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Part I

A brief introduction to double parton scattering.



DPS intro.

What is double parton scattering?

Double parton scattering (DPS) describes two individual hard interactions in a single hadron-hadron
collision:

I Already observed at previous colliders at
CERN and at the Tevatron.

I More data available from the LHC and
more to come from HL-LHC.

DPS is naturally associated with the situation where the final state can be separated into two subsets
with individual hard scales.
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DPS intro.

When is DPS relevant and why is it interesting?
I Whilst generally suppressed compared to single parton scattering (SPS), DPS may be enhanced for

final states with small transverse momenta or large separation in rapidity.

I When production of final states via SPS involves small coupling constants or higher orders, DPS
may give leading contributions (like-sign W production):
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−→ background to the search for new physics with like-sign lepton pairs.

I Relative importance of DPS increases with collision energy (σDPS ∼ PDF4 vs. σSPS ∼ PDF2).

I DPS gives access to information about hadron structure not accessible in other processes: spatial,
spin, and colour correlations between two partons.
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DPS intro.

Experimental observations of DPS: Overview.

DPS has been observed in a broad class of processes already:

)1− WW (13 TeV, 138.0  fbCMS
CMS-PAS-SMP-21-013

)1− WW (13 TeV, 77.4 fbCMS
Eur. Phys. J. C 80 (2020) 41

 W+2jets (7 TeV)CMS
JHEP 03 (2014) 032

 W+2jets (7 TeV)ATLAS
New J. P. 15 (2013) 033038

+2jets (1.96 TeV)γ 2D0
Phys. Rev. D 93 (2016) 052008

+b/c+2jets (1.96 TeV)γ D0
Phys. Rev. D 89 (2014) 072006

+3jets (1.96 TeV)γ D0
Phys. Rev. D 89 (2014) 072006

+3jets (1.8 TeV)γ CDF
Phys. Rev. Lett. 79 (1997) 584

 (1.96 TeV)Υ+ψ J/D0
Phys. Rev. Lett. 116 (2016) 082002

 (1.96 TeV)ψ+J/ψ J/D0
Phys. Rev. D 90 (2014) 111101

 (8 TeV)ψ+J/ψ J/ATLAS
Eur. Phys. J. C 77 (2017) 76

 (13 TeV)ψ+J/ψ+J/ψ J/CMS
arXiv:2111.05370
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Preliminary CMS

I The effective cross section σeff is a measure for
the relative importance of DPS compared to
SPS.

I Should be process independent if partons
inside the proton were completely uncorrelated.

I Tension between effective cross sections for
gluon and quark initiated processes.

−→ Will come back to this in a moment!
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DPS intro.

Experimental observations of DPS: Same-sign W .
Same-sign W pair production is one of the theoretically cleanest DPS channels and has recently been
measured by the CMS collaboration:
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Part II

Double parton scattering theory.



DPS theory.

Development of a theory framework for DPS.

Work towards a theoretical description of DPS started already in the 80’s:

LO factorisation formula based on a parton model picture [Politzer, 1980; Paver and Treleani, 1982; Mekhfi, 1985]

σDPSA,B = σ̂ik→A(x1x̄1s) σ̂jl→B(x2x̄2s)
∫

d2y Fij(x1, x2,y)Fkl(x̄1, x̄2,y)

The LHC era has seen increasing interest in DPS: Development of a full QCD description!

I Systematic QCD description. [Blok et al., 2011; Diehl et al., 2011; Manohar and Waalewijn, 2012; Ryskin and Snigirev, 2012]

I Factorization proof for double DY. [Diehl, Gaunt, Ostermeier, Plößl, Schäfer, 2015; Diehl and Nagar, 2019]

I Disentangling SPS and DPS. [Gaunt and Stirling, 2011; Diehl, Gaunt and Schönwald, 2017]
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DPS theory.

Factorization for DPS: The double Drell-Yan process.

The general procedure towards a factorization proof for DPS is the same as in the SPS case:

I Identification of leading momentum regions and subgraphs (hard, collinear, soft) using the method
by Libby and Sterman.

I Kinematic approximation of soft and collinear gluon momenta.

I Decoupling of collinear gluons.

I Proof that the Glauber momentum region can be avoided. [Diehl, Gaunt, Ostermeier, Plößl, Schäfer, 2015]

I Decoupling of soft gluons. [Diehl and Nagar, 2019]

I Handling of rapidity and UV divergences.

Factorization for double Drell-Yan has been proven at the same level of rigor as in the SPS case!
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DPS theory.

Leading regions for the double Drell-Yan process.

I Two hard subgraphs (H1 and H2) on either
side of the final state cut.

I One collinear subgraph (A and B) for each
colliding proton.

I A soft subgraph (S).

I An arbitrary number of soft and collinear
gluons connecting the soft and hard subgraphs
to the collinear subgraph, respectively.
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DPS theory.

Factorized cross section for the double Drell-Yan process.

I Collinear gluons have been absorbed into
collinear matrix elements (to be identified as
double parton distributions), acting as gauge
links.

I Soft gluons have been absorbed into the soft
factor, a matrix element of Wilson line
operators.

I Hard subgraphs are reduced to parton level
cross sections that can be calculated in
perturbation theory.
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DPS theory.

SPS-DPS double counting: Issue.

Should the process on the right be considered as a DPS process or as a loop correction to SPS?

I Both: SPS for large transverse momenta (small y), DPS for small transverse momenta
(large y).

I Solution: Diehl-Gaunt-Schönwald subtraction formalism. [Diehl, Gaunt and Schönwald, 2017]

−→ Use that for small distances y the DPDs can be calculated in perturbation theory (y−2 behaviour)!
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DPS theory.

SPS-DPS double counting: Solution.
Two issues with SPS+DPS cross sections: SPS-DPS double counting and the DPS splitting singularity.

Defining the DPS cross section with a lower cut-off regulates the splitting singularity:

σDPSA,B = σ̂ik→A(x1x̄1s) σ̂jl→B(x2x̄2s)
∫

d2y Φ2(yν)Fij(x1, x2,y)Fkl(x̄1, x̄2,y)

with

Φ(u)→ 0 for u→ 0 ,

Φ(u)→ 1 for u� 1 .

The double counting issue is then solved by a subtraction term:

σtotA,B = σSPSA,B + σDPSA,B − σsubA,B .
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DPS theory.

SPS-DPS double counting: Calculating the subtraction term.

Consider the LO example:

Double counting due to perturbative splitting contributions in SPS and DPS cross sections.

Subtraction term given by:

σsubA,B = σ̂ik→A(x1x̄1s) σ̂jl→B(x2x̄2s)
∫

d2y Φ2(yν)F split
ij (x1, x2,y)F split

kl (x̄1, x̄2,y)

where F split is the perturbative small y expression for the DPDs.
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DPS theory.

SPS-DPS double counting: Subtraction at work.

Consider how the subtraction works for the LO example:

σtotA,B = σSPSA,B + σDPSA,B − σsubA,B .

Small y: For small y (O(1/Q)) one finds that F ' F split and thus

σDPSA,B ' σsubA,B σtotA,B ' σSPSA,B

Large y: For large y (� O(1/Q)) the leading contribution to the SPS cross section is the splitting
contribution in the DPS region such that

σSPSA,B ' σsubA,B σtotA,B ' σDPSA,B

−→ The DGS subtraction formalism consistently solves the SPS-DPS double counting issue.
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DPS theory.

Approximation of DPS cross section: DPS pocket formula.

A widely used approximation in phenomenological studies of DPS is the following:

Fij(x1, x2,y) = fi(x1) fj(x2) g(y)

yielding a simplified expression for the DPS factorization formula (“DPS pocket formula”):

σDPSA,B = σSPSA σSPSB

σeff

where the “effective” cross section is given by

σ−1
eff =

∫
d2y

(
g(y)

)2
and should be process-independent if the approximations were justified!
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Part III

Definitions and properties of DPDs.



Defining bare unsubtracted double parton distributions.

Position and momentum assignments in DPDs and dTMDs.

with Fourier conjugate positions and momenta z1 ↔ k1, z2 ↔ k2, and y ↔ ∆.
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Defining bare unsubtracted double parton distributions.

Definition of DPDs.
Bare unsubtracted position space DPDs:

F
r1r
′
1 r2r

′
2

Bus,a1a2
(xi,y) = (x1p

+)−n1 (x2p
+)−n2 2p+

∫
dy−

[ 2∏
i=1

∫ dz−i
2π eixiz

−
i
p+

]

× 〈p| Or1r
′
1

a1 (y, z1)Or2r
′
2

a2 (0, z2) |p〉
∣∣
y+=0,zi=0

where ni = 0 for quarks and ni = 1 for gluons and the twist-2 operators are defined in terms of quark-
and gluon-fields and Wilson lines as:

Oii
′

a (y, z) = q̄j′(ξ−)
[
W †(ξ−, vL)

]
j′i′ Γa

[
W (ξ+, vL)

]
ij qj(ξ+) for quarks ,

Oaa
′

a (y, z) =
[
G+k′(ξ−)

]b′ [
W †(ξ−, vL)

]b′a′ Πkk′

a

[
W (ξ+, vL)

]ab [
G+k(ξ+)

]b for gluons ,

with ξ± = y ± z/2, z+ = 0 and where Γa and Πa project onto different definite polarisation states.
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Defining bare DPS soft factors.

Definition of the DPS soft factors.

Bare position space DPS soft factor:

[
SB,a1a2(y; vL, vR)

]r1r
′
1r2r

′
2

s1s
′
1s2s

′
2

=
〈

0
∣∣[OS(y,0; vL, vR)

]r1r
′
1,s1s

′
1
[
OS(0,0; vL, vR)

]r2r
′
2,s2s

′
2
∣∣ 0 〉

where the colour indices ri are in the fundamental or adjoint representation if ai is a quark or gluon,
respectively, and:

[
OS(y, z; vL, vR)

]rr′,ss′ =
[
W (y + 1

2z, vL)W †(y + 1
2z, vR)

]
rs

[
W (y − 1

2z, vR)W †(y − 1
2z, vL)

]
s′r′

The soft factor defined above is for the production of colour singlet states.
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Spin and colour structure of DPDs.

Spin structure of DPDs.

DPDs exhibit a rich spin structure, giving access to spin correlations between two partons inside a
proton.

The Γ and Π matrices projecting on definite quark and gluon polarizations are given by:

Γq = γ+

2 , Γ∆q = γ+γ5

2 , Γjδq = σ+j

2

Πkk′

g = δkk
′
, Πkk′

∆g = i εkk
′
, Πkk′jj′

δg = τkk
′,jj′

for unpolarized, longitudinally polarized, and transversally/linearly polarized quarks and gluons,
respectively.

In the TMD case all possible combinations of quark and gluon polarizations are admissible, whereas in
the collinear DPD case considered here some - like q∆q - are identical to zero (similar to TMD vs.
PDF).
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Spin and colour structure of DPDs.

Colour structure of DPDs.
Compared to PDFs, DPDs have a more complex colour structure, as now four parton legs have to be
coupled to an overall colour singlet. This can be made more systematic by:
I coupling the colour indices ri and r′i pairwise to irreducible representations Ri of SU(N) such that
R1R2 form an overall colour singlet:

R1R2FBus,a1a2 ∼ PR1R2
FBus,a1a2

I decomposing the full colour structure in terms of these combinations:

FBus,a1a2 ∼
∑
R1,R2

PR1R2
R1R2FBus,a1a2

In addition to R1R2 = 1 1 one finds the following colour non-singlet channels:
I R1R2 = 8 8 for a1a2 = qq′.
I R1R2 = 8A and 8S for a1a2 = qg.
I R1R2 = AA, S S, AS, S A, 10 10, 10 10 and 27 27 for a1a2 = gg.
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Spin and colour structure of DPDs.

Colour structure of the DPS soft factor.

Much in the same way as DPDs, the colour structure of the DPS soft factor can be decomposed as:

SB,a1a2 ∼
∑
R1R2
R′1R

′
2

PR1R2PR′1R′2
R1R2
R′1R

′
2
SB,a1a2

with

R1R2
R′1R

′
2
SB,a1a2 ∼ PR1R2

SB,a1a2PR′1R′2

For the collinear DPS soft factor the colour structure simplifies:

R1R2
R′1R

′
2
SB,a1a2 = δR1R′1

δR2R′2

R1R2
R1R2

SB,a1a2 ≡ δR1R′1
δR2R′2

R1R2SB,a1a2
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Rapidity subtraction for DPDs.

Absorbing the soft factor into DPDs.
DPDs contain rapidity divergences associated with light-like Wilson lines.

These cancel in the complete factorized cross section against rapidity divergences in the soft factor.

Solution: Absorbing the soft factor into the DPDs, defining rapidity finite distributions!

R1R2FB,a1a2(xi, y, ζp) = lim
ρ→∞

R1R2FBus,a1a2(xi, y, ρ)√
R1R2SB,a1a2(y, ρ, ζp)

where the limit ρ→∞ corresponds to removing the rapidity regulator.

Note: Definition of ζp differs from the one of ζ for TMDs:

ζpζp̄ = (2p+p̄−)2 = s2 vs. ζζ̄ = x2x̄2(2p+p̄−)2 = Q4
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UV renormalisation of DPDs.

