Λ_c rapidity distributions and "beam drag"

Christian Bierlich, christian.bierlich@hep.lu.se Lund University Dec 12 2022, HONEXcomb meeting

Question: How come default CR produce weird tails?

- Here normalized rapidity distribution for $\Lambda_c + \overline{\Lambda_c}$ in pp 7 TeV.
- QCD-CR seems more reasonable than normal string.

Beam drag effects

- Colour flow connects hard scattering to beam remnants.
- Effect known since SPS days (WA82: PLB 305, 4 (1993)).

• Fixed target
$$\pi^- p$$
,
 $x_F = p_L^* / p_{L,max}^*$, * = in CM.

Easiest control: $c-\bar{c}$ asymmetry?

- Can explain effect: Beam drag still present in QCD–CR, but overwhelmed but large amount of junction produced Λ_c.
- No effect for $\bar{\Lambda}_c$, and effect vanishes at higher p_{\perp} .

Easiest control: $c-\bar{c}$ asymmetry?

- Can explain effect: Beam drag still present in QCD–CR, but overwhelmed but large amount of junction produced Λ_c.
- No effect for $\bar{\Lambda}_c$, and effect vanishes at higher p_{\perp} .

Contrast to $\Lambda_b - \overline{\Lambda}_b$ (LHCb: 2107.09593)

• LHCb measured asymmetry in B sector:

$$A(y), A(p_{\perp}) = \frac{\sigma(\Lambda_b^0) - \sigma(\bar{\Lambda}_b^0)}{\sigma(\Lambda_b^0 + \sigma(\bar{\Lambda}_b^0))}$$

• Default string: large asymmetry at large y & small p_{\perp} .

- QCD-CR better for same reasons, effect not gone.
- Potential for a dedicted measurement for Λ_c ?