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The Upgrade I of the LHCb experiment is 
currently in commissioning. What’s new?
● replacement of readout electronics 
● new full software trigger system

The new detector will be able to collect 
datasets at least one order of magnitude 
larger thanks to an increased 
instantaneous luminosity (x5) and a more 
performant selection algorithm (x2).

To match the increase of collected data, 
larger simulated samples and a strategy to 
speed-up their production is unavoidable.Detector paper 

[JINST 3 (2008) S08005]
Upgrade design 
[LHCb-TDR-12]

The LHCb experiment and its upgrades

2

https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08005
https://cds.cern.ch/record/1443882?ln=it
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Simulating the LHCb experiment

Detailed 

Centralized MC productions. Interactions of particles 

with detector material is simulated with Geant4, and 

converted into hits. 

Same trigger & reconstruction algorithms are used 

as for real data.

Fast Simulation
Replace parts of the simulation 

with models, e.g.

underlying event → ReDecay

calorimeter deposits → CaloGAN 

Pledged
Detailed Sim.

Fast Sim.
Analysis Reprocessing

LHCb-PUB-2022-011

3

[Eur. Phys. J. C 78 (2018) 1009]

[arXiv:1812.01319]

Detailed/Fast Simulation

Generator
e.g. Pythia8

Simulation
Geant4

Gauss*

Event
Reconstruction

Decay 
Reconstruction

Data processing

* Gauss is the LHCb simulation framework based on Gaudi [J. Phys. Conf. Ser. 331 032023]
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https://cds.cern.ch/record/2802075/files/LHCb-PUB-2022-011.pdf
https://arxiv.org/abs/1810.10362
https://arxiv.org/abs/1810.10362
https://iopscience.iop.org/article/10.1088/1742-6596/331/3/032023
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Machine Learning models 

are studied to replace the 

Geant4 simulation phase 

as in most other 

experiments [Chekalina 

(2018), Khattak (2021)].

With these models the 

reconstruction step is the same 

as for real data (and detailed 

simulation).

4

Machine Learning in Fast Simulation
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Detailed/Fast Simulation

Generator
e.g. Pythia8

Simulation
Geant4

Gauss*

Event
Reconstruction

Decay 
Reconstruction

Data processing

* Gauss is the LHCb simulation framework based on Gaudi [J. Phys. Conf. Ser. 331 032023]

https://arxiv.org/abs/1812.01319
https://arxiv.org/abs/1812.01319
https://arxiv.org/abs/2109.07388
https://iopscience.iop.org/article/10.1088/1742-6596/331/3/032023
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How does LHCb simulate events?

MC datasets generated with 
2016 nominal conditions104

Head of the decay tree

Most simulated decay modes 

are heavy hadron decays.

The detector will provide very 

similar “response” to, e.g., a 

kaon from either a B+ or a B
c
+.

We could save a lot of computing 

resources by parametrizing the 

detector response to that kaon 

and applying it to whatever decay 

model. 

Or, with Parametric Simulation.

What should we 
parametrize first?

5

Analyses involving h± and μ±, only, 
often drop simulated raw detector 

information immediately.
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Lamarr: a pipeline of parameterizations embedded in Gauss

Lamarr is a pipeline of modular 

parametrizations, integrated with 

the LHCb analysis framework: 

● compatibility of the same, 

LHCb-tuned, generators

● compatibility with the 

distributed computing 

middleware (LHCbDirac) and 

production environment

● producing datasets with 

same persistency format

6

Not in this talk

Ultra-fast Simulation

Generator
e.g. Pythia8

Simulation
Lamarr

Gauss

Decay 
Reconstruction
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The models

7
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Machine Learning parametrizations: two families

8

Efficiencies

Gradient Boosted Decision Trees (GBDTs) 
trained on simulated data with Binary or 
Categorical Cross Entropy to predict the 
fraction of “good*” candidates, i.e. the 
“efficiency”of a specific step as a function 
of generator-level quantities.

● GBDTs are robust and easy to train
● Almost no preprocessing is needed

Reconstructed quantities

Conditional Generative Adversarial 
Networks trained on either simulated or 
calibration data.

Various GAN flavours adopted for 
different parameterizations balancing 
between accuracy and robustness.

