Generative Models for the ultra-fast simulation of the LHCb experiment

Lucio Anderlini

Istituto Nazionale di Fisica Nucleare – Sezione di Firenze

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

The LHCb experiment and its upgrades

The **Upgrade I** of the LHCb experiment is currently in commissioning. What's new?

- replacement of readout electronics
- new full software trigger system

The new detector will be able to collect datasets at least **one order of magnitude larger** thanks to an increased instantaneous luminosity (x5) and a more performant selection algorithm (x2).

fully software trigger system

x 5 instantaneous luminosity

> x 2 selection efficiency

> > **x 10** data sample size

Simulating the LHCb experiment

Detailed

Centralized MC productions. Interactions of particles with detector material is simulated with Geant4, and converted into *hits*.

Same trigger & reconstruction algorithms are used as for real data.

Fast Simulation

Replace parts of the simulation with models, e.g.

 $underlying event \rightarrow ReDecay$ [Eur. Phys. J. C 78 (2018) 1009] $calorimeter deposits \rightarrow CaloGAN$ [arXiv:1812.01319]

Detailed/Fast Simulation

April 2023

* Gauss is the LHCb simulation framework based on Gaudi [J. Phys. Conf. Ser. 331 032023]

MLHEP 2023 – Erice (TP), Italy

Machine Learning in Fast Simulation

Machine Learning models are studied to replace the Geant4 simulation phase as in most other experiments [<u>Chekalina</u> (2018), Khattak (2021)].

With these models the reconstruction step is the same as for real data (and detailed simulation).

* Gauss is the LHCb simulation framework based on Gaudi [J. Phys. Conf. Ser. 331 032023]

April 2023

How does LHCb simulate events?

What should we parametrize first?

10⁴ MC datasets generated with 2016 nominal conditions

Most simulated decay modes are heavy hadron decays.

The detector will provide very similar *"response"* to, *e.g.*, a *kaon* from either a B^+ or a B_c^+ .

We could save a lot of computing resources by parametrizing the **detector response** to that *kaon* and applying it to whatever decay model.

Or, with Parametric Simulation.

Analyses involving h^{\pm} and μ^{\pm} , only, often drop simulated raw detector information immediately.

Lamarr: a pipeline of parameterizations embedded in Gauss

Lamarr is a pipeline of **modular parametrizations**, integrated with the LHCb analysis framework:

- compatibility of the same,
 LHCb-tuned, generators
- compatibility with the distributed computing middleware (LHCbDirac) and production environment
- producing datasets with same persistency format

The models

Machine Learning parametrizations: two families

Efficiencies

Gradient Boosted Decision Trees (GBDTs) trained on simulated data with *Binary* or *Categorical Cross Entropy* to predict the fraction of "good*" candidates, *i.e.* the "efficiency" of a specific step as a function of generator-level quantities.

- GBDTs are robust and easy to train
- Almost no preprocessing is needed

* either "accepted", "reconstructed", "selected"... depending on the context

Reconstructed quantities

Conditional **Generative Adversarial Networks** trained on either simulated or calibration data.

Various GAN flavours adopted for different parameterizations balancing between accuracy and robustness.

Training is performed on **opportunistic GPU resources** provided to the Collaboration.

Geometrical acceptance

- model : Gradient Boosted Decision Tree
- **loss** : Binary Cross Entropy
- input : position and slope of tracks
- output : in acceptance [True, False]

Training performed on **Detailed Simulation**

The GBDT model well-reproduces the Detailed Simulation distribution of the generated tracks weighting by the **probability** of being in acceptance.

Tracking efficiency

- model : Gradient Boosted Decision Tree
- 1055 : Multi-class Cross Entropy
- input : position and slope of tracks
- output : track classification as [long , upstream , downstream , non-reconstructed]

Training performed on **Detailed Simulation**

The good performance of the GBDT model well-reproduces the **complex structure of shadows** describing the efficiency losses due to the non-trivial material sub-structure of the LHCb detector.

Generative Deep Neural Networks

Random numbers (with the right *pdf*)

Generative Adversarial Networks (GANs) and **Normalizing Flows** (NFs) are emerging as go-to solutions for building parametrizations for fast simulations.

Lucio Anderlini (INFN Firenze)

Tracking resolution

model : Generative Adversarial Networks

- **loss** : Binary Cross Entropy
- input : position, slope and momentum of tracks
- output : reconstructed tracks information

Training performed on **Detailed Simulation**

The x-projection of the Impact Parameter of tracks originated from the Primary Vertex is well-reproduced by the GAN-based model even if **neither the transverse momentum nor the phi angle are used for training**.

Training Particle Identification on real data

To overcome the typical issues of GANs training, the parameterization of the LHCb Particle Identification system rely on CramerGAN: a stable, reliable and powerful GAN algorithm.

