
1 + a1(mh/µ)α

(Nf)

MS
(µ) + . . .

}
Abuse of language: A single αMS(µ) that “jumps” at quark thresholds
I αMS(4 GeV) : This is the four flavor coupling
I αMS(10 GeV) : This is the five flavor coupling
I αMS(MZ) : This is the five flavor coupling

Matching between theories

Power corrections are neglected (more later)

Caveats
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Decoupling of heavy quarks in massless schemes

Λ
(Nf)

MS
P(M/Λ)−−−−−→ Λ

(N′f )

MS

If you happen to know Λ
(6)
MS

, then

1. Determine α(6)
MS

(µ) = ḡ2
MS

(µ)/(4π) at some scale µ ≈ mt

Λ
(6)
MS
µ

=
[
b0ḡ2

MS(µ)
]−b1

2b20 e
− 1

2b0 ḡ
2
MS

(µ)
exp

−
∫ ḡMS(µ)

0
dx

 1
β

(6)
MS

(x)
+

1
b0x3 −

b1
b0x


2. Match across the top threshold (4 loops known!)

ḡ′2(µ)

4π
= α

(5)
MS

(µ) = α
(6)
MS

(µ)×
{

1 + a1(mt/µ)α
(6)
MS

(µ) + . . .
}

3. Determine the Λ parameter of the 5 flavor theory

Λ
(5)
MS
µ

=
[
b0ḡ′2MS(µ)

]−b1
2b20 e

− 1
2b0 ḡ
′2
MS

(µ)
exp

−
∫ ḡ′MS(µ)

0
dx

 1
β

(5)
MS

(x)
+

1
b0x3 −

b1
b0x



Relation between Λ parameters
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Decoupling of heavy quarks in massless schemes

Λ
(Nf)

MS
µ

=
[
b0ḡ2

MS(µ)
]−b1

2b20 e
− 1

2b0 ḡ
2
MS

(µ)
exp

−
∫ ḡMS(µ)

0
dx

 1
β

(Nf)

MS
(x)

+
1

b0x3 −
b1
b0x



I Start with Λ
(6)
MS
≈ 91.1 MeV

I Determine α(6)
MS

(mt) =⇒ α
(5)
MS

(mt)

I Get Λ
(5)
MS
≈ 215 MeV

I Determine α(5)
MS

(mb) =⇒ α
(4)
MS

(mb)

I Get Λ
(4)
MS
≈ 298 MeV

I Determine α(4)
MS

(mc) =⇒ α
(3)
MS

(mc)

I Get Λ
(3)
MS
≈ 312 MeV

I We cannot get Λ
(2)
MS

: No valid perturbative matching at µ ≈ ms < Λ

Perturbative uncertainties ridiculously small in this game! [ALPHA ’18]

Some numerical examples
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Decoupling of heavy quarks: Non-perturbatively
I Large coefficients in PT is a problem of PT
I In Lattice QCD we can use as many (heavy) flavors as we want
I Sometimes useful to consider massive schemes:

αqq(µ,M
phys
u ,Mphys

d ,Mphys
s ,Mphys

c )

I But simulating heavy quarks is challenging:
I mh is large
I amh has to be small

Requires large computational resources!

Multi-scale problem

Large PT coefficients

Large computational cost
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Checkpoint

I Massless schemes are needed for precision.
I One should use perturbative expressions with only the number of active quarks
I Matching between theories

α
(3)
MS
→ α

(4)
MS
→ α

(5)
MS
→ α

(6)
MS
.

I Non perturbatively one can use massless or massive schemes.
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3M: A universe with three heavy degenerate quarks (M � Λ)

Sfund[Aµ, ψ, ψ̄] =

∫
d4x

{
− 1

2g2 Tr (FµνFµν) +
3∑

i=1
ψ̄i(γµDµ + M)ψi

}Alice uses fundamental theory

Seff [Aµ] = − 1
2g2

eff

∫
d4x {Tr (FµνFµν)}+

1
M2

∑
k
ωk

∫
d4xL(6)

k + . . .