Training is performed on opportunistic 
GPU resources provided to the 
Collaboration.

* either “accepted”, “reconstructed”, “selected”...  
depending on the context
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github.com/landerlini/lb-trksim-train

     Tracking Models Training Repo

[LH
C

b-FIG
URE-2022-004]

model  : Gradient Boosted Decision Tree
loss   : Binary Cross Entropy

input  : position and slope of tracks

output : in acceptance [ True , False ]

Training performed on Detailed Simulation

The GBDT model well-reproduces the Detailed 
Simulation distribution of the generated tracks 
weighting by the probability of being in 
acceptance.

9

Geometrical acceptance

https://github.com/landerlini/lb-trksim-train
https://cds.cern.ch/record/2806749
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model  : Gradient Boosted Decision Tree
loss   : Multi-class Cross Entropy

input  : position and slope of tracks

output : track classification as [ long , upstream ,
         downstream , non-reconstructed ]

Training performed on Detailed Simulation

The good performance of the GBDT model 
well-reproduces the complex structure of shadows 
describing the efficiency losses due to the 
non-trivial material sub-structure of the LHCb 
detector.

Weighted with
GBDT probability
(as “long track”)

[LH
C

b-FIG
URE-2022-004]

10

Tracking efficiency

https://cds.cern.ch/record/2806749
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Generative Deep Neural Networks

Generative Adversarial Networks (GANs) and 

Normalizing Flows (NFs) are emerging as go-to solutions 

for building parametrizations for fast simulations.

DNN
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n
s Random 

numbers 
(with the 
right pdf)

Not in this talk



April 2023 MLHEP 2023 − Erice (TP), Italy

Generative Models for the Ultra-Fast Simulation at LHCb

Lucio Anderlini (INFN Firenze)

Smearing is most often treated by adding 

Gaussian-distributed noise.

Unfortunately, error distributions are not 

Gaussians and correlations between 

reconstruction errors are not trivial.

12

Tracking resolution modeling with a GAN

DNN
Generator-level 
particle features
(origin position, 

momentum coords)

Reconstruction 
errors on 

intercept and 
slopes
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[LH
C

b-FIG
URE-2022-004]

model  : Generative Adversarial Networks
loss   : Binary Cross Entropy

input  : position, slope and momentum of tracks

output : reconstructed tracks information

Training performed on Detailed Simulation

The x-projection of the Impact Parameter of tracks 
originated from the Primary Vertex is 
well-reproduced by the GAN-based model even if 
neither the transverse momentum nor the phi 
angle are used for training.

13

Tracking resolution

https://cds.cern.ch/record/2806749
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github.com/mbarbetti/lb-pidsim-train

PID  Models Training Repo

Calibration samples
[LHCb-PUB-2016-020]

To overcome the typical issues of GANs training, the parameterization of the LHCb Particle 
Identification system rely on CramerGAN: a stable, reliable and powerful GAN algorithm.

PID models are trained 
using Calibration Samples

Need for removing 
the residual background

● The CramerGANs are used to define robust base models, parameterizing both the 
signal and background components within the Calibration Samples

● The base models are then fine-tuned driven by either the Binary Cross Entropy or the 
Wasserstein distance as loss function

● The fine-tuning strategies are modified to statistically subtract the background 
component [JINST 14 (2019) P08020]

GAN issues
[arXiv:1701.04862]

CramerGAN
[arXiv:1705.10743]

14

Training Particle Identification on real data

https://github.com/mbarbetti/lb-pidsim-train
https://cds.cern.ch/record/2199780
https://iopscience.iop.org/article/10.1088/1748-0221/14/08/P08020
https://arxiv.org/abs/1701.04862
https://arxiv.org/abs/1705.10743
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Calibration datasets are obtained selecting special 

decay modes (enabling Particle Identification with 

tag&probe techniques) with special trigger lines 

explicitly avoiding biases on the probe.

Background is then subtracted with sPlot technique.

15

Training Particle Identification models on real data
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https://iopscience.iop.org/article/10.1088/1748-0221/14/08/P08020
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The loss function of the Discriminator is then simply modified to statistically subtract the 

background contribution.