PID models are trained using **Calibration Samples**

Need for removing the **residual background**

- The CramerGANs are used to define **robust base models**, parameterizing both the signal and background components within the Calibration Samples
- The base models are then **fine-tuned** driven by either the Binary Cross Entropy or the Wasserstein distance as loss function
- The fine-tuning strategies are modified to statistically subtract the background component [JINST 14 (2019) P08020]

PID Models Training Repo

github.com/mbarbetti/lb-pidsim-train

Training Particle Identification models on real data

Calibration datasets are obtained selecting special **decay modes** (enabling Particle Identification with *tag&probe* techniques) with **special trigger lines** explicitly avoiding biases on the probe.

Background is then subtracted with sPlot technique.

Modification to the loss to ignore the background

The loss function of the Discriminator is then simply modified to statistically subtract the background contribution.

For example for the binary cross-entropy,

$$\mathcal{L} = -\sum_{i} {}_{s} \mathcal{W}_{i} \Big[y_{i} \log(\hat{y}_{i}) + (1 - y_{i}) \log(1 - \hat{y}_{i}) \Big]$$

Techniques to stabilize the GAN training when using negative weights were studied in more detail in [Borisyaka (2019)]

Muon detector: *muon-proton separation*

[LHCb-FIGURE-2022-004]

model	:	Generative Adversarial Networks
loss	:	Energy distance (baseline) + BCE / Wasserstein distance (tuning)
input	:	track kinematic parameters and detector occupancy
output	:	high-level response of the Muon detector
Tro	nin	ing performed on Calibration Samples

2 neural networks trained in adversarial configuration are used to parameterize the high-level response of the Muon detector for muon and proton tracks.

Rich detector: kaon-pion separation

[LHCb-FIGURE-2022-004]

model	: Generative Adversarial Networks
loss	: Energy distance (baseline) + BCE / Wasserstein distance (tuning)
input	: track kinematic parameters and detector occupancy
output	: high-level response of the Rich detector
Trai	ning performed on Calibration Samples

2 neural networks trained in adversarial configuration are used to parameterize the high-level response of the Rich detector for kaon and pion tracks.

Loose Binary Muon Identification Criterion: isMuon

isMuon criterion [JINST 8 (2013) P10020]

- model : Gradient Boosted Decision Tree
- **loss** : Binary Cross Entropy
- input : track kinematic parameters and detector occupancy
- output : isMuon passed [True , False]

Training performed on **Calibration Samples**

The **residual background** of Calibration Samples is subtracted when training the GBDT. The model well-reproduces the behaviour of the **isMuon criterion** on data.

PID system: *stacking generative models*

- The kinematic parameters of the tracks and the detector occupancy information aren't enough to correctly parameterize the **Global PID variables**.
- Training a new set of neural networks fed by the **high-level response** of the Rich and Muon detectors allows to parameterize the Global PID variables that can be retrieved in the *inference* phase through a **stack of GANs**.
- The stack of GANs provides the **higher-level response** of the PID system.

Global PID: *kaon-pion separation*

[[]LHCb-FIGURE-2022-004]

mode1 : Generative Adversarial Networks

- loss : Energy distance (baseline) + BCE / Wasserstein distance (tuning)
- input : track kinematic parameters , detector occupancy , isMuon , high-level response of the Rich detector , high-level response of the Muon detector

output : Global PID variables

Training performed on Calibration Samples

2 neural networks trained in adversarial configuration are used to parameterize a global PID variable named ProbNN for kaon and pion tracks.

Global PID: *kaon-pion separation*

[[]LHCb-FIGURE-2022-004]

mode1 : Generative Adversarial Networks

- loss : Energy distance (baseline) + BCE / Wasserstein distance (tuning)
- input : track kinematic parameters , detector occupancy , isMuon , high-level response of the Rich detector , high-level response of the Muon detector

output : Global PID variables

Training performed on Calibration Samples

2 neural networks trained in adversarial configuration are used to parameterize a global PID variable named ProbNN for kaon and pion tracks.

Global Particle Identification: *muon-proton separation*

[[]LHCb-FIGURE-2022-004]

model : Generative Adversarial Networks

- loss : Energy distance (baseline) + BCE / Wasserstein distance (tuning)
- input : track kinematic parameters , detector occupancy , isMuon , high-level response of the Rich detector , high-level response of the Muon detector

output : Global PID variables

Training performed on Calibration Samples

4 neural networks trained in adversarial configuration are used to parameterize various global PID variables shown together in the **Combined Differential Log-Likelihood** for muon versus proton hypothesis.

Distributed HPO

Distributed Hyper Parameter Optimization

Training GANs benefits from massive hyperparameter optimization campaigns.

To enable using opportunistic resources we need a **centralized service for managing HPO campaigns**, independent of the resource provider.

Web-based service hosted by INFN Cloud accessed through REST APIs

Referee network and dashboard

We use a **referee network**, architecturally equivalent to the discriminator, but evolving independently and **never used to inform the generator**, only for HPO.

Effects of the HPO on PID efficiencies

HPO is observed to be particularly beneficial to improve modeling on the tails of the condition distributions.

April 2023

Deployment in HEP C++ applications

Deploying trained models in Gauss

Using trained ML models in C++ applications is wider and more general issue.