Bob uses effective theory
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3M: A universe with three heavy degenerate quarks (M � Λ)

Sfund[Aµ, ψ, ψ̄] =

∫
d4x

{
− 1

2g2 Tr (FµνFµν) +
3∑

i=1
ψ̄i(γµDµ + M)ψi

}Alice uses fundamental theory

Seff [Aµ] = − 1
2g2

eff

∫
d4x {Tr (FµνFµν)}

���
���

���
��

+
1
M2

∑
k
ωk

∫
d4xL(6)

k + . . .

Bob uses effective theory

I Dimensionless “low energy quantities”
√
t0/r0,w0/

√
8t0, r0/w0, . . . from

effective theory
µfund

1 (M)

µfund
2 (M)

=
µeff

1
µeff

2
+O

(
µ2

M2

)
Decoupling
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Renormalization in 3M: Alice determines the strong coupling

Λ

µ
=
[
b0ḡ2(µ)

]− b1
2b20 e

− 1
2b0 ḡ2(µ) exp

{
−
∫ ḡ(µ)

0
dx
[

1
β(x)

+
1

b0x3 −
b1

b2
0x

]}
.

I Determine non-perturbatively the β-function in the fundamental (Nf = 3)
theory, mass-less scheme.

I Integral up to ḡ(3)(µdec) = value (in a mass-less scheme!) gives:

Λ(3)

µdec

I Turn on quark masses and relate µdec with its massive version
(ḡ(3)(µdec(M),M) = value)

µdec(M)

µdec

I Result
Λ(3)

µdec(M)
=

Λ(3)

µdec
× µdec(M)

µdec
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Renormalization in 3M: Bob determines the strong coupling

Λ

µ
=
[
b0ḡ2(µ)

]− b1
2b20 e

− 1
2b0 ḡ2(µ) exp

{
−
∫ ḡ(µ)

0
dx
[

1
β(x)

+
1

b0x3 −
b1

b2
0x

]}
.

I Determine non-perturbatively the β-function in the effective (Nf = 0) theory.
I Integral up to ḡ(0)(µ′dec) = value gives:

Λ(0)

µ′dec

I Match across quark threshold to convert to Λ(3) (using perturbation theory)

Λ(3)

µ′dec
=

Λ(0)

µ′dec
× 1

P(Λ/M)
.
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Relation between Alice and Bob computation

ḡ(3)(µdec(M),M) = value
ḡ(0)(µ′dec) = value

}
=⇒ µdec(M)

µ′dec
= 1 +O(µ2

dec/M
2)

Relation between Alice and Bob computations

Λ(3)

µdec(M)
=

Λ(0)

µ′dec
× 1

P(Λ/M)
+O(α4(m?)) +O

(
µ2

dec
M2

)
Bob is telling us that Λ(3) can be computed from Λ(0)

Λ(3) = lim
M→∞

µdec(M)× Λ(0)

µ′dec
× 1

P(Λ/M)

We need
I Running in pure gauge: Λ(0)/µ′dec
I A scale in a world with degenerate massive quarks: µdec(M) in fm/MeV.

Lattice QCD can simulate unphysical worlds

µdec(M) = Mp ×
µdec(M)

Mp
= MPDG

p lim
a→0

aµdec(M)

aMp
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Matching worlds

All lattice simulations depends only on dimensionless input: g0, ami, L/a. No dimen-
sionfull output possible!

W1(”our” world) :
Mπ

Mp
= 0.14;

MK

Mp
= 0.37 .

W2 :
Mπ

Mp
= 0.5;

MK

Mp
= 0.5 .

How much changes the proton mass between W1 and W2?
I Choose one g0, tune ami � 1 to match LCP of W1, W2
I Repeat for several values g0 and perform continuum limit:

Mp(W2)

Mp(W1)
= lim

aMp→0

aM(W2)

aM(W1)
.

I Since W1 is “our” world:

Mp(W2) = Mexp
p × lim

aMp→0

aM(W2)

aM(W1)
.
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Our setup: Choices optimized to be able to simulate heavy quarks

Λ(3) = µdec(M)× Λ(0)

µdec
× 1

P(Λ/M)
+O(α4(m?)) +O

(µdec
M

)
+O

(
µ2

dec
M2

)

I Work in finite volume schemes with Schrödinger Functional boundary
conditions: T × L3 with Dirichlet bcs. in time. (µ ∼ 1/L): “Only” two scales.