For example for the binary cross-entropy,

16

Modification to the loss to ignore the background

Techniques to stabilize the GAN training when using negative weights were studied in 

more detail in [Borisyaka (2019)]

https://arxiv.org/pdf/1905.11719.pdf
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[LHCb-FIGURE-2022-004]

model  : Generative Adversarial Networks
loss   : Energy distance (baseline) + 
         BCE / Wasserstein distance (tuning)

input  : track kinematic parameters and
         detector occupancy

output : high-level response of the Muon detector

Training performed on Calibration Samples

2 neural networks trained in adversarial configuration 
are used to parameterize the high-level response of the 
Muon detector for muon and proton tracks.

17

Muon detector: muon-proton separation

https://cds.cern.ch/record/2806749
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[LHCb-FIGURE-2022-004]

model  : Generative Adversarial Networks
loss   : Energy distance (baseline) + 
         BCE / Wasserstein distance (tuning)

input  : track kinematic parameters and
         detector occupancy

output : high-level response of the Rich detector

Training performed on Calibration Samples

2 neural networks trained in adversarial configuration 
are used to parameterize the high-level response of the 
Rich detector for kaon and pion tracks.

18

Rich detector: kaon-pion separation

https://cds.cern.ch/record/2806749
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model  : Gradient Boosted Decision Tree
loss   : Binary Cross Entropy

input  : track kinematic parameters and
         detector occupancy

output : isMuon passed [ True , False ]

Training performed on Calibration Samples

The residual background of Calibration 
Samples is subtracted when training the GBDT. 
The model well-reproduces the behaviour of 
the isMuon criterion on data. 

[LH
C

b-FIG
URE-2022-004]

isMuon criterion
[JINST 8 (2013) P10020]

sWeighted +
weighted with

GBDT probability

sWeighted

19

Loose Binary Muon Identification Criterion: isMuon

https://cds.cern.ch/record/2806749
https://iopscience.iop.org/article/10.1088/1748-0221/8/10/P10020
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Rich detector
GAN-based model

Muon detector
GAN-based model

Global PID variables
GAN-based model

Kinematic parameters
generator + error models

Detector occupancy
look-up table

● The kinematic parameters of the tracks and the detector occupancy information aren't enough 
to correctly parameterize the Global PID variables.

● Training a new set of neural networks fed by the high-level response of the Rich and Muon 
detectors allows to parameterize the Global PID variables that can be retrieved in the inference 
phase through a stack of GANs.

● The stack of GANs provides the higher-level response of the PID system.

20

PID system: stacking generative models
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[LHCb-FIGURE-2022-004]

model  : Generative Adversarial Networks
loss   : Energy distance (baseline) + 
         BCE / Wasserstein distance (tuning)

input  : track kinematic parameters ,
         detector occupancy , isMuon ,
         high-level response of the Rich detector ,
         high-level response of the Muon detector

output : Global PID variables

Training performed on Calibration Samples

2 neural networks trained in adversarial configuration 
are used to parameterize a global PID variable named 
ProbNN for kaon and pion tracks.

21

Global PID: kaon-pion separation

https://cds.cern.ch/record/2806749
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[LHCb-FIGURE-2022-004]

model  : Generative Adversarial Networks
loss   : Energy distance (baseline) + 
         BCE / Wasserstein distance (tuning)

input  : track kinematic parameters ,
         detector occupancy , isMuon ,
         high-level response of the Rich detector ,
         high-level response of the Muon detector

output : Global PID variables

Training performed on Calibration Samples

2 neural networks trained in adversarial configuration 
are used to parameterize a global PID variable named 
ProbNN for kaon and pion tracks.

Imperfect 
background 
subtraction 

22

Global PID: kaon-pion separation

https://cds.cern.ch/record/2806749
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[LHCb-FIGURE-2022-004]

model  : Generative Adversarial Networks
loss   : Energy distance (baseline) + 
         BCE / Wasserstein distance (tuning)

input  : track kinematic parameters ,
         detector occupancy , isMuon ,
         high-level response of the Rich detector ,
         high-level response of the Muon detector

output : Global PID variables

Training performed on Calibration Samples

4 neural networks trained in adversarial configuration 
are used to parameterize various global PID variables 
shown together in the Combined Differential 
Log-Likelihood for muon versus proton hypothesis.