UV renormalisation and scale dependence of DPDs.
For DPDs one has in addition to UV divergences associated with vertex and self-energy corrections of
composite operators at vanishing transverse separation also UV divergences associated with ladder
graphs, as two quark or gluon fields can sit at the same transverse position. These are renormalised via:

R1R2Fa1a2(xi, y, ζp, µi) =

∑
R′1R

′
2

R1R
′
1Za1b1(µ1, x

2
1ζp)⊗1

R2R
′
2Za2b2(µ2, x

2
2ζp)⊗2

R′1R
′
2FB,b1b2(y, ζp)

 (xi)

with:

d

d logµ
RR′′Zab(µ) = 2

∑
R′

RR′Pac(µ)⊗ R′R′′Zcb(µ)

resulting in the DGLAP scale dependence of DPDs:

∂

∂ logµ1

R1R2Fa1a2(xi, y, ζp, µi) = 2

∑
R′1

R1R
′
1Pa1b1(µ)⊗

1
R′1R2Fb1a2(y, ζp, µi)

 (xi)
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Rapidity dependence of DPDs.

Rapidity evolution of DPDs.

As a result of splitting the soft factor into two parts and absorbing these into the DPDs, the distributions
acquire a dependence on the rapidity parameter ζp, governed by a Collins-Soper type equation:

∂

∂ log ζp
R1R2F (xi,y, ζp, µi) = 1

2
R1J(y, µi)R1R2F (xi,y, ζp, µi)

where the scale dependence of the Collins-Soper kernels is given by:

∂

∂ logµ1

RJ(y, µi) = −γRJ (µ1)
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Part IV

DPDs in the limit of small interparton distance y.



Small distance limit of DPDs.

Perturbative splitting in DPDs.
In the limit of small distance y the leading contribution to a DPD is due to the perturbative splitting of
one parton into two and can be calculated in perturbation theory:

R1R2Fa1a2(xi, y, ζp, µ) y→0= 1
πy2

[
R1R2Va1a2,a0(y, ζp, µ)⊗

12
fa0(µ)

]
(xi)

At LO the convolution reduces to a simple product:

R1R2F (1)
a1a2

(xi, y, ζp, µ) y→0= as
πy2

R1R2V (1)
a1a2,a0

(
x1

x1 + x2

)
fa0(x1 + x2µ)

x1 + x2

with

R1R2V (1)
gg,g(z) = cgg,g(R1R2) 2CA

(
z̄

z
+ z

z̄
+ zz̄

)
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z
+ z

z̄
+ zz̄

)
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Small distance limit of DPDs.

Perturbative splitting in DPDs.
In the limit of small distance y the leading contribution to a DPD is due to the perturbative splitting of
one parton into two and can be calculated in perturbation theory:

R1R2Fa1a2(xi, y, ζp, µ) y→0= 1
πy2

[
R1R2Va1a2,a0(y, ζp, µ)⊗

12
fa0(µ)
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At LO the convolution reduces to a simple product:

R1R2F (1)
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(xi, y, ζp, µ) y→0= as
πy2

R1R2V (1)
a1a2,a0

(
x1

x1 + x2

)
fa0(x1 + x2µ)

x1 + x2

with

R1R2V
(1)
qq,g(z) = cqq,g(R1R2)TF

(
z2 + z̄2)
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Small distance limit of DPDs.

Perturbative splitting in DPDs.
In the limit of small distance y the leading contribution to a DPD is due to the perturbative splitting of
one parton into two and can be calculated in perturbation theory:

R1R2Fa1a2(xi, y, ζp, µ) y→0= 1
πy2

[
R1R2Va1a2,a0(y, ζp, µ)⊗

12
fa0(µ)

]
(xi)

At LO the convolution reduces to a simple product:

R1R2F (1)
a1a2

(xi, y, ζp, µ) y→0= as
πy2

R1R2V (1)
a1a2,a0

(
x1

x1 + x2

)
fa0(x1 + x2µ)

x1 + x2

with

R1R2V (1)
qg,q(z) = cqg,q(R1R2)CF

1 + z

z̄
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Small distance limit of DPDs.

The “splitting scale”.
At which scale µsplit should the splitting be evaluated?

The natural scale of the splitting is set by the interparton distance y of the observed partons:

µsplit(y) ∼ 1
y

In order to avoid evaluation of the splitting at non-perturbative scales for large y define:

µsplit(y) = b0
y∗(y)

with

y∗(y) = y
4
√

1 + y4/y4
max

, ymax = b0
µmin

where y∗ is adapted from b∗ in TMD studies.
Milan Joint Pheno Seminar 01/09/2023 21/53



Small distance limit of DPDs.

Calculating the 1→ 2 splitting kernels.

The task of calculating the small distance 1→ 2 splitting kernels R1R2Va1a2,a0 can be split into the
following subtasks:

I Calculation of the bare unsubtracted kernels R1R2VBus; a1a2,a0 .

I Cancellation of rapidity divergences.

I Renormalisation of UV divergences.

In the following a brief sketch of each step will be given which will be made more tangible when
discussing the computation of the NLO contribution to the kernels.
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Small distance limit of DPDs.

Bare unsubtracted kernels I.
In order to calculate the bare unsubtracted 1→ 2 splitting kernels it is advantageous to work in
momentum space where the kernels can be calculated from Feynman diagrams.

Use to this end that the position and momentum space DPDs are related by:

R1R2FBus; a1a2(xi, y, ρ) =
∫ d2−2ε∆

(2π)2−2ε e
−i∆yR1R2FBus; a1a2(xi,∆, ρ)

For large ∆ the momentum space DPDs can be computed in perturbation theory as:

R1R2FBus; a1a2(xi,∆, ρ) ∆→∞=
[
R1R2WBus; a1a2,a0(∆, ρ)⊗

12
fB,a0

]
(xi)

The position and momentum space kernels are thus related by:

Γ(1− ε)
(πy)1−ε

R1R2VBus; a1a2,a0(zi, y, ρ) =
∫ d2−2ε∆

(2π)2−2ε e
−i∆y R1R2WBus; a1a2,a0(zi,∆, ρ)
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Small distance limit of DPDs.

Bare unsubtracted kernels II.

The bare unsubtracted momentum space kernels can be obtained from a calculation of the bare
unsubtracted momentum space DPD of partons a1 and a2 in a parton a0:

R1R2FBus; a1a2/a0(xi,∆, ρ) =
n∑
i=0

(αs
2π

)i
R1R2F

(i)
Bus; a1a2/a0

(xi,∆, ρ) +O
((αs

2π

)n+1
)

where

R1R2F
(i)
Bus; a1a2/a0

(xi,∆, ρ) =
∑
b

i∑
j=0

[
R1R2W

(i−j)
Bus; a1a2,b

(∆, ρ)⊗
12
f

(j)
b/a0

]
(xi)

Note: f (j)
b/a(x) = δab δ(1− x) for j = 0 and vanishes for j > 0.
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Small distance limit of DPDs.