Several options for deployment exist, but come with some practical limitation. For example,

- > Require **external dependencies** sometimes difficult to integrate in the build system of large HEP applications
- > Expect vectorized inputs introducing **overhead for branched flows**, as for example Geant4-based simulations
- > Introduce limits in the interplay between the **preprocessing** and **algorithmic** steps
- ➢ Often require compiling with the framework large part of the algorithm.

Choosing a DNN framework to rely on

Frameworks and standards to define and deploy DNN in C++ applications have change a lot during the last years.

Choosing one for an application we would like to keep using in production in O(10) years **would be a bet**.

Also, multithreading is used differently (and possibly inconsistently) by HEP frameworks and ML frameworks.

Transpiling approach: scikinC *and* keras2c

For a seamless integration of the trained parameterizations in the LHCb simulation framework models have to be applied to each single particle \rightarrow thousands of independent calls per event.

Even a small latency (*e.g. context switching*) wastes unacceptable amount of CPU resources.

We transpile our models in C and compile them to binaries, dynamically linked at runtime.

LHCb tool: scikinC [PoS(CompTools2021)034]

Possible partial migration to keras2c [J.Eng.App.Al, (2021) 104182]

Physics validation

Lamarr validation: $\Lambda_b^0 o \Lambda_c^+ \mu^- ar{ u}_\mu \quad$ with $\Lambda_c^+ o p K^- \pi^+$

- Abundant decay in LHCb, widely studied to measure, *e.g.*, beauty baryon production
 - e.g. see JHEP 10 (2021) 060, PHYS. REV. D100
 (2019) 032001, PHYS. REV. D96 (2017) 112005, ...
- It is part of the Particle Identification
 Calibration samples [EPJ TI 2019 6:1];
- It is described by a <u>complex decay model</u> including many feed-down modes;
- It provides examples for muons, pions, kaons and protons in a single decay mode.

The training of the models is based on a cocktail of heavy flavour decays, where $\Lambda_b^0 \to \Lambda_c^+ \mu^- X$ represents a negligible fraction.

Track smearing

The momentum and point of closest approach to the beams of the generated particles **get smeared**: a GAN predicts effects as *multiple scattering*, imperfections of alignment, calibration...

Reconstructed masses and **impact parameters** are then computed on the smeared quantities.

Tracking uncertainties

A GAN is used to predict the uncertainties associated to the track reconstruction.

Track uncertainties are crucial in LHCb to define the consistency of trajectories with vertices.

For example, the **impact parameter** χ^2 is a measure of inconsistency of a trajectory with a PV.

Lucio Anderlini (INFN Firenze)

Proton identification

Lamarr simulates the distribution of the detector response. Analysts often inject the detector response in some analysis-specific classifier.

Here, we define cuts to visualize the ability of the trained models to describe the **dependence of the detector response on occupancy and kinematics**.

One more word on timing

Comparing the normalized CPU spent for Geant4-based and Lamarr simulations of $\Lambda_b^0 \to \Lambda_c^+ \mu^- X$ decays we estimate a CPU reduction of 98.3 % for the *Simulation* phase.

Generation of *b*-baryons is exceptionally expensive: here Pythia 8 largely dominates the CPU consumption.

Generation of *b*-mesons requires 5% of less of the overall Simulation time.

Repeating the exercise **on minimum bias**, **CPU reduction exceeds 99%.**

Detailed simulation: Pythia8 + Geant4 1M events @ 2.5 kHS06.s/event ~ 80 HS06.y

Saving more with Particle Guns

Detector occupancy is parametrized: one can achieve similar performance by **only simulating the signal particles** (*i.e.* with *Particle Guns*).

Production spectra are generated once-for-all with Pythia8 and then sampled.

Conclusion and outlook

Technology Readiness Level & Limitations

- With the start of Run 3, developing **faster solutions** to produce simulated samples is of key importance.
- The Ultra-Fast Simulation at LHCb consists of **modular components** that can be used as single blocks within the Detailed Simulation or pipelined into a consistent **purely-parametric complete simulation**.
- A **stack of GANs** can be used to effectively parameterize the higher-level response of the PID system.
- Once trained, the models can be integrated within the LHCb simulation software as **shared objects** or easily replaced with new ones [details].

What's next?

- Models of the electromagnetic calorimeter (in progress)
 - shower libraries [EPJ Web Conf. 214 (2019) 02040] or Self-Attention GANs [EPJ Web Conf. 251 (2021) 03043] for the low-level response
 - a mixture of generative models and parametric functions for the high-level response
- Models for all current and future LHCb datasets

Conclusion

Private productions are currently run on the **WLCG** and could be made standard, centralized productions easily.

We are now **tuning models to compromise between accuracy and CPU performance**, focusing on 2016 datataking conditions. We plan to extend to 2015, 2017 and 2018 soon. Run1 support may come later.

Lamarr will never replace Detailed Simulation, but may provide soon a precious tool to design selection strategies, train multivariate classifiers, study kinematic-induced correlation effects in the analysis-level quantities, or in general when theoretical uncertainties on the decay model are large.

As of today, these use-cases are mostly covered with *Detailed Simulation*.

Acknowledgements

This work is partially supported by ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by European Union – NextGenerationEU.

Finanziato dall'Unione europea NextGenerationEU

Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing