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A brief introduction to double parton scattering.



DPS intro.

What is double parton scattering?

Double parton scattering (DPS) describes two individual hard interactions in a single hadron-hadron
collision:

A
> Already observed at previous colliders at
ZZ CERN and at the Tevatron.
ZZ > More data available from the LHC and

more to come from HL-LHC.

B

DPS is naturally associated with the situation where the final state can be separated into two subsets
with individual hard scales.



DPS intro

When is DPS relevant and why is it interesting

Whilst generally suppressed compared to single parton scattering (SPS), DPS may be enhanced for
final states with small transverse momenta or large separation in rapidity

When production of final states via SPS involves small coupling constants or higher orders, DPS
may give leading contributions (like-sign W production)

e

background to the search for new physics with like-sign lepton pairs.

Relative importance of DPS increases with collision energy (opps ~ PDF* vs. osps ~ PDF?)

DPS gives access to information about hadron structure not accessible in other processes: spatial,
spin, and colour correlations between two partons
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Experimental observations of DPS: Overview

DPS has been observed in a broad class of processes already
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Will come back to this in a moment
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Experimental observations of DPS: Same-sign V.

Same-sign W pair production is one of the theoretically cleanest DPS channels and has recently been
measured by the CMS collaboration:
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Double parton scattering theory.



DPS theory.

Development of a theory framework for DPS.

Work towards a theoretical description of DPS started already in the 80's:

LO factorisation formula based on a parton model picture [Politzer, 1980; Paver and Treleani, 1982; Mekhfi, 1085]
DPS _ A =N A = A2y F Fuli i
OAB = Uik—m(xwls) Ujl—>B(21725825) Y Ly (501, X2, y) kl(l’l, T2, y)

The LHC era has seen increasing interest in DPS: Development of a full QCD description!
> Systematic QCD description. [Blok et al., 2011; Diehl et al., 2011; Manohar and Waalewijn, 2012; Ryskin and Snigirev, 2012]
> Factorization proof for double DY [Dichl, Gaunt, Ostermeier, PI&BI, Schafer, 2015; Diehl and Nagar, 2019)]

> Disentangling SPS and DPS. [Gaunt and Stirling, 2011; Diehl, Gaunt and Schénwald, 2017]
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DPS theory

Factorization for DPS: The double Drell-Yan process

The general procedure towards a factorization proof for DPS is the same as in the SPS case

Identification of leading momentum regions and subgraphs (hard, collinear, soft) using the method
by Libby and Sterman

Kinematic approximation of soft and collinear gluon momenta

Decoupling of collinear gluons

Proof that the Glauber momentum region can be avoided. [Dichl, Gaunt, Ostermeier, PI&BI, Schafer, 2015
Decoupling of soft gluons. [Dichl and Nagar, 2019

Handling of rapidity and UV divergences

Factorization for double Drell-Yan has been proven at the same level of rigor as in the SPS case



DPS theory.

Leading regions for the double Drell-Yan process.

> Two hard subgraphs (H; and H3) on either
side of the final state cut.

> One collinear subgraph (A and B) for each
colliding proton.

> A soft subgraph (5).

> An arbitrary number of soft and collinear
gluons connecting the soft and hard subgraphs
to the collinear subgraph, respectively.




DPS theory
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DPS theory.

Factorized cross section for the double Drell-Yan process.

> Collinear gluons have been absorbed into
collinear matrix elements (to be identified as
double parton distributions), acting as gauge
links.

> Soft gluons have been absorbed into the soft
factor, a matrix element of Wilson line
operators.

» Hard subgraphs are reduced to parton level
cross sections that can be calculated in
perturbation theory.




DPS theory.

SPS-DPS double counting: Issue.

Should the process on the right be considered as a DPS process or as a loop correction to SPS?

> Both: SPS for large transverse momenta (small y), DPS for small transverse momenta
(large y).

> Solution: Diehl-Gaunt-Schénwald subtraction formalism. [Diehl, Gaunt and Schanwald, 2017

—— Use that for small distances y the DPDs can be calculated in perturbation theory (y~2 behaviour)!
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DPS theory.

SPS-DPS double counting: Issue.
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——
i 2N

> Both: SPS for large transverse momenta (small y), DPS for small transverse momenta
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» Solution: Diehl-Gaunt-Schénwald subtraction formalism. [Dichl, Gaunt and Schanwald, 2017]
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DPS theory

SPS-DPS double counting: Solution
Two issues with SPS+DPS cross sections: SPS-DPS double counting and the DPS splitting singularity

Defining the DPS cross section with a lower cut-off regulates the splitting singularity

U?;Bg = ik a(21215) 651 B(T2T25) /d2y Fij(x1,22,y) Fra(%1,Z2,9)
with
b(u) =0 foru — 0,
D(u) = 1 foru>1.

The double counting issue is then solved by a subtraction term

tot __ _SPS DPS sub
OAB=0ABT0AB—0ARB-



DPS theory.

SPS-DPS double counting: Calculating the subtraction term.

Consider the LO example:

Double counting due to perturbative splitting contributions in SPS and DPS cross sections.

Subtraction term given by:
l
Ui{'t}g = Giksa(21215) 6ji— B(T2T2s /d y ? yV)FSp't(JCLIz, )sz (%1, 72, y)

where FPlit is the perturbative small y expression for the DPDs.

Milan Joint Pheno Seminar 01/09/2023 8/53



DPS theory

SPS-DPS double counting: Subtraction at work

Consider how the subtraction works for the LO example

tot __ _SPS DPS sub
OAB=0ABTOAB—0ARB-

Small y:  For small y (O(1/Q)) one finds that F ~ F*Pit and thus

DPS ., _sub tot . _SPS
0A,B=0AB 0A,B~=0AB

Large y:  For large y (> O(1/Q)) the leading contribution to the SPS cross section is the splitting
contribution in the DPS region such that

SPS . _sub tot . _DPS
0AB=04AB 0A,B=0AB

The DGS subtraction formalism consistently solves the SPS-DPS double counting issue



DPS theory.

Approximation of DPS cross section: DPS pocket formula.

A widely used approximation in phenomenological studies of DPS is the following:

Fij(ivhffz,y) = fi(x1) fj(ffz) 9(y)

yielding a simplified expression for the DPS factorization formula (“DPS pocket formula”):

SPS _SPS
A OB

Oeff

where the “effective” cross section is given by

Oeff —/d2 (9 (y))2

and should be process-independent if the approximations were justified!
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Definitions and properties of DPDs.



Defining bare unsubtracted double parton distributions.

Position and momentum assignments in DPDs and dTMDs.

A A
ki—— ko+—
=5 2+

2

with Fourier conjugate positions and momenta z; <> ky, 20 <> ko, and y < A.



Defining bare unsubtracted double parton distributions.

Definition of DPDs.