Bare unsubtracted kernels II.

The bare unsubtracted momentum space kernels can be obtained from a calculation of the bare
unsubtracted momentum space DPD of partons a1 and a2 in a parton a0:

R1R2FBus; a1a2/a0(xi,∆, ρ) =
n∑
i=0

(αs
2π

)i
R1R2F

(i)
Bus; a1a2/a0

(xi,∆, ρ) +O
((αs

2π

)n+1
)

where

R1R2F
(i)
Bus; a1a2/a0

(xi,∆, ρ) = R1R2W
(i)
Bus; a1a2,a0

(xi,∆, ρ)

Note: f (j)
b/a(x) = δab δ(1− x) for j = 0 and vanishes for j > 0.
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Small distance limit of DPDs.

Rapidity subtraction and UV renormalisation.

Once the bare unsubtracted position space kernels have been obtained from the momentum space
kernels the rapidity subtraction can be performed:

R1R2VB; a1a2,a0(zi, y, ζ) = lim
ρ→∞

R1R2VBus; a1a2,a0(zi, y, ρ)√
R1R2SB; a1a2(zi, y, ρ, ζ)

After this UV renormalisation can be performed, following from the renormalisation prescription of the
full position space DPD:

R1R2Va1a2,a0(zi, y, z1z2ζp, µi)

=

∑
R′1R

′
2

R1R
′
1Za1b1(µ1, z

2
1ζp)⊗1

R2R
′
2Za2b2(µ2, z

2
2ζp)⊗2

R′1R
′
2VB,b1b2(y, z1z2ζp)⊗

12
1 1Z−1(µ)

 (zi)
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1→ 2 splitting kernels at NLO.

Motivation for the calculation of NLO 1→ 2 splitting kernels.
The reason why the NLO contribution to the 1→ 2 splitting kernels is interesting is twofold:

I As DPDs are largely unknown the small y behaviour provides a valuable input for the modelling of
DPDs.

I The small y splitting DPDs are needed for the calculation of the subtraction term in the SPS-DPS
framework of [Diehl, Gaunt, and Schönwald, 2017].

In a fist step R1R2W
(2)
Bus(∆, ρ) is calculated, from which the renormalized R1R2V (2) is then extracted

following a RGE analysis.

The calculation is performed for two different rapidity regulators:

I Collins regulator (first application to a two loop calculation). [Collins, 2011]

I δ regulator. [Echevarria, Scimemi and Vladimirov, 2016]

Identical results are obatined in both schemes! [Diehl, Gaunt, Plößl, and Schäfer, 2019; Diehl, Gaunt, and Plößl, 2021]
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1→ 2 splitting kernels at NLO.

From Feynman diagrams to bare unsubtracted kernels.

The NLO a0 → a1a2 kernel W (2)
Bus,a1a2,a0

can be obtained by calculating the DPD for partons a1, a2 in
parton a0:

F
(2)
Bus,a1a2/a0

(∆, ρ) = W
(2)
Bus,a1a2,a0

(∆, ρ)

At NLO one finds the following splitting kernels:

I LO channels: g → gg, g → qq̄, and q → qg

I NLO channels: g → qg, q → gg, qj → qjqk, qj → qj q̄k, qj → qkq̄k

Note: Only LO channels exhibit rapidity divergences.

Milan Joint Pheno Seminar 01/09/2023 27/53



1→ 2 splitting kernels at NLO.
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Diagrams in orange give rise to
rapidity divergences!



1→ 2 splitting kernels at NLO.

Diagrams in orange give rise to rapidity divergences!
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1→ 2 splitting kernels at NLO.

Evaluating real diagrams: Kinematics and minus integrations.

I k3 = k − k1 − k2,

I k+
1 = z1k

+, k+
2 = z2k

+, ∆+ = 0

I k+
3 = z3k

+ = (1− z1 − z2)k+

F
(2)
Bus and thus W (2)

Bus is obtained from these diagrams by integrating over k−1 , k−2 , ∆−, k1, and k2:

I The on-shell condition for parton a3 can be used to perform one of the minus integrations, yielding

k−3 = k2
3

2z3k+

I For the remaining minus integrations Cauchy’s theorem is used.
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1→ 2 splitting kernels at NLO.

Evaluating real diagrams: Implementation of rapidity regulators.

Wilson line propagators in the Collins and δ regulator schemes:

lim
ε→0

1
v−L k

+
3 + v+

Lk
−
3 + iε

+ c.c. = 2
v−L k

+ PV z3

z2
3 − k2

3z1z2
/
ρ

with ρ = 2k+
1 k

+
2 v
−
L

/
|v+
L | ,

1
k+

3 + iδ+ + c.c. = 2
k+

z3

z2
3 + z1z2/ρ

with ρ = k+
1 k

+
2 /(δ+)2 .

In order to make the rapidity divergences which arise as z−1
3 poles for ρ→∞ explicit (and well defined)

the following distributional expansions are performed:

lim
ρ→∞

PV z3

z2
3 − k2

3z1z2
/
ρ

= 1
[z3]+

+ 1
2 δ(z3)

[
log ρ

∆2 − log(z1z2)− log k2
3

∆2

]
,

lim
ρ→∞

z3

z2
3 + z1z2/ρ

= 1
[z3]+

+ 1
2 δ(z3)

[
log ρ− log(z1z2)

]
.
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1→ 2 splitting kernels at NLO.

Evaluating real diagrams: Transverse integrations.

After the rapidity divergences have been regulated the transverse momentum integrations can be
performed in both regulator schemes.

To this end the following steps are taken:

I Reduction of the Feynman integrals to master integrals using integration-by-parts relations.

I Computation of the master integrals using the method of differential equations and
I a transformation to the ε form (also known as Henn’s canonical basis),
I and boundary conditions obtained using the method of regions.

The virtual diagrams can be calculated using the same techniques (and even the same master integrals)
as the real ones!
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1→ 2 splitting kernels at NLO.

Performing the rapidity subtraction.

As mentioned before a Fourier transform gives the bare unsubtracted NLO position space kernel as:

Γ(1− ε)
(πy2)1−ε

R1R2V
(2)
Bus(y, ρ) =

∫ d2−2ε∆
(2π)2−2ε e

−i∆y R1R2W
(2)
Bus(∆, ρ) .

With this and the definition of the rapidity subtracted DPDs one then gets:

R1R2V
(2)
B (ζp) = lim

ρ→∞

{
R1R2V

(2)
Bus(ρ)− 1

2
R1S

(1)
B (ρ, ζp)R1R2V

(1)
B

}
,

where the involved quantities on the right-hand side generally differ in the two regulator schemes, while
the left-hand side is already independent of this choice!