23

Global Particle Identification: muon-proton separation

https://cds.cern.ch/record/2806749
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Distributed HPO

24
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Training GANs benefits from 

massive hyperparameter 

optimization campaigns.

To enable using opportunistic 

resources we need a centralized 

service for managing HPO 

campaigns, independent of the 

resource provider.

25

Distributed Hyper Parameter Optimization

Web-based service hosted by INFN Cloud 
accessed through REST APIs 
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We use a referee network, architecturally equivalent to 

the discriminator, but evolving independently and 

never used to inform the generator, only for HPO.

26

Referee network and dashboard
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HPO is observed to be particularly beneficial to improve 

modeling on the tails of the condition distributions.

27

Effects of the HPO on PID efficiencies
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Deployment in HEP C++ applications

28
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Deploying trained models in Gauss

Using trained ML models in C++ applications is wider and more general issue.

Train in 
Python

Query in 
C/C++

Several options for deployment exist, but come with some practical limitation. 

For example,

➢ Require external dependencies sometimes difficult to integrate in the build system of large HEP applications

➢ Expect vectorized inputs introducing overhead for branched flows, as for example Geant4-based simulations

➢ Introduce limits in the interplay between the preprocessing and algorithmic steps

➢ Often require compiling with the framework large part of the algorithm.

29
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Frameworks and 

standards to define and 

deploy DNN in C++ 

applications have 

change a lot during the 

last years.

Choosing one for an 

application we would 

like to keep using in 

production in O(10) 

years would be a bet.

30

Choosing a DNN framework to rely on

Also, multithreading is used differently (and possibly 
inconsistently) by HEP frameworks and ML frameworks.
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Transpiling approach: scikinC and  keras2c

31

For a seamless integration of the trained parameterizations in the 

LHCb simulation framework models have to be applied to each 

single particle → thousands of independent calls per event.

Even a small latency (e.g. context switching) wastes unacceptable 

amount of CPU resources .

We transpile our models in C and compile them to binaries, 

dynamically linked at runtime.

LHCb tool: scikinC [PoS(CompTools2021)034]

Possible partial migration to keras2c [J.Eng.App.AI, (2021) 104182]

https://github.com/landerlini/scikinC
https://pos.sissa.it/409/034/
https://github.com/f0uriest/keras2c
https://www.sciencedirect.com/science/article/abs/pii/S0952197621000294
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Physics validation

32
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Lamarr validation:                             

● Abundant decay in LHCb, widely studied to 

measure, e.g., beauty baryon production

○ e.g. see JHEP 10 (2021) 060, PHYS. REV. D100 

(2019) 032001, PHYS. REV. D96 (2017) 112005, …

● It is part of the Particle Identification 

Calibration samples [EPJ TI 2019 6:1];

● It is described by a complex decay model 

including many feed-down modes;

● It provides examples for muons, pions, 

kaons and protons in a single decay mode.

33

other particles?

other?

The training of the models is based on a cocktail of heavy flavour decays, where                        represents a negligible fraction.

https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/LHCb-PAPER-2021-016.html
https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/LHCb-PAPER-2019-008.html
https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/LHCb-PAPER-2019-008.html
https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/LHCb-PAPER-2017-016.html
https://cds.cern.ch/record/2308409?ln=it
https://gitlab.cern.ch/lhcb-datapkg/Gen/DecFiles/-/blob/v30r73/dkfiles/Lb_Lcmunu,pKpi=cocktail,Baryonlnu.dec
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Track smearing

The momentum and point of closest approach to 

the beams of the generated particles get smeared: 

a GAN predicts effects as multiple scattering, 

imperfections of alignment, calibration… 

Reconstructed masses and impact parameters are 

then computed on the smeared quantities.

34

LHCb-FIGURE-2022-004

LHCb-FIGURE-2022-014

LHCb-FIGURE-2022-014

https://cds.cern.ch/record/2806749
https://cds.cern.ch/record/2814081
https://cds.cern.ch/record/2814081
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Tracking uncertainties A GAN is used to predict the uncertainties associated 

to the track reconstruction. 