Bare unsubtracted position space DPDs
oo, 2 g
Fglgsl,ZiZ(xi,y) = (x1pT) ™™ (z2p™) 7" 2p+/dy_ [1_[/—27’r e*ri%i p]
i=1
X <p| 02{1 (y7 21) OZ§T2 (Oa ZQ) |p>|y+:0’zi:0

where n; = 0 for quarks and n; = 1 for gluons and the twist-2 operators are defined in terms of quark-
and gluon-fields and Wilson lines as:

O (y,2) = @y (&) W&, v0) ]y Ta [W(E1,00) )35 45 (€4) for quarks,
02 (y,2) = [GT (€)]" [Wi(e_,vp)] " T [W(gy 00)] " [GT(€4)]" for gluons,

with €& =y 4+ 2/2, 27 = 0 and where T', and II,, project onto different definite polarisation states.



Defining bare DPS soft factors.

Definition of the DPS soft factors.

Bare position space DPS soft factor

’ ’
T1T1 T2

[SB’alaz (y; vL, UR)] 5,878,585 - <0 | [Os(y, 0;vr, UR)]TIT17SIS,1 I:OS(Ov 0;vp, ’111%‘,)]7“274;7825,2 ‘ O>

where the colour indices r; are in the fundamental or adjoint representation if a; is a quark or gluon,
respectively, and:

[Os(yyz;UL,UR)]M,Vss, = [W(y+3z.0) Wiy +iz,0r)], [WHy— 32,08 Wiy - $z0)]

s'r!

The soft factor defined above is for the production of colour singlet states.



Spin and colour structure of DPDs

Spin structure of DPDs

DPDs exhibit a rich spin structure, giving access to spin correlations between two partons inside a
proton

The T" and IT matrices projecting on definite quark and gluon polarizations are given by

r 1 P, = 10 w0
q 9 q 9 dq 2
kk/ Kk’ kk' _ ;. kK kk'§i" kK jj
I1; o A, =ie™ H(;g =T

for unpolarized, longitudinally polarized, and transversally/linearly polarized quarks and gluons,
respectively

In the TMD case all possible combinations of quark and gluon polarizations are admissible, whereas in
the collinear DPD case considered here some - like ¢Ag - are identical to zero (similar to TMD vs.
PDF)



Spin and colour structure of DPDs

Colour structure of DPDs

Compared to PDFs, DPDs have a more complex colour structure, as now four parton legs have to be
coupled to an overall colour singlet. This can be made more systematic by

coupling the colour indices r; and 7 pairwise to irreducible representations R; of SU(N) such that
Ry Ry form an overall colour singlet

RiR
! 2FBHS,G1(I2 ~ PEIEZFBus,alag
decomposing the full colour structure in terms of these combinations
Z RiR
FBus,alag ~ PR1R2 ! 2FBus,a1a2
Ri1,R2

In addition to R1 Ry = 11 one finds the following colour non-singlet channels
R1R2 = 88 for a1 = qq’
RiRy; =8 A and 8.5 for ajas = qg
RiRy,=AA, 5SS, AS, SA, 1010, 1010 and 2727 for ajas = gg



Spin and colour structure of DPDs.

Colour structure of the DPS soft factor.

Much in the same way as DPDs, the colour structure of the DPS soft factor can be decomposed as:

R1R:
SBaras ~ E PRyry PriRy RlR, S Baras
R1R>
RIR}

with

RiR»
RIR,OBaras ~ PR, 98,010 PRy

For the collinear DPS soft factor the colour structure simplifies:

R1R> _ _ R1R3 R1R3
R{RéSBaalfh - 6R1R’5R2R2 RiRo Sp ,araz = 6R1R/6R R, SB Ja1as



Rapidity subtraction for DPDs

Absorbing the soft factor into DPDs

DPDs contain rapidity divergences associated with light-like Wilson lines
These cancel in the complete factorized cross section against rapidity divergences in the soft factor

Solution: Absorbing the soft factor into the DPDs, defining rapidity finite distributions

RleF .
RiR2Fy oo (@i, Gp) = lim Bus,aias (Tis Ys P) DPS analog for TMD

=0 |RiR subtraction [Collins, 2011].
\/ ! 253,&1&2(y7p7<.p)

where the limit p — oo corresponds to removing the rapidity regulator

Definition of ¢, differs from the one of ¢ for TMDs

GGp = (2p p)P=s vs. = 2?22 (2ptpT)? = Q*



UV renormalisation of DPDs.

UV renormalisation and scale dependence of DPDs.

For DPDs one has in addition to UV divergences associated with vertex and self-energy corrections of
composite operators at vanishing transverse separation also UV divergences associated with ladder
graphs, as two quark or gluon fields can sit at the same transverse position. These are renormalised via:

RleFalag (xlvyannu’l - Z Rl IZalbl (ﬂlvl’lcp) R2R2Za2b2 (M2,$§Cp) ? RleFB,blbg (y7<p) (xz)

R{ R}

with:

d  Rrp” RR’ R'R"
TP Zq =2 P Z.
Toa s b(n) =2 (n) ® b(1)

resulting in the DGLAP scale dependence of DPDs:

0

R1iR R R RIR
m 2Fa1a2($zay Cpnuz —2 Z ! a1 1( )ng ! 2Fb1a2(y7<paui) (xz)

R/




Rapidity dependence of DPDs.

Rapidity evolution of DPDs.

As a result of splitting the soft factor into two parts and absorbing these into the DPDs, the distributions
acquire a dependence on the rapidity parameter (,, governed by a Collins-Soper type equation:

9 R1R2

Ry N BaRe g )
5‘10ng (y7 :Uz) (xuyansz)

1
F(xiayvgpuul') = 5

where the scale dependence of the Collins-Soper kernels is given by:

—R L) = — R
dlog iy J(y, 1) vJ (1)
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DPDs in the limit of small interparton distance y.



Small distance limit of DPDs.

Perturbative splitting in DPDs.

In the limit of small distance y the leading contribution to a DPD is due to the perturbative splitting of
one parton into two and can be calculated in perturbation theory:

y—0

1
RIRQFaﬂlz (xiv Y, Cpa :U') = 7r_y2 fft Vala27a0 (y’ Cpa /1') (1% fao (:u’):| (xl

At LO the convolution reduces to a simple product:

RiRs (1 y=0 Qs R Ryt (1 T1 Jao (71 + 2210)
1 ZFa(ll)lg(xi,%Cp,ﬂ) = ﬂ'_y2 1 2Va(132,a0 <$1—|—x2) oxl—i—x2

with

z z _
RiR; Vg(gl’)g(z) = ng’g(RlRQ) 2Cy (; + g + ZZ)



Small distance limit of DPDs.
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y—0

1 formally OPE of
RlRQFalag(xiayaéan') = TyQ RleValaz,ao(y,Cpau)%fao(ﬂ)] (xz) (g?;azly)o(o 202) fOI’y—)O

At LO the convolution reduces to a simple product:

RiRs (1 y=0 Qs R Ryt (1 T1 Jao (71 + 2210)
! 2Fé1212(xi,y7<p’ﬂ) - ryz ! 2Va(132,a0 <$1—|—Z‘2) 0x1+w2

with

z z _
RiR> Vg(gl,)g(z) = ng,g(RlRQ) 2Cy (z -+ g + zz)



Small distance limit of DPDs.

Perturbative splitting in DPDs.
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with

e Vq(ﬁl,)g(z) = ¢qg.9(R1R2) Tr (2° + 2°)



Small distance limit of DPDs.

Perturbative splitting in DPDs.

In the limit of small distance y the leading contribution to a DPD is due to the perturbative splitting of
one parton into two and can be calculated in perturbation theory:

y—0

1 formally OPE of
RlRQFalag(xiayaéan') = TyQ RleValaz,ao(y,Cpau)%fao(ﬂ)] (xz) (g?;azly)o(o 202) fOI’y—)O
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RiRs (1 y=0 Qs R Ryt (1 T1 Jao (71 + 2210)
! 2Fé1212(xi,y7<p’ﬂ) - ryz ! 2Va(132,a0 <$1—|—Z‘2) 0x1+w2

with

1+=2
z

fafts ‘/:1(5717)(1(2) = Cqg,q(R1R2) Cr




Small distance limit of DPDs.

The “splitting scale”.
At which scale pisp1i¢ should the splitting be evaluated?

The natural scale of the splitting is set by the interparton distance y of the observed partons:

1
. 1ity)’“*
split ( ;

In order to avoid evaluation of the splitting at non-perturbative scales for large y define:

o(y) = 20
Heplit W) =)

with

Y b

* = =
y (y) 4 1 + y4/yf}nax7 ymax umln

where y* is adapted from b* in TMD studies.




Small distance limit of DPDs

Calculating the 1 — 2 splitting kernels

The task of calculating the small distance 1 — 2 splitting kernels 172V, .., can be split into the
following subtasks

Calculation of the bare unsubtracted kernels R1R2VBHS; araz,a0
Cancellation of rapidity divergences

Renormalisation of UV divergences

In the following a brief sketch of each step will be given which will be made more tangible when
discussing the computation of the NLO contribution to the kernels



Small distance limit of DPDs

Bare unsubtracted kernels |

In order to calculate the bare unsubtracted 1 — 2 splitting kernels it is advantageous to work in
momentum space where the kernels can be calculated from Feynman diagrams

Use to this end that the position and momentum space DPDs are related by

d2725A

RlRQFBus;alaz(xivy?p):/m

eiiAleRQ FBus; aias ('ria A, ;0)
For large A the momentum space DPDs can be computed in perturbation theory as

R1R
! 2FBus;a1a2 (xh A7p)

A
= |:R1R2WBus;a1a2,ao (4, p) (1% [B.ao (i)

The position and momentum space kernels are thus related by

I'l—e)
(my)t=e

d2725A

m e Ay Ltz WBus; ayas2,a0 (Zi7 Al P)

R1R
! ZVBus;alag,a()(Zhy?p):/



Small distance limit of DPDs.

Bare unsubtracted kernels Il.

The bare unsubtracted momentum space kernels can be obtained from a calculation of the bare
unsubtracted momentum space DPD of partons a; and a5 in a parton ag:

n o, i . n+1
R1R2F3us;a1az/ao($i>A’p) = Z (%) e él)lb a1a2/ao(x“A p)+O <<27T) )

=0

where

i
R1R> (i RiR i
! 2FBI)1$ alaz/ao x“A p :Z l: ! ZW}(B‘u:sj)alaz b(A p)®fb/a0:|( z)
b

Note: flf?l(m) = 0 6(1 — z) for j = 0 and vanishes for j > 0.



Small distance limit of DPDs.

Bare unsubtracted kernels Il.

The bare unsubtracted momentum space kernels can be obtained from a calculation of the bare
unsubtracted momentum space DPD of partons a; and a5 in a parton ag:

n

as\t g, i g\l
R1R2FBus;a1a2/ao($i7 Aap) = Z (%) " RQFél)ls;al(w/ao (xiv Avp) +0 <<2ﬂ_) )
=0

where

RleF(z) (xivAvp) = RlRQWgI)lS; aiaz,ao (xi’A’p)

Bus;ajas/ag

Note: flf%(x) = 0 6(1 — z) for j = 0 and vanishes for j > 0.



Small distance limit of DPDs.

Rapidity subtraction and UV renormalisation.

Once the bare unsubtracted position space kernels have been obtained from the momentum space
kernels the rapidity subtraction can be performed:

R1R2V (
RiR» ] Bus; ajaz,a0\%ir Y P)
VB; araz,a0 (21, Y5 C) = plﬁnolo \/R1R2SB o200 0)

After this UV renormalisation can be performed, following from the renormalisation prescription of the
full position space DPD:

RiRe Va1a2 ao (Zh Y, leQCp, ,U'Z)

= | D M albl(M1721Cp) Bolt2 Zrabs (2, 23Cp) © : ® fifa vy biba (Y5 21226p) & HZ Y| (z)
R R'



1 — 2 splitting kernels at NLO.

Motivation for the calculation of NLO 1 — 2 splitting kernels.
The reason why the NLO contribution to the 1 — 2 splitting kernels is interesting is twofold:

> As DPDs are largely unknown the small y behaviour provides a valuable input for the modelling of
DPDs.

> The small y splitting DPDs are needed for the calculation of the subtraction term in the SPS-DPS
framework of [Diehl, Gaunt, and Schénwald, 2017].

In a fist step RlR?Wﬁzs(A,p) is calculated, from which the renormalized #1727 (2) is then extracted
following a RGE analysis.

The calculation is performed for two different rapidity regulators:
> Collins regulator (first application to a two loop calculation). [Coliins, 2011]

) regulator. [Echevarria, Scimemi and Vladimirov, 2016]

Identical results are obatined in both schemes! [Diehl, Gaunt, PIBI, and Schafer, 2019; Diehl, Gaunt, and PI&8I, 2021]



1 — 2 splitting kernels at NLO.

From Feynman diagrams to bare unsubtracted kernels.

The NLO ag — aqas kernel W}fjs,alaz’ao can be obtained by calculating the DPD for partons ai,as in
parton agp:

(2) —_w®
FBus,alaz/ao (A7 p) - WBus7a1a2,a0 (A’ p)

At NLO one finds the following splitting kernels:

» LO channels: g — gg, g — qq, and ¢ — qg

» NLO channels: g = qg, ¢ = 99, ¢j = 4k, @ — 4Tk, 4 — Qe

Note: Only LO channels exhibit rapidity divergences.



1 — 2 splitting kernels
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1 — 2 splitting kernels at NLO.

Diagrams in orange give rise to rapidity divergences!




1 — 2 splitting kernels at NLO.

Evaluating real diagrams: Kinematics and minus integrations.

ki ky 1 k—A ki +A
|

ay ar I ap a
: ks =k — ki — ko,

ks |
= | 0 >k =2kt kS =2kt AT =0
|
|
| > kf =kt = (1= 5 — )kt
|
ay 'k ! k!l ag

F,(;zs and thus ng)ls is obtained from these diagrams by integrating over ki, k5, A7, k1, and kq:
> The on-shell condition for parton a3 can be used to perform one of the minus integrations, yielding

_ k3
3 223k‘+

> For the remaining minus integrations Cauchy's theorem is used.



1 — 2 splitting kernels at NLO.

Evaluating real diagrams: Implementation of rapidity regulators.

Wilson line propagators in the Collins and  regulator schemes:

1 2 z3
lim +c.c. = PV
=0 vy ki + vl ky +ie vy kt 22 — k322, /p

with p =2k ks vy /|vf],

_ ~3 ; — gt (52

- FcC =7 5 with p=kTky/(67)".

ki 46+ kt 224 z125/p p=hiky /(")

In order to make the rapidity divergences which arise as 23_1 poles for p — oo explicit (and well defined)
the following distributional expansions are performed:

. 23 1 1 [ p kg}
lim PV = + =9(23) |log — —log(z122) —log — |,
p—>00 Z?Q) —kgzlzz/p [z3]+ 2 ( 3) gAz g( 1 2) gA2

; z3 1 1
! = + =4 {1 | ] .
o Al [l T2l [lesp ~leslaz)



1 — 2 splitting kernels at NLO

Evaluating real diagrams: Transverse integrations

After the rapidity divergences have been regulated the transverse momentum integrations can be
performed in both regulator schemes

To this end the following steps are taken

Reduction of the Feynman integrals to master integrals using integration-by-parts relations
Computation of the master integrals using the method of differential equations and

> a transformation to the e form (also known as Henn's canonical basis)

> and boundary conditions obtained using the method of regions

The virtual diagrams can be calculated using the same techniques (and even the same master integrals)
as the real ones



1 — 2 splitting kernels at NLO

Performing the rapidity subtraction

As mentioned before a Fourier transform gives the bare unsubtracted NLO position space kernel as

M R1R» V(Q)

d2—2£A L
(my?)1—e Bus(¥,P) = / €AY R1R2W1(5)23S(A7p).

(27T)2—26

With this and the definition of the rapidity subtracted DPDs one then gets

. 1
B (G) = tim { VR - 5 S (0.6) RV}

p—r00

where the involved quantities on the right-hand side generally differ in the two regulator schemes, while
the left-hand side is already independent of this choice



1 — 2 splitting kernels at NLO

Performing the UV renormalization

From the renormalization prescription for the DPDs one easily obtains that the renormalized position
space splitting kernel is given by

n/ Y —1
R1sz(y M,$1$2Cp) Ry R1Z('u,7q;%§p) (? RQRQZ(/_,[,’ ,Z‘%Cp) ? R1R2VB(y,p,,$1x2<p) % (11Z) (1)

The NLO position space splitting kernel 1%21/(2) is then obtained by expanding this relation in a; and
picking the O(a?) terms

VO (y, Q) =
v = (P08 Vi), + PO o V], - VS, g PO+ 5 VSV, )
(0)

p* L v 1 0 5(0 1 1 0 Bo 1
+<Llogc—2+cm> REA V()+L(P()®V() P()<§V() V<>®P<>+ V<>>

where Vﬁ(i) is the finite part of VE(fu)S, L=

2,2
“bé/ and by = 2e™7



1 — 2 splitting kernels at NLO.

Analytic structure of results.

NLO position space 1 — 2 splitting kernels

RaRz Va(fgz’ao (Z]_, 22, Y, I,y C) = it ‘/11[3(7102],(10 (Z17 ZQ) + L FaRz Va[f;lliao (Z17 Z2)
2 2\ Ri.(0)
p L Y
+ (p1osl ~ 5 ) =3 MV, a2

where

VEO (a1, 25) = Vi (21, 22) + 61— 21— 22) V2 (21, 22)

regular

1

m V_i[_z’l] (Zl, 2’2) + (5(1 — 21— 2’2) ‘/6[2’1] (21, ZQ)
D +

VUG ) = VEL (21, 2) +

regular



Quark mass effects in the 1 — 2 splitting

Small y splitting and massive quarks
What happens when the scale at which the splitting is evaluated is similar to the mass of a heavy quark
Should the heavy quark be treated as massless, massive, or absent in the evaluation of the splitting

Consider and compare in the following two different schemes Diehl, Nagar, and PI&BI, 2022

purely massless scheme

> heavy quarks treated as decoupling for pspiit S Mo,

> heavy quarks treated as massless for pspiit = mq.

~

“massive” scheme
> heavy quarks treated as decoupling for pspiix < mq,
> heavy quarks treated as massive for pspiix ~ mq,

> heavy quarks treated as massless for psplit > mq.



Quark mass effects in the 1 — 2 splitting.

Purely massless quarks.

The simplest scheme to handle massive quarks is to treat them as absent below a certain scale and as
massless above a certain scale.
I

Fup = 4 © Fop > Below py = vmg the DPD is initialized
for np massless flavours with a ng

flavour PDF.

mq

Fop =Vop @ frp

Hy =
mqg ymq



Quark mass effects in the 1 — 2 splitting.

Purely massless quarks.

The simplest scheme to handle massive quarks is to treat them as absent below a certain scale and as
massless above a certain scale.
I

> Below py = ymg the np +1 DPD is
obtained by flavour matching.

mq

Fop = Var @ fur

My =
mg ymo



Quark mass effects in the 1 — 2 splitting.

Purely massless quarks.

The simplest scheme to handle massive quarks is to treat them as absent below a certain scale and as
massless above a certain scale.
I

Fa =20 P, > Above p, = vmg the DPD is initialized
’ for ng + 1 massless flavours with a

ng + 1 flavour PDF.

mq

Frp =Vop @ frp

Hy =
mqg ymq



Quark mass effects in the 1 — 2 splitting.

DPDs in the massless scheme.

Consider np = 5 LO splitting DPDs at j17 = po = maijjer = 25 GeV initialized with the scheme shown
in the previous slide:

FbB(ml =Ty = mdijot/\/gv Y, mdijet)

Y Yy
o 77! P
L » Below y,, = my, the bb DPD is
100k P 1 produced only by flavour
% P matching and evolution.
L= 10% 1 » Above y, = my, the bb DPD is
produced by a direct (massless)
A — qq splitting.
Lotk e ] 9 — qq splitting
0.5 1 5 10



Quark mass effects in the 1 — 2 splitting.

DPDs in the massless scheme.
Consider np = 5 LO splitting DPDs at j17 = po = maijjer = 25 GeV initialized with the scheme shown
in the previous slide:

Yme

Yy

ng(xl =Ty = mdijct/\/gv Y, mdijot)

105_

Fyp [GeV?]

107

0.5

10

Hy = b()/y [Ge\/]

» At LO the gb DPD is produced
by a direct splitting only for

» Heavy quark effects in the
splitting seem to be
unimportant.



Quark mass effects in the 1 — 2 splitting.

A more realistic treatment of quark mass effects.
In the splitting DPDs one can distinguish three regions of pgpiit:

Hsplit < mq: Msplit ~ Q-

> In the splitting the heavy > Heavy quarks treated as
quarks decouple. massive in the splitting
kernel V&

» nr + 1 DPDs obtained by
flavour matching.

» Heavy quarks can be
treated as massless in the
splitting.



Quark mass effects in the 1 — 2 splitting

Massive DPD splitting kernels

Just like the massless V™ kernels the massive V9 kernels can be computed in perturbation theory

At leading order the only splitting with massive quarks is ¢ — QQ, where the kernel reads
1
V3., (21 22,ma.y) = Tr (mqy)? (23 + 23) K7 (mq y) + K3 (mqy)] 601 — 21 — 2)

with the following limiting behaviour for small and large pspiis (corresponding to large and small mg vy,
respectively)

HPsplit <K MQ : VQ(g,g(Z’ mQa?J) —0
Msplit > M@ : chlQ),g(Zla 22,MQ,Y) —> Tf(Z% + Z%) 6(1—21 —29) = Vq(ql,)g(zlv 22)

The massive kernel interpolates between the regions where the heavy quark decouples and where
it can be treated as massless



Quark mass effects in the 1 — 2 splitting.

One heavy flavour.

Consider now the initialization of a splitting DPD with one heavy flavour (where < 1 and 8 > 1):
o

F

=

Vo, ® f,

3 Fo. = Vo ® fur

> Below p, = amg the DPD is initialized
for np massless flavours with a np
flavour PDF.

Fop =Vor ® for

I
I
I
I
I
I
I
I
)
d
I
I
I
I
I
mQ t——m—m——1 !
] I
] I
] I
] I
] I
) I
I
] I
] I
] I
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] I
] I
] I
] I
] I

4 4

=
Il
<k

amgq meq Bmq



Quark mass effects in the 1 — 2 splitting.

One heavy flavour.

Consider now the initialization of a splitting DPD with one heavy flavour (where < 1 and 8 > 1):

1t

Fop = Var, ® fu,

F

‘
‘
‘
‘
‘
1
| P, =Vo® far
‘
‘
‘
‘
‘
‘
‘

|
|

I

|

|

|

I

|

)

{

I

I

|

— A2 |
Foy, = Ag %FM, i
mqQ f——— |
|

|

|

I

|

|

|

I

|

|

|

I

|

|

|

I

> Below p1y = amg the np 4+ 1 DPD is
obtained by flavour matching.

Fup =Var @ fur

4 4

=
Il
<k

amg meq Bmq



Quark mass effects in the 1 — 2 splitting.

One heavy flavour.

Consider now the initialization of a splitting DPD with one heavy flavour (where < 1 and 8 > 1):
o

'F

=

Vo, ® f,

> For amg < puy < Bmg the DPD is
initialized for nr massless and one
massive flavours with a ng flavour PDF.

]
]
]
]
]
]
]
]
)
q
]
]
]
]
]

mqQ ———— !
]
]
]
]
]
]
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]
]
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]
]
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]

a3
Il
NE

amg meq Bmq



Quark mass effects in the 1 — 2 splitting.

One heavy flavour.

Consider now the initialization of a splitting DPD with one heavy flavour (where < 1 and 8 > 1):

m
P, = Vi, ® fuy,

3 Fu, =VQ ® far
> Above p,, = Bmg the DPD is initialized
for nr + 1 massless flavours with a
ng + 1 flavour PDF.

meg ———

Fup =Var @ fur

4

=
Il
<k

amg meq Bmq



Quark mass effects in the 1 — 2 splitting

One heavy flavour

Consider now the initialization of a splitting DPD with one heavy flavour (where o« < 1 and 8 > 1)

o
Fup = Vo, ®

3 Fop = Vo ® fur
Above 1, = fmg the DPD is initialized
for nr + 1 massless flavours with a

ng + 1 flavour PDF

meg ———

Fup =Var @ fur

4

e

Hy =
amq meq Bmq

What happens for charm and bottom which have to be treated as massive simultaneously



Quark mass effects in the 1 — 2 splitting.

Two heavy flavours: charm and bottom.

Consider now the initialization of a splitting DPD with massive ¢ and b quarks:

I

> Below p, = aomy, the DPD is initialized
for 3 massless and one heavy flavours
with a 3 flavour PDF.

my 1

M

Homin




Quark mass effects in the 1 — 2 splitting.

Two heavy flavours: charm and bottom.

Consider now the initialization of a splitting DPD with massive ¢ and b quarks:

I

) |
F :Agl@ZFA s =V ® f3)
my f——

obtained by flavour matching.

M

Homin

> Below p,, = amy, the 5 flavour DPD is




Quark mass effects in the 1 — 2 splitting.

Two heavy flavours: charm and bottom.

Consider now the initialization of a splitting DPD with massive ¢ and b quarks:

I

Fs =V, @ fa

i ]
FszAgf@_zFA :FS:Vcb®f3:
my —————— |

> For amy < py < Bm. the DPD is

flavours with a 3 flavour PDF.

M

Homin

amy mp Bmy

initialized for 3 massless and two massive



Quark mass effects in the 1 — 2 splitting.

Two heavy flavours: charm and bottom.

Consider now the initialization of a splitting DPD with massive ¢ and b quarks:

> For Bm. < py < Bmy the DPD is
initialized for 4 massless and one massive
flavours with a 4 flavour PDF.

my 1

M

Homin




Quark mass effects in the 1 — 2 splitting.

Two heavy flavours: charm and bottom.

Consider now the initialization of a splitting DPD with massive ¢ and b quarks:

I

> Above p, = S my the DPD is initialized
for 5 massless flavours with a 5 flavour
PDF.

my 1

M

Homin




Quark mass effects in the 1 — 2 splitting.

Two heavy flavours: charm and bottom.

Consider now the initialization of a splitting DPD with massive ¢ and b quarks:

I

> Above p, = S my the DPD is initialized
for 5 massless flavours with a 5 flavour
PDF.

my 1

M

Hmin

b
Hy =7

amy mp Bmy

Let's see how the DPDs look like in this scheme!



Quark mass effects in the 1 — 2 splitting.

DPDs in the massive scheme.

Consider now np = 5 LO splitting DPDs at 111 = po = maijer = 25 GeV for dijet production, initialized
with the scheme shown in the previous slide (for different o and 3):

Fy(z1 = 12 = maijer/ V'3, Yy Maier)

amy, fm, LBy
— massive
106.
-- massless
& sl > DPDs still discontinuous,
=~ 10 .
CB but greatly improved
T2 compared to the massless
10 scheme!
10% .
0.5 1 5 10

ty = bo/y [GeV]



Quark mass effects in the 1 — 2 splitting.

DPDs in the massive scheme.

Consider now np = 5 LO splitting DPDs at 111 = po = maijer = 25 GeV for dijet production, initialized
with the scheme shown in the previous slide (for different o and 3):

Fy(z1 = 12 = maijer/ V'3, Yy Maier)

amy
— massive
106.
-- massless
& sl > DPDs still discontinuous,
=~ 10 .
CB but greatly improved
TS compared to the massless
10 scheme!
103.
0.5 1 5 10

ty = bo/y [GeV]



Quark mass effects in the 1 — 2 splitting.

DPDs in the massive scheme.

Consider now np = 5 LO splitting DPDs at 111 = po = maijer = 25 GeV for dijet production, initialized
with the scheme shown in the previous slide (for different o and 3):

Fqb(xl =T = mdij(‘f/\/ga Y, m(lij(zt)

amy, Bm, Bmy,

— massive

-- massless 5 > Increased discontinuity for

10% a 1 gb at p, = amy, due to

1 direct production of bb DPD!

> Increased discontinuity for
gb at u, = pmy due to
more production modes in

10% 1 the massless case!

Fg [GCVQ]

R~
I
=
I

0.5 1 5 10
11y = by [GeV]



Quark mass effects in the 1 — 2 splitting.

DPDs in the massive scheme.

Consider now np = 5 LO splitting DPDs at 111 = po = maijer = 25 GeV for dijet production, initialized
with the scheme shown in the previous slide (for different o and 3):

Fqb(xl =T = mdij(‘f/\/ga Y, m(lij(zt)

amy Bm, Bmy,

— massive .

- Inass > Increased discontinuity for
__10% gb at ju, = amy due to
C\'>Q direct production of bb DPD!
O > Increased discontinuity for
L{%— gb at p,, = Bmy, due to

) more production modes in
10% 1 the massless case!
L—_p=14
0.5 1 5 10

ty = bo/y [GeV]



Quark mass effects in the 1 — 2 splitting.

DPDs in the massive scheme.

Consider now np = 5 LO splitting DPDs at 111 = po = maijer = 25 GeV for dijet production, initialized
with the scheme shown in the previous slide (for different o and 3):

Fqb(xl = T2 = mdij(‘,f/\/ga Y, mdij(zt)

amy Bm, Bmy,
— massive .
/‘;\
- mass
105¢ > Smallest discontinuities for
“‘% B=2and a =1
O, > Seen also in other DPDs and
Lr:%' at different scales, cf.
backup slides.
104.
L_pg=14
0.5 1 5 10

ty = bo/y [GeV]



Quark mass effects in the 1 — 2 splitting

DPD luminosities

In order to study the effect of heavy quarks on DPS cross sections, consider DPD luminosities, i.e.
products of DPDs integrated over y

) _ 2 . )
Laiasbibs (T1a; Taa, T1b, Tap; V, i1, 2) = / d*Y Fuyas (T1as T2a, Us 1, 12) Fo b, (10, T2b, Y5 o1, 112)
b(]/l/

where the lower cut-off regulates the y~* splitting singularity

Here we include also “intrinsic” non-splitting contributions to the DPDs, modelled as

2
. 1—x 71‘2)2 exXp (74ha a )
F1nt . — ( 1a2
a1a2($173327y7,u1,ﬂ2) (1 — .T1)2(1 — $2)2 47rha1a2 fa1 (xlvlul) fa2(z2nu2)

In the following all possible combinations containing splitting DPDs are considered



Quark mass effects in the 1 — 2 splitting

DPD luminosities

In order to study the effect of heavy quarks on DPS cross sections, consider DPD luminosities, i.e.
products of DPDs integrated over y

) _ 2 . )
Layasbibs (T1a, T2as T1b, Tap; Vs i1, o) = /dyFalaQ(mlaaan;ya/1417/12)Fb1b2(x1b7x2b7y7,ulnu’Q)
bQ/V

4

where the lower cut-off regulates the y~* splitting singularity

Here we include also “intrinsic” non-splitting contributions to the DPDs, modelled as

__ )
(1 — L1 — 372)2 xp ( 4hajay
1 —1'1)2(1 —1’2)2 4’/Tha1a2

EX (w1, @2,y; 1, o) = ( far (1, 1) fay (22, p12)

split x split (1v1), split x int (1v2), int x split (2v1)



Quark mass effects in the 1 — 2 splitting.

DPD luminosities in the massive scheme.

Consider now ratios of LO DPD luminosities for dijet production with different scheme parameters:

Y

ey =1/2 y=1 -—y=2
— A= —p=3 —h=1 Jets at rapidities Y and —Y:
vl
ebb
“ £1g = Mdijet exp(Y)
=
=B m\/?
£ 09 o Toa = \j”;t exp(—Y)
\\\ \\\\~‘_ Mais
08 T1p = \j”;t exp(—Y)
07 T Maijet
06 ratios wr.t. o =1, 8 =2 T2b 5 exp(Y)
0 1 2 4



Quark mass effects in the 1 — 2 splitting.

DPD luminosities in the massive scheme.
Consider now ratios of LO DPD luminosities for dijet production with different scheme parameters:

ey =1/2 y=1 -—y=2
A= —p=3 —h=4 Jets at rapidities Y and —Y:
1.1 1v2
______________________ ‘Cc;bg ma
T ijet
1.0 === ; Tiq = exp(Y)
o T T Vs
S0l T T e Mdijet
090 - Tq = ——— exp(—Y
— 2a \/g p( )
0.8 Mdijet
T1p = exp(—Y
1b NG p(=Y)
0.7 Mijet
0 ratios wr.t. o =1, 8 =2 T2b = Vs exp(Y)
0 1 2 3 4



Quark mass effects in the 1 — 2 splitting.

DPD luminosities in the massive scheme.
Consider now ratios of LO DPD luminosities for dijet production with different scheme parameters:

Jets at rapidities Y and —Y:

3

T1q = \‘jjgt exp(Y)
2 ..
E P20 = = exp(=Y)
Mdijet
T1p = exp(—Y
1b NG p( )
Top = Mdiget exp(Y)

S




Quark mass effects in the 1 — 2 splitting.

DPD luminosities in the massive scheme.
Consider now ratios of LO DPD luminosities for dijet production with different scheme parameters:

ey =1/2 y=1 -—y=2
—p= —p=3 —p=4 Jets at rapidities Y and —Y:
1.1pemmmmms 2v1
N N ‘Cc;bg ma
N ijet
1.0 - Tla = exp(Y)
O s
2 Mdijet
£ 0.9 9q = — 2 exp(=Y
< 2a \/g p( )
0.8 Mdijet
T1p = exp(—Y
1b NG p( )
0.7 Mdijet
o 6"'1"55105 w.rt. o= }1,,3 =2 o= Vs e (¥)
"0 1 2 3 4
Y

—— Smaller dependence of luminosities on « and 3 compared to ~!