I Use Gradient Flow couplings

ḡ2(µ) = N−1(c, a/L) t2〈E(t)〉
∣∣∣
µ−1=

√
8t=cL

.

I Fix ḡ2(µdec)|
∣∣∣
Nf=3,M=0,T=L

= 3.95. This defines µdec = 1/L ∼ 800 MeV

I Small volume =⇒We can simulate heavy quarks (i.e. a ∼ 30− 50 GeV−1)
I Matching condition ({Nf = 3,M} ↔ {Nf = 0}) between massive scheme and

effective theory

ḡ2(µdec(M))
∣∣∣
Nf=3,M,T=2L

= ḡ2(µdec)
∣∣∣
Nf=0,T=2L

.

Matching: QCD in a finite volume!
I Convenient variable: z = M/µdec
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Our setup: Choices optimized to be able to simulate heavy quarks

Λ(3) = µdec(M)× Λ(0)

µdec
× 1

P(Λ/M)
+O(α4(m?)) +O

(µdec
M

)
+O

(
µ2

dec
M2

)

µdec(M) [MeV] M/µdec(M) ḡ2
z Λ(0)/µref Λ

(3)
eff

789(15) 1.972 - - -
789(15) 4 - - -
789(15) 6 - - -
789(15) 8 - - -
789(15) 10 - - -
789(15) 12 - - -

We only need to fill in a table!

I Difficult continuum extrapolations to determine ḡ2
z = ḡ2(µdec(M))

∣∣∣
Nf=3,M,T=2L

I Use combined Heavy-Quark / Symanzik effective theories.
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Continuum extrapolation ansatze

For large enough masses, effective theory applies:

ḡ2(zi, a) = Ci + p1[αMS(a−1)]Γ̂(aµdec)
2 + p2[αMS(a−1)]Γ̂

′
(aMi)

2 .

I Continuum values (our target quantity)
I Mass independent cutoff effects
I Mass dependent cutoff effects
I Loop corrections in effective theory: −1 ≤ Γ̂ ≤ 1 and −1/9 ≤ Γ′ ≤ 1

Quadratic dependence on lattice spacing (a) via aµdec and aM

Partial knowledge based on PT: Propagate difference between last known orders as
additional uncertainty
I Schrödinger functional boundaries: Small (negligible to our level of precision).

Explicit computation.
I Quark mass improvement: bm, bA, bP, . . . . Very small effect.
I Improved bare coupling: bg . Large effect at large masses (comparable to

statistical uncertainties). Decreases as aM → 0.

Additional assumptions aboutO(aM) effects
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Continuum extrapolations

0.000 0.001 0.002 0.003 0.004 0.005 0.006
5.00

5.25

5.50

5.75

6.00

(a/L)2

ḡ
2 z

z =1.972
z =4.0
z =6.0
z =8.0
z =10.0
z =12.0

Continuum extrapolations with L/a = 12, 16, 20, 24, 32, , 40, 48
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Continuum extrapolations

0.0 0.1 0.2 0.3 0.4
5.00

5.25

5.50

5.75

6.00

(aM)2

ḡ
2 z

z =1.972
z =4.0
z =6.0
z =8.0
z =10.0
z =12.0

Continuum extrapolations with L/a = 12, 16, 20, 24, 32, , 40, 48
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Table can be filled

Λ(3) = µdec(M)× Λ(0)

µdec
× 1

P(Λ/M)
+O(α4(m?)) +O

(µdec
M

)
+O

(
µ2

dec
M2

)

µdec(M) [MeV] M/µdec(M) ḡ2
z Λ(0)/µref Λ

(3)
eff [MeV]

789(15) 1.972 5.076(56) 0.540(14) 426(14)
789(15) 4 5.316(70) 0.492(14) 388(13)
789(15) 6 5.408(69) 0.460(12) 363(12)
789(15) 8 5.530(76) 0.445(12) 351(12)
789(15) 10 5.713(90) 0.443(13) 349(12)
789(15) 12 5.80(10) 0.434(13) 343(12)

O(α4(m?))

Completely negligible!. (Take difference between 4-loops and 2-loops as estimate)

Perturbative uncertainties
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Determination of Λ(3) from decoupling: Λ
(3)

MS = 336(12) MeV

Λ
(3)
eff = Λ(3) +

B
z2 [α(m?)]Γm

0.00 0.05 0.10 0.15 0.20 0.25

325

350

375

400

425

(µdec/M)2

Λ
(3
)

M
S
,e
ff
[M

eV
]
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Result

αs(mZ) = 0.11823(69)(42)bg (20)Γm (6)3→5,PT(7)3→5,NP = 0.11823(84) .

0.115 0.116 0.117 0.118 0.119 0.12 0.121 0.122

αs(MZ)

ALPHA 17
PACS-CS 09A

Ayala 20
TUMQCD 19

Cali 20
HPQCD 10
Maltman 08
HPQCD 14A
HPQCD 10
FLAG 21

This work
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Several variations of analysis

I (aM)2 < 0.16, 0.25
I Various values of Γ̂,Γ′

I Several coupling definitions (statistically correlated) labeled by
c = 0.30, 0.33, 0.36, 0.39, 0.42

Continuum extrapolation

I Several values of Γm

I Several values of c
I z4, 6, 8

M →∞
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Example

z ≥ 4 z ≥ 6 z ≥ 8

c Λ
(3)
MS

Q [%] c Λ
(3)
MS

Q [%] c Λ
(3)
MS

Q [%]

0.30 349(11) 2 0.30 340(12) 11 0.30 338(13) 4
0.33 345(11) 8 0.33 338(12) 13 0.33 338(13) 4
0.36 342(11) 16 0.36 336(12) 16 0.36 338(13) 6
0.39 339(11) 21 0.39 335(12) 16 0.39 338(13) 7
0.42 336(11) 23 0.42 333(12) 15 0.42 337(13) 7
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Conclusions
I Extraction of αs is a very hard multi-scale problem

I Computational cost =⇒ (L/a)7

I Perturbative uncertainties =⇒ log(L/a)#

I Perturbative uncertainties hard to estimated with data in a limited range of
scales

I One should take “non-perturbative” limit seriously (i.e. α→ 0)
I Perturbative uncertainties using scale variation are a guide: Common

framework to all approaches? [L. Del Debbio, A. Ramos Phys.Rep.(2021)190]

I One real solution: Step scaling
I Non-perturbative running from 200 MeV to 140 GeV: αs(MZ) = 0.1185(8)

I Exponential improvement (still a multi-scale problem): Decoupling of heavy
quarks
I Perturbative uncertainties negligible (M ≈ 10 GeV)
I Non-perturbative corrections can be extrapolated
I Relies on pure gauge determinations of Λ(0)

I Precise result: αs(MZ) = 0.1182(8)

I δαs(MZ) ≈ 0.4% certainly possible (uncertainties dominated by pure gauge
(!!) and low energy running (!)).

I δαs(MZ) < 0.3% requires serious thinking.
I Potential for other lattice approaches: How difficult to simulate high M?.
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I One should take “non-perturbative” limit seriously (i.e. α→ 0)
I Perturbative uncertainties using scale variation are a guide: Common

framework to all approaches? [L. Del Debbio, A. Ramos Phys.Rep.(2021)190]

I One real solution: Step scaling
I Non-perturbative running from 200 MeV to 140 GeV: αs(MZ) = 0.1185(8)

I Exponential improvement (still a multi-scale problem): Decoupling of heavy
quarks
I Perturbative uncertainties negligible (M ≈ 10 GeV)
I Non-perturbative corrections can be extrapolated
I Relies on pure gauge determinations of Λ(0)

I Precise result: αs(MZ) = 0.1182(8)

I δαs(MZ) ≈ 0.4% certainly possible (uncertainties dominated by pure gauge
(!!) and low energy running (!)).

I δαs(MZ) < 0.3% requires serious thinking.
I Potential for other lattice approaches: How difficult to simulate high M?.

Future belongs to dedicated approaches, not to beating an exponentially hard prob-
lem with your machines

Many thanks!

Personal opinion
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