Milan Joint Pheno Seminar 01/09/2023 33/53



1→ 2 splitting kernels at NLO.

Performing the UV renormalization.
From the renormalization prescription for the DPDs one easily obtains that the renormalized position
space splitting kernel is given by:

R1R2V (y, µ, x1x2ζp) = R1R
′
1Z(µ, x2

1ζp)⊗1
R2R

′
2Z(µ, x2

2ζp)⊗2
R′1R

′
2VB(y, µ, x1x2ζp)⊗

12

(11Z
)−1(µ)

The NLO position space splitting kernel R1R2V (2) is then obtained by expanding this relation in αs and
picking the O(α2

s) terms:

V (2)(y, µ, ζ) =

V
(2)
fin −

(
P̂ (0) ⊗

1

[
V

(1)
B

]
1 + P̂ (0) ⊗

2

[
V

(1)
B

]
1 −

[
V

(1)
B

]
1 ⊗12

P (0) + β0

2
[
V

(1)
B

]
1

)
+
(
L log µ

2

ζ
− L2

2 + cMS

)
γ

(0)
J

2 V (1) + L

(
P̂ (0) ⊗

1
V (1) + P̂ (0) ⊗

2
V (1) − V (1) ⊗

12
P (0) + β0

2 V (1)
)

where V (2)
fin is the finite part of V (2)

Bus, L = log µ2y2

b2
0

and b0 = 2e−γ .
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1→ 2 splitting kernels at NLO.

Analytic structure of results.

NLO position space 1→ 2 splitting kernels:

R1R2V (2)
a1a2,a0

(z1, z2, y, µ, ζ) = R1R2V [2,0]
a1a2,a0

(z1, z2) + L R1R2V [2,1]
a1a2,a0

(z1, z2)

+
(
L log µ

2

ζ
− L2

2

)
R1γ

(0)
J

2
R1R2V (1)

a1a2,a0
(z1, z2)

where

V [2,0](z1, z2) = V
[2,0]
regular(z1, z2) + δ(1− z1 − z2)V [2,0]

δ (z1, z2) ,

V [2,1](z1, z2) = V
[2,1]
regular(z1, z2) + 1

[1− z1 − z2]+
V

[2,1]
+ (z1, z2) + δ(1− z1 − z2)V [2,1]

δ (z1, z2)
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Quark mass effects in the 1→ 2 splitting.

Small y splitting and massive quarks.

What happens when the scale at which the splitting is evaluated is similar to the mass of a heavy quark?

Should the heavy quark be treated as massless, massive, or absent in the evaluation of the splitting?

Consider and compare in the following two different schemes: [Diehl, Nagar, and Plößl, 2022]

I purely massless scheme:
I heavy quarks treated as decoupling for µsplit . mQ,
I heavy quarks treated as massless for µsplit & mQ.

I “massive” scheme:
I heavy quarks treated as decoupling for µsplit � mQ,
I heavy quarks treated as massive for µsplit ∼ mQ,
I heavy quarks treated as massless for µsplit � mQ.
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Quark mass effects in the 1→ 2 splitting.

Purely massless quarks.

The simplest scheme to handle massive quarks is to treat them as absent below a certain scale and as
massless above a certain scale.

I Below µy = γ mQ the DPD is initialized
for nF massless flavours with a nF
flavour PDF.
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Quark mass effects in the 1→ 2 splitting.

Purely massless quarks.

The simplest scheme to handle massive quarks is to treat them as absent below a certain scale and as
massless above a certain scale.

I Below µy = γ mQ the nF + 1 DPD is
obtained by flavour matching.
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Quark mass effects in the 1→ 2 splitting.

Purely massless quarks.

The simplest scheme to handle massive quarks is to treat them as absent below a certain scale and as
massless above a certain scale.

I Above µy = γ mQ the DPD is initialized
for nF + 1 massless flavours with a
nF + 1 flavour PDF.
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Quark mass effects in the 1→ 2 splitting.

DPDs in the massless scheme.
Consider nF = 5 LO splitting DPDs at µ1 = µ2 = mdijet = 25 GeV initialized with the scheme shown
in the previous slide:

0.5 1 5 10

103

104

105

106

γmbγmc

I Below µy = mb the bb̄ DPD is
produced only by flavour
matching and evolution.

I Above µy = mb the bb̄ DPD is
produced by a direct (massless)
g → qq̄ splitting.

−→ Neglecting heavy quark masses yields discontinuous DPDs!
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Quark mass effects in the 1→ 2 splitting.

DPDs in the massless scheme.
Consider nF = 5 LO splitting DPDs at µ1 = µ2 = mdijet = 25 GeV initialized with the scheme shown
in the previous slide:

0.5 1 5 10

104

105

γmbγmc

I At LO the gb DPD is produced
by a direct splitting only for
µy > γmb.

I Heavy quark effects in the
splitting seem to be
unimportant.

−→ Neglecting heavy quark masses yields discontinuous DPDs!
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Quark mass effects in the 1→ 2 splitting.

A more realistic treatment of quark mass effects.

In the splitting DPDs one can distinguish three regions of µsplit:

µsplit � mQ: µsplit ∼ mQ: µsplit � mQ:

I In the splitting the heavy
quarks decouple.

I nF + 1 DPDs obtained by
flavour matching.

I Heavy quarks treated as
massive in the splitting
kernel V Q.

I Heavy quarks can be
treated as massless in the
splitting.
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Quark mass effects in the 1→ 2 splitting.

Massive DPD splitting kernels.

Just like the massless V nF kernels the massive V Q kernels can be computed in perturbation theory!

At leading order the only splitting with massive quarks is g → QQ̄, where the kernel reads:

V
(1)
QQ̄,g

(z1, z2,mQ, y) = Tf (mQ y)2 [(z2
1 + z2

2)K2
1 (mQ y) +K2

0 (mQ y)
]
δ(1− z1 − z2)

with the following limiting behaviour for small and large µsplit (corresponding to large and small mQ y,
respectively):

µsplit � mQ : V
(1)
QQ̄,g

(z,mQ, y) −→ 0

µsplit � mQ : V
(1)
QQ̄,g

(z1, z2,mQ, y) −→ Tf (z2
1 + z2

2) δ(1− z1 − z2) = V
(1)
qq̄,g(z1, z2)

−→ The massive kernel interpolates between the regions where the heavy quark decouples and where
it can be treated as massless!
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Quark mass effects in the 1→ 2 splitting.

One heavy flavour.
Consider now the initialization of a splitting DPD with one heavy flavour (where α� 1 and β � 1):

I Below µy = αmQ the DPD is initialized
for nF massless flavours with a nF
flavour PDF.

What happens for charm and bottom which have to be treated as massive simultaneously?
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Quark mass effects in the 1→ 2 splitting.

One heavy flavour.
Consider now the initialization of a splitting DPD with one heavy flavour (where α� 1 and β � 1):

I Below µy = αmQ the nF + 1 DPD is
obtained by flavour matching.

What happens for charm and bottom which have to be treated as massive simultaneously?
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Quark mass effects in the 1→ 2 splitting.

One heavy flavour.
Consider now the initialization of a splitting DPD with one heavy flavour (where α� 1 and β � 1):

I For αmQ < µy < βmQ the DPD is
initialized for nF massless and one
massive flavours with a nF flavour PDF.

What happens for charm and bottom which have to be treated as massive simultaneously?
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Quark mass effects in the 1→ 2 splitting.

One heavy flavour.
Consider now the initialization of a splitting DPD with one heavy flavour (where α� 1 and β � 1):

I Above µy = β mQ the DPD is initialized
for nF + 1 massless flavours with a
nF + 1 flavour PDF.

What happens for charm and bottom which have to be treated as massive simultaneously?
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Quark mass effects in the 1→ 2 splitting.

One heavy flavour.
Consider now the initialization of a splitting DPD with one heavy flavour (where α� 1 and β � 1):

I Above µy = β mQ the DPD is initialized
for nF + 1 massless flavours with a
nF + 1 flavour PDF.

What happens for charm and bottom which have to be treated as massive simultaneously?
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Quark mass effects in the 1→ 2 splitting.

Two heavy flavours: charm and bottom.
Consider now the initialization of a splitting DPD with massive c and b quarks:

I Below µy = αmb the DPD is initialized
for 3 massless and one heavy flavours
with a 3 flavour PDF.

Let’s see how the DPDs look like in this scheme!
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Quark mass effects in the 1→ 2 splitting.

Two heavy flavours: charm and bottom.
Consider now the initialization of a splitting DPD with massive c and b quarks:

I Below µy = αmb the 5 flavour DPD is
obtained by flavour matching.

Let’s see how the DPDs look like in this scheme!
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Quark mass effects in the 1→ 2 splitting.

Two heavy flavours: charm and bottom.
Consider now the initialization of a splitting DPD with massive c and b quarks:

I For αmb < µy < βmc the DPD is
initialized for 3 massless and two massive
flavours with a 3 flavour PDF.

Let’s see how the DPDs look like in this scheme!
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Quark mass effects in the 1→ 2 splitting.

Two heavy flavours: charm and bottom.
Consider now the initialization of a splitting DPD with massive c and b quarks:

I For β mc < µy < βmb the DPD is
initialized for 4 massless and one massive
flavours with a 4 flavour PDF.

Let’s see how the DPDs look like in this scheme!
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Quark mass effects in the 1→ 2 splitting.

Two heavy flavours: charm and bottom.
Consider now the initialization of a splitting DPD with massive c and b quarks:

I Above µy = β mb the DPD is initialized
for 5 massless flavours with a 5 flavour
PDF.

Let’s see how the DPDs look like in this scheme!
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Quark mass effects in the 1→ 2 splitting.

Two heavy flavours: charm and bottom.
Consider now the initialization of a splitting DPD with massive c and b quarks:

I Above µy = β mb the DPD is initialized
for 5 massless flavours with a 5 flavour
PDF.

Let’s see how the DPDs look like in this scheme!
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Quark mass effects in the 1→ 2 splitting.

DPDs in the massive scheme.
Consider now nF = 5 LO splitting DPDs at µ1 = µ2 = mdijet = 25 GeV for dijet production, initialized
with the scheme shown in the previous slide (for different α and β):

I DPDs still discontinuous,
but greatly improved
compared to the massless
scheme!
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Quark mass effects in the 1→ 2 splitting.

DPDs in the massive scheme.
Consider now nF = 5 LO splitting DPDs at µ1 = µ2 = mdijet = 25 GeV for dijet production, initialized
with the scheme shown in the previous slide (for different α and β):

0.5 1 5 10
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104

105

106

βmbαmb βmc

I DPDs still discontinuous,
but greatly improved
compared to the massless
scheme!
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Quark mass effects in the 1→ 2 splitting.

DPDs in the massive scheme.
Consider now nF = 5 LO splitting DPDs at µ1 = µ2 = mdijet = 25 GeV for dijet production, initialized
with the scheme shown in the previous slide (for different α and β):

I Increased discontinuity for
gb at µy = αmb due to
direct production of b̄b DPD!

I Increased discontinuity for
gb at µy = βmb due to
more production modes in
the massless case!
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Quark mass effects in the 1→ 2 splitting.

DPDs in the massive scheme.
Consider now nF = 5 LO splitting DPDs at µ1 = µ2 = mdijet = 25 GeV for dijet production, initialized
with the scheme shown in the previous slide (for different α and β):

0.5 1 5 10

104

105

βmbαmb βmc

I Increased discontinuity for
gb at µy = αmb due to
direct production of b̄b DPD!

I Increased discontinuity for
gb at µy = βmb due to
more production modes in
the massless case!
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Quark mass effects in the 1→ 2 splitting.

DPDs in the massive scheme.
Consider now nF = 5 LO splitting DPDs at µ1 = µ2 = mdijet = 25 GeV for dijet production, initialized
with the scheme shown in the previous slide (for different α and β):

0.5 1 5 10

104

105

βmbαmb βmc

I Smallest discontinuities for
β = 2 and α = 1

4 !
I Seen also in other DPDs and

at different scales, cf.
backup slides.
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Quark mass effects in the 1→ 2 splitting.

DPD luminosities.

In order to study the effect of heavy quarks on DPS cross sections, consider DPD luminosities, i.e.
products of DPDs integrated over y:

La1a2b1b2(x1a, x2a, x1b, x2b; ν, µ1, µ2) =
∫
b0/ν

d2y Fa1a2(x1a, x2a, y;µ1, µ2)Fb1b2(x1b, x2b, y;µ1, µ2)

where the lower cut-off regulates the y−4 splitting singularity.

Here we include also “intrinsic” non-splitting contributions to the DPDs, modelled as:

F int
a1a2

(x1, x2, y;µ1, µ2) = (1− x1 − x2)2

(1− x1)2(1− x2)2

exp
(
− y2

4ha1a2

)
4πha1a2

fa1(x1, µ1) fa2(x2, µ2)

In the following all possible combinations containing splitting DPDs are considered:
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Quark mass effects in the 1→ 2 splitting.

DPD luminosities.