Quark mass effects in the 1 — 2 splitting.

DPD luminosities in the massive scheme: Scale dependence.

Finally consider the dependence of DPD luminosities involving LO splitting DPDs on the scale fispiit
(varied by a factor of 2):

1010
EchB

10% 3

10% 3 » Note that the 1vl
= N luminosities contain the
Qu 107k : . squared uncertainties of

the splitting DPDs!
106_
10% — 1vl — 1v2 + 2vl ]

0 1 2 3 4
Y



Quark mass effects in the 1 — 2 splitting.

DPD luminosities in the massive scheme: Scale dependence.

Finally consider the dependence of DPD luminosities involving LO splitting DPDs on the scale jigpiit
(varied by a factor of 2):

> Note that the 1vl
luminosities contain the
squared uncertainties of
the splitting DPDs!

— 1vl — 1v2 4+ 2vl

0 1 2 3 4
Y



Quark mass effects in the 1 — 2 splitting.

DPD luminosities in the massive scheme: Scale dependence.

Finally consider the dependence of DPD luminosities involving LO splitting DPDs on the scale fispiit
(varied by a factor of 2):

> Large scale uncertainties
hint at importance of
higher order splitting!

— 1vl — 1v2 4+ 2vl

0 1 2 3 4
Y



Quark mass effects in the 1 — 2 splitting.

DPD luminosities in the massive scheme: Scale dependence.

Finally consider the dependence of DPD luminosities involving LO splitting DPDs on the scale fispiit
(varied by a factor of 2):

11} i
10 S Lyebg
ok i > Massless NLO kernels
=10
S already calculated!
D
L \ [Diehl, Gaunt, PP, Schifer, 2019;
Diehl, Gaunt, PP, 2021]
10% 5

— 1vl — 1v2 4+ 2vl

0 1 2 3 4
Y




Quark mass effects in the 1 — 2 splitting.

DPD luminosities in the massive scheme: Scale dependence.

Finally consider the dependence of DPD luminosities involving LO splitting DPDs on the scale fispiit
(varied by a factor of 2):

1011

» Massive NLO kernels still
\ ‘ unknown!

— 1vl — 1v2 4+ 2vl

0 1 2 3 4
Y




Quark mass effects in the 1 — 2 splitting

Constraints for the massive NLO kernels

For now a full calculation of the massive NLO kernels is out of reach for us (involves massive two-loop
diagrams)

construct approximate solutions
To this end make use of the following constraints
RGE dependence of the massive kernels

Small and large distance limits of the massive kernels

DPD number and momentum sum rules

The limiting behaviour and RGE dependence are uniquely fixed by these constraints, while the DPD
sum rules constrain also intermediate inter parton distances



Quark mass effects in the 1 — 2 splitting.

RGE dependence of the massive NLO kernels.

The RGE dependence of the massive NLO kernels is completely fixed by LO perturbative ingredients:

Scale dependence of the massive NLO kernels

d 9 nr+1(0) Q1) np+1(0) Q(1)
dlog p? Vi = Z Pab, D Voraz,ao T Z L ® Vaibaao
QM) © ﬂo 1
Z V0«1<127b0 brgzo Va?t(lz),ao
- Ugﬁl,z}?ﬂs)E

where the V@) are the massive LO kernels and the P"F are the LO DGLAP kernels.



Quark mass effects in the 1 — 2 splitting.

Limiting behaviour of the massive NLO kernels.

For small and large interparton distances the massive kernels can be expressed in terms of convolutions
of massless kernels and flavour matching kernels:

Small distance limit

aiaz,ao apl "araz,ap aiaz,by boag

y@nr(2) y_—>? snF e ) +ZVnF+1(1) ®AQ(1)
b 12
0

Large distance limit

a1by biaz,ao azbo a1bz,a0 ajaz,a0 °

V3D VI Ve 4 Y A% o v, L + Y A o v, + A2V VY
bl b2



Quark mass effects in the 1 — 2 splitting.

Sum rules for the massive NLO kernels.

The Gaunt-Stirling DPD sum rules can be used to derive sum rules for the massive kernels:

Momentum sum rule
Yo o Q. (2 Q@2
3 / X, / a2y Vrr® = (1 - X) AS®)
Yp

a1a2,a0

+ 3 [ % (U282, r0) - UL D 05)] + 4D 3 [ X2 U, 1 2)

a2 9 a2 9

Q(l (1) (1) Q1)
+ a1b1 </X Ub1a2 ao ) (/X2 Ua1a2 bo )> <XAboa0)
b1,a2 az,bo



Quark mass effects in the 1 — 2 splitting.

Sum rules for the massive NLO kernels.

The Gaunt-Stirling DPD sum rules can be used to derive sum rules for the massive kernels:

Number sum rule

Yo
// d2 7ry Vacfazf’(fo (5a1&2 —Oaray — 50260 + 5ﬂ2¢10) Aan(go
Yp

+ [ [V o) - VB )] + 4D [T, o)
2 2

Q(l) (1) (1) Q(1)
+ a1b1 </Ub1a2vya0 ) o Z (/anzmbo Oﬁﬂ)) ®Aboao
2 2



Quark mass effects in the 1 — 2 splitting.

Ansatz for the massive NLO kernels.

The following ansatz fulfils the RGE and limiting behaviour constraints:

2
m

V2ne® = yrel20  yne2iog —2 4 koo(yme) vifa) u (21, 22)
5

aiaz,aq aiyaz,ap aiaz,ao ajaz,ap
Y

aiaz,aq aiaz,ao ai1az,aq

+ k‘u(me) (VnF+1[270] — V"F[Qvo]) _ k02(me) (VnF-t,-l[Z,l] _ ynrl21]

2
K~ g RGE
+10g 2 valFag,aQ (21722)’
mq

where

k}ij (w) = ’U)QKZ‘(U})KJ‘ (w) .

» Sum rules can be used to constrain vgfdz{aol

aiaz,ag

)
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Summary.



Summary

Why DPS is interesting

Contributes background to the search for new physics
Relative importance of DPS increases with collision energy (relevant for possible FCC)

DPS gives access to information about correlation between partons inside hadrons
A framework for DPS

Factorization proof for double Drell-Yan
Diehl, Ostermeier, and Schéafer, 2011; Diehl, Gaunt, Ostermeier, PI6Bl, and Schéafer, 2015; Diehl and Nagar, 2019

Subtraction formalism for a consistent combination of DPS and SPS cross sections
Diehl, Gaunt, and Schonwald, 2017

Properties of DPDs

Definition in terms of proton matrix elements of a product of twist-2 operators
Rapidity dependence governed by CS-equation (consequence of rapidity subtraction)

Renormalisation scale dependence governed by double DGLAP equation



Summary

For small interparton distances DPDs can be matched onto PDFs with perturbative 1 — 2 splitting
kernels, yielding a valuable constraint for the largely unknown DPDs
NLO calculation of the 1 — 2 splitting kernels Diehl, Gaunt, PIBI, and Schfer, 2019; Diehl, Gaunt, and PI&BI, 2021
Calculated the unpolarised NLO small y splitting kernels Rﬂzv}ﬁiwo for all parton and colour
channels
Used different rapidity regulator schemes, providing a strong cross check
First application of the Collins regulator in a two loop calculation

NLO 1 — 2 splitting kernels make it possible to construct NLO DPD models and extend the SPS-DPS
subtraction formalism to NLO

Treatment of massive quarks in the small distance splitting Diehl, Nagar, and PI&BI, 2022

Heavy quark decouples for pgspiie << mg
Heavy quark treated as massive for pspiic ~ mg
Heavy quark treated as massless for pigp1is > mg

Including quark mass effects leads to DPDs with smaller discontinuities and stabilizes DPD luminosities
compared to the purely massless case



Summary.

For small interparton distances DPDs can be matched onto PDFs with perturbatlve IRtlng
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NLO calculation of the 1 — 2 splitting kernels: [Diehl, Gaunt, PI&BI, and Schifeg Gaunt and PI&BI, 2021]
> Calculated the unpolarised NLO small y splitting kernels RlRZ Xﬁ or aII parton and colour
channels.
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> First application of the Collins regulator in a alculatlon
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Treatment of massive quark mall distance splitting: [Diehl, Nagar, and PI&BI, 2022]
» Heavy quark decoup 3 Psplit <K M@
> Heavy qu massive for figpiic ~ MQ.

reated as massless for figplis > mq.
Incl ngauark mass effects leads to DPDs with smaller discontinuities and stabilizes DPD luminosities
compared to the purely massless case!



Part VI

Backup.



1 — 2 splitting kernels at NLO

Rescaling of the rapidity parameter

The rapidity parameters ¢, and (5 in this work are normalised as

Gl = (2p+;5_)2 = 527

which differs from the convention in the TMD case

where the rapidity parameters are normalized w.r.t. the extracted parton, which would be awkward in
the DPD case where parton momenta often appear in convolution integrals.

need to rescale the rapidity parameter in renormalisation factors and evolution kernels

reason: can only depend on the plus-momentum z;p* of the parton to which they refer



Quark mass effects in the 1 — 2 splitting.

F,: massless vs. massive scheme

> Only contributes in the > Contributes in the massive > Contributes in the massive
massless scheme. and massless schemes. and massless schemes.

» DPD produced by direct > DPD only produced by > DPD only produced by
splitting, no evolution evolution. evolution.
necessary.

» Contributions (b) and (c¢) vanish when the splitting scale is identical to the target scale!



Quark mass effects in the 1 — 2 splitting.

Fy

»: massless vs. massive scheme

ng [Ge\/z]

Fy(x1 = 2 = Maijet/ V'S, Yy Maijet)
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— massi
-- mass
105_
104_
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Quark mass effects in the 1 — 2 splitting.

Scale dependence of splitting DPDs: in depth.

In order to understand the pusp1c dependence of LO DPD luminosities involving g¢ DPDs consider the

scale variation of the involved DPDs (z1 = % expY, xo = ”% exp—Y):

Central rapidity (Y = 0):

amy,  Bm, Bmy

100k

105.—

10%

103k //

10%

'8 101// ~ Msplit = /L(y) |

[CeV?]

K

109 = Hsplit = 2 u(y)
1071
10-2 = Hsplit = ,u(y)/Q |
0.5 1 5 10 50 100

My = bo/y [Ge\/]




Quark mass effects in the 1 — 2 splitting.

Scale dependence of splitting DPDs: in depth.

In order to understand the pusp1c dependence of LO DPD luminosities involving g¢ DPDs consider the
scale variation of the involved DPDs (z; = ™¥ expY, 20 = ™% exp —Y):

Vs Vs
Central rapidity (Y = 0), only g — ¢q splitting:
am,  pm, By,
10¢
105F
10% )l » Contribution from g — gg and
0; 3 q — qg, gq splitting and
g 107 evolution negligible for central
% 10% rapidity (z1 = x2).
LL(Q 10 = Hsplit = lu“(y) ] o
0 - = 2uly) » Only scale variation from initial
10 / Hsplic = 2 Y gluon PDF.
10_1/
~ = Hsplit = ,U(y)/2
10 2 ) ) ) ) ) 4
0.5 1 5 10 50 100

py = bo/y [GeV]



Quark mass effects in the 1 — 2 splitting.

Scale dependence of splitting DPDs: in depth.

In order to understand the pusp1c dependence of LO DPD luminosities involving g¢ DPDs consider the

scale variation of the involved DPDs (z1 = % expY, xo = ”% exp—Y):

Non-central rapidity (Y = 3):
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Quark mass effects in the 1 — 2 splitting.

Scale dependence of splitting DPDs: in depth.

In order to understand the pusp1c dependence of LO DPD luminosities involving g¢ DPDs consider the

scale variation of the involved DPDs (z1 = mTV;’ expY, xo = MTV; exp—Y):

Non-central rapidity (Y = 3), only g — ¢q splitting:

amy,  Bm, Bmy

10% .
10% > Sizeable contribution from

g — g9 and ¢ = q9,99
splitting and evolution for

10 non-central rapidity (z1 < z2).
4 = Hplit = £4(y) . L
1077 In addition to scale variation

10—2% - Msplit = Q,M(y) from initial gluon PDF also
5 1

—
o
=~
o

E,; [GeV?

v

uncertainties from evolution.
= split = H(Y)/2

5 10 50 100
My = bo/y [Ge\/]



Quark mass effects in the 1 — 2 splitting.

DPD luminosities in the massive scheme: Matching scale dependence.

Finally consider the dependence of LO DPD luminosities for dijet production on the flavour matching
scales (at LO, varied by a factor of 2):

1010
10°
Lia = mT‘;/ eXp(Y)
3L
= 10 T2a = mTZeXP(_Y)
= 107k Ty = mTV;exp(—Y)
mw
106 Tab = % exp(Y')
— 1vl — 1Iv2 + 2vl — 2v2

0 1 2 3 4

Compared with the dependence on ﬂsgﬁt the scale uncertainty associated with flavour matching is small!



Quark mass effects in the 1 — 2 splitting.

DPD luminosities in the massive scheme: Matching scale dependence.

Finally consider the dependence of LO DPD luminosities for dijet production on the flavour matching
scales (at LO, varied by a factor of 2):

Tig = mTVZ exp(Y')

Toq = mTV;' exp(—Y)

T1p = mTV;’ exp(—Y)

oy = mTVSV exp(Y)
— vl — W2+ 2vl — 2v2

0 1 2 3 4

Compared with the dependence on usgﬁt the scale uncertainty associated with flavour matching is small!



Quark mass effects in the 1 — 2 splitting.
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