In order to study the effect of heavy quarks on DPS cross sections, consider DPD luminosities, i.e.
products of DPDs integrated over y:

La1a2b1b2(x1a, x2a, x1b, x2b; ν, µ1, µ2) =
∫
b0/ν

d2y Fa1a2(x1a, x2a, y;µ1, µ2)Fb1b2(x1b, x2b, y;µ1, µ2)

where the lower cut-off regulates the y−4 splitting singularity.

Here we include also “intrinsic” non-splitting contributions to the DPDs, modelled as:

F int
a1a2

(x1, x2, y;µ1, µ2) = (1− x1 − x2)2

(1− x1)2(1− x2)2

exp
(
− y2

4ha1a2

)
4πha1a2

fa1(x1, µ1) fa2(x2, µ2)

split x split (1v1), split x int (1v2), int x split (2v1).
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Quark mass effects in the 1→ 2 splitting.

DPD luminosities in the massive scheme.
Consider now ratios of LO DPD luminosities for dijet production with different scheme parameters:

0 1 2 3 4
0.6

0.7

0.8

0.9

1.0
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Quark mass effects in the 1→ 2 splitting.

DPD luminosities in the massive scheme.
Consider now ratios of LO DPD luminosities for dijet production with different scheme parameters:
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Quark mass effects in the 1→ 2 splitting.

DPD luminosities in the massive scheme.
Consider now ratios of LO DPD luminosities for dijet production with different scheme parameters:
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−→ Smaller dependence of luminosities on α and β compared to γ!
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Quark mass effects in the 1→ 2 splitting.

DPD luminosities in the massive scheme: Scale dependence.

Finally consider the dependence of DPD luminosities involving LO splitting DPDs on the scale µsplit
(varied by a factor of 2):
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I Note that the 1v1
luminosities contain the
squared uncertainties of
the splitting DPDs!

Milan Joint Pheno Seminar 01/09/2023 46/53

Lcc̄bb̄



Quark mass effects in the 1→ 2 splitting.

DPD luminosities in the massive scheme: Scale dependence.

Finally consider the dependence of DPD luminosities involving LO splitting DPDs on the scale µsplit
(varied by a factor of 2):
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Quark mass effects in the 1→ 2 splitting.

DPD luminosities in the massive scheme: Scale dependence.

Finally consider the dependence of DPD luminosities involving LO splitting DPDs on the scale µsplit
(varied by a factor of 2):
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I Large scale uncertainties
hint at importance of
higher order splitting!
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Quark mass effects in the 1→ 2 splitting.

DPD luminosities in the massive scheme: Scale dependence.

Finally consider the dependence of DPD luminosities involving LO splitting DPDs on the scale µsplit
(varied by a factor of 2):
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I Massless NLO kernels
already calculated!
[Diehl, Gaunt, PP, Schäfer, 2019;
Diehl, Gaunt, PP, 2021]
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Quark mass effects in the 1→ 2 splitting.

DPD luminosities in the massive scheme: Scale dependence.

Finally consider the dependence of DPD luminosities involving LO splitting DPDs on the scale µsplit
(varied by a factor of 2):
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I Massive NLO kernels still
unknown!
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Quark mass effects in the 1→ 2 splitting.

Constraints for the massive NLO kernels.

For now a full calculation of the massive NLO kernels is out of reach for us (involves massive two-loop
diagrams).

−→ construct approximate solutions!

To this end make use of the following constraints:

I RGE dependence of the massive kernels.

I Small and large distance limits of the massive kernels.

I DPD number and momentum sum rules.

The limiting behaviour and RGE dependence are uniquely fixed by these constraints, while the DPD
sum rules constrain also intermediate inter parton distances!
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Quark mass effects in the 1→ 2 splitting.

RGE dependence of the massive NLO kernels.

The RGE dependence of the massive NLO kernels is completely fixed by LO perturbative ingredients:

Scale dependence of the massive NLO kernels:

d
d logµ2 V

Q,nF (2)
a1a2,a0

=
∑
b1

P
nF+1(0)
a1b1

⊗
1
V
Q(1)
b1a2,a0

+
∑
b2

P
nF+1(0)
a2b2

⊗
2
V
Q(1)
a1b2,a0

−
∑
b0

V
Q(1)
a1a2,b0

⊗
12
P
nF (0)
b0a0

+ βnF+1
0

2 V Q(1)
a1a2,a0

= vnF ,RGE
a1a2,a0

where the V Q(1) are the massive LO kernels and the PnF (0)
ab are the LO DGLAP kernels.
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Quark mass effects in the 1→ 2 splitting.

Limiting behaviour of the massive NLO kernels.

For small and large interparton distances the massive kernels can be expressed in terms of convolutions
of massless kernels and flavour matching kernels:

Small distance limit:

V Q,nF (2)
a1a2,a0

y→0−→ δnFa0 l
V
nF+1(2)
a1a2,a0

+
∑
b0

V
nF+1(1)
a1a2,b0

⊗
12
A
Q(1)
b0a0

,

Large distance limit:

V Q,nF (2)
a1a2,a0

y→∞−→ V nF (2)
a1a2,a0

+
∑
b1

A
Q(1)
a1b1
⊗
1
V

(1)
b1a2,a0

+
∑
b2

A
Q(1)
a2b2
⊗
2
V

(1)
a1b2,a0

+A
Q(1)
α V

(1)
a1a2,a0

.

Milan Joint Pheno Seminar 01/09/2023 49/53



Quark mass effects in the 1→ 2 splitting.

Sum rules for the massive NLO kernels.

The Gaunt-Stirling DPD sum rules can be used to derive sum rules for the massive kernels:

Momentum sum rule:

∑
a2

∫
2

X2

∫ yα

yβ

d2y V Q,nF (2)
a1a2,a0

= (1−X)AQ(2)
a1a0

+
∑
a2

∫
2

X2

[
UnF (2)
a1a2,a0

(rα)− UnF+1(2)
a1a2,a0

(rβ)
]

+A(1)
α

∑
a2

∫
2

X2 U
(1)
a1a2,a0

(rα)

+
∑
b1,a2

A
Q(1)
a1b1
⊗
1

(∫
2

X2 U
(1)
b1a2,a0

(rα)
)
−
∑
a2,b0

(∫
2

X2 U
(1)
a1a2,b0

(rβ)
)
⊗
(
XA

Q(1)
b0a0

)
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Quark mass effects in the 1→ 2 splitting.

Sum rules for the massive NLO kernels.

The Gaunt-Stirling DPD sum rules can be used to derive sum rules for the massive kernels:

Number sum rule:

∫
2

∫ yα

yβ

d2y
1
πy2 V

Q,nF (2)
a1a2v,a0

=
(
δa1ā2 − δa1a2 − δa2ā0 + δa2a0

)
AQ(2)
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+
∫
2

[
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(rβ)
]

+A(1)
α

∫
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U (1)
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(rα)

+
∑
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A
Q(1)
a1b1
⊗

(∫
2

U
(1)
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(rα)
)
−
∑
b2

(∫
2

U
(1)
a1a2v,b0

(rβ)
)
⊗AQ(1)

b0a0
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Quark mass effects in the 1→ 2 splitting.

Ansatz for the massive NLO kernels.

The following ansatz fulfils the RGE and limiting behaviour constraints:

V Q,nF (2)
a1a2,a0

= V nF [2,0]
a1a2,a0

+ V nF [2,1]
a1a2,a0

log
m2
Q

µ2
y

+ k00(ymQ) vnF ,Ia1a2,a0
(z1, z2)

+ k11(ymQ)
(
V nF+1[2,0]
a1a2,a0

− V nF [2,0]
a1a2,a0

)
− k02(ymQ)

(
V nF+1[2,1]
a1a2,a0

− V nF [2,1]
a1a2,a0

)
+ log µ2

m2
Q

vnF ,RGE
a1a2,a0

(z1, z2) ,

where

kij(w) = w2Ki(w)Kj(w) .

−→ Sum rules can be used to constrain vnF ,Ia1a2,a0
!
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Summary.

Why DPS is interesting:

I Contributes background to the search for new physics.
I Relative importance of DPS increases with collision energy (relevant for possible FCC).
I DPS gives access to information about correlation between partons inside hadrons.

A framework for DPS:

I Factorization proof for double Drell-Yan.
[Diehl, Ostermeier, and Schäfer, 2011; Diehl, Gaunt, Ostermeier, Plößl, and Schäfer, 2015; Diehl and Nagar, 2019]

I Subtraction formalism for a consistent combination of DPS and SPS cross sections.
[Diehl, Gaunt, and Schönwald, 2017]

Properties of DPDs:

I Definition in terms of proton matrix elements of a product of twist-2 operators.
I Rapidity dependence governed by CS-equation (consequence of rapidity subtraction).
I Renormalisation scale dependence governed by double DGLAP equation.
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Summary.

For small interparton distances DPDs can be matched onto PDFs with perturbative 1→ 2 splitting
kernels, yielding a valuable constraint for the largely unknown DPDs!

NLO calculation of the 1→ 2 splitting kernels: [Diehl, Gaunt, Plößl, and Schäfer, 2019; Diehl, Gaunt, and Plößl, 2021]

I Calculated the unpolarised NLO small y splitting kernels R1R2V
(2)
a1a2,a0 for all parton and colour

channels.
I Used different rapidity regulator schemes, providing a strong cross check.
I First application of the Collins regulator in a two loop calculation.

NLO 1→ 2 splitting kernels make it possible to construct NLO DPD models and extend the SPS-DPS
subtraction formalism to NLO!

Treatment of massive quarks in the small distance splitting: [Diehl, Nagar, and Plößl, 2022]

I Heavy quark decouples for µsplit � mQ.
I Heavy quark treated as massive for µsplit ∼ mQ.
I Heavy quark treated as massless for µsplit � mQ.

Including quark mass effects leads to DPDs with smaller discontinuities and stabilizes DPD luminosities
compared to the purely massless case!
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Part VI

Backup.



1→ 2 splitting kernels at NLO.

Rescaling of the rapidity parameter.

The rapidity parameters ζp and ζp̄ in this work are normalised as:

ζpζp̄ = (2p+p̄−)2 = s2 ,

which differs from the convention in the TMD case

ζζ̄ = x2x̄2(2p+p̄−)2 = Q4 ,

where the rapidity parameters are normalized w.r.t. the extracted parton, which would be awkward in
the DPD case where parton momenta often appear in convolution integrals.

−→ need to rescale the rapidity parameter in renormalisation factors and evolution kernels!

−→ reason: can only depend on the plus-momentum xip
+ of the parton to which they refer!
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Quark mass effects in the 1→ 2 splitting.

Fgb: massless vs. massive scheme

V
(1)
gb,b

A
b(1)
bg

f5b

I Only contributes in the
massless scheme.

I DPD produced by direct
splitting, no evolution
necessary.

P
(0)
gb

V
(1)
b̄b,g

f
4/5
g

I Contributes in the massive
and massless schemes.

I DPD only produced by
evolution.

P
(0)
bg

V
(1)
gg,g

f
4/5
g

I Contributes in the massive
and massless schemes.

I DPD only produced by
evolution.

I Contributions (b) and (c) vanish when the splitting scale is identical to the target scale!
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Quark mass effects in the 1→ 2 splitting.

Fgb: massless vs. massive scheme
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Quark mass effects in the 1→ 2 splitting.

Scale dependence of splitting DPDs: in depth.
In order to understand the µsplit dependence of LO DPD luminosities involving qq̄ DPDs consider the
scale variation of the involved DPDs (x1 = mW√

s
expY , x2 = mW√

s
exp−Y ):

Central rapidity (Y = 0):
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Quark mass effects in the 1→ 2 splitting.

Scale dependence of splitting DPDs: in depth.
In order to understand the µsplit dependence of LO DPD luminosities involving qq̄ DPDs consider the
scale variation of the involved DPDs (x1 = mW√

s
expY , x2 = mW√

s
exp−Y ):

Central rapidity (Y = 0), only g → qq̄ splitting:
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I Contribution from g → gg and
q → qg, gq splitting and
evolution negligible for central
rapidity (x1 = x2).

I Only scale variation from initial
gluon PDF.
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Quark mass effects in the 1→ 2 splitting.

Scale dependence of splitting DPDs: in depth.
In order to understand the µsplit dependence of LO DPD luminosities involving qq̄ DPDs consider the
scale variation of the involved DPDs (x1 = mW√

s
expY , x2 = mW√

s
exp−Y ):

Non-central rapidity (Y = 3):
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Quark mass effects in the 1→ 2 splitting.

Scale dependence of splitting DPDs: in depth.
In order to understand the µsplit dependence of LO DPD luminosities involving qq̄ DPDs consider the
scale variation of the involved DPDs (x1 = mW√

s
expY , x2 = mW√

s
exp−Y ):

Non-central rapidity (Y = 3), only g → qq̄ splitting:
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I Sizeable contribution from
g → gg and q → qg, gq
splitting and evolution for
non-central rapidity (x1 � x2).

I In addition to scale variation
from initial gluon PDF also
uncertainties from evolution.
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Quark mass effects in the 1→ 2 splitting.

DPD luminosities in the massive scheme: Matching scale dependence.
Finally consider the dependence of LO DPD luminosities for dijet production on the flavour matching
scales (at LO, varied by a factor of 2):
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Compared with the dependence on µsplit the scale uncertainty associated with flavour matching is small!
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Quark mass effects in the 1→ 2 splitting.
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Quark mass effects in the 1→ 2 splitting.

q
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