Track uncertainties are crucial in LHCb to define the 

consistency of trajectories with vertices.

For example, the impact parameter 𝜒2 is a measure of 

inconsistency of a trajectory with a PV. 

35
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The whole decay tree can 

be fitted at once with a 

Decay Tree Fitter 

Constraining the        to be 

produced in the PV, 

the 𝜒2 explodes. 

[NIMA 552 

(2005) 566]

LHCb-FIGURE-2022-014

LHCb-FIGURE-2022-014
LHCb-FIGURE-2022-014

https://arxiv.org/abs/physics/0503191
https://arxiv.org/abs/physics/0503191
https://cds.cern.ch/record/2814081
https://cds.cern.ch/record/2814081
https://cds.cern.ch/record/2814081
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Proton identification

Lamarr simulates the distribution of the detector 

response. Analysts often inject the detector 

response in some analysis-specific classifier.

36

Proton identification

Proton misidentification as kaon

Here, we define cuts to visualize the ability of the 

trained models to describe the dependence of the 

detector response on occupancy and kinematics. 

LHCb-FIGURE-2022-014

LHCb-FIGURE-2022-014

LHCb-FIGURE-2022-014

https://cds.cern.ch/record/2814081
https://cds.cern.ch/record/2814081
https://cds.cern.ch/record/2814081
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One more word on timing

Comparing the normalized CPU spent for 

Geant4-based and Lamarr simulations of 

                            decays we estimate a CPU 

reduction of 98.3 % for the Simulation phase.

Generation of b-baryons is exceptionally 

expensive: here Pythia 8 largely dominates 

the CPU consumption.

Generation of b-mesons requires 5% of less of 

the overall Simulation time.

Repeating the exercise on minimum bias, 

CPU reduction exceeds 99%.
37
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Saving more with Particle Guns

Detector occupancy is parametrized: one can 

achieve similar performance by only simulating 

the signal particles (i.e. with Particle Guns). 

Production spectra are generated once-for-all 

with Pythia8 and then sampled.

38

Detailed simulation: Pythia8 + Geant4
1M events @ 2.5 kHS06.s/event ≃ 80 HS06.y

Ultra-fast simulation: Pythia8 + Lamarr
1 M events @ 0.5 kHS06.s/event ≃ 15 HS06.y

Ultra-fast simulation: Particle Gun + Lamarr
100 M events @ 1 HS06.s/event ≃ 4 HS06.y

LHCb-FIGURE-2022-014

LHCb-FIGURE-2022-014

LHCb-FIGURE-2022-014

https://cds.cern.ch/record/2814081
https://cds.cern.ch/record/2814081
https://cds.cern.ch/record/2814081
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Conclusion and outlook

39
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What’s next?
● Models of the electromagnetic 

calorimeter (in progress)
○ shower libraries [EPJ Web Conf. 214 

(2019) 02040] or Self-Attention GANs 
[EPJ Web Conf. 251 (2021) 03043] for 
the low-level response

○ a mixture of generative models and 
parametric functions for the 
high-level response

● Models for all current and future LHCb 
datasets

● With the start of Run 3, developing faster solutions to 
produce simulated samples is of key importance.

● The Ultra-Fast Simulation at LHCb consists of modular 
components that can be used as single blocks within 
the Detailed Simulation or pipelined into a consistent 
purely-parametric complete simulation.

● A stack of GANs can be used to effectively 
parameterize the higher-level response of the PID 
system.

● Once trained, the models can be integrated within the 
LHCb simulation software as shared objects or easily 
replaced with new ones [details].
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https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_03043/epjconf_chep2021_03043.html
https://indico.cern.ch/event/1076291/contributions/4589153/attachments/2354094/4016662/scikinC%20-%20Computing%20Tools%20in%20High%20Energy%20Physics.pdf
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Conclusion

Private productions are currently run on the WLCG and could be made standard, 

centralized productions easily.

We are now tuning models to compromise between accuracy and CPU performance, 

focusing on 2016 datataking conditions. We plan to extend to 2015, 2017 and 2018 soon. 

Run1 support may come later.

Lamarr will never replace Detailed Simulation, but may provide soon a precious tool to 

design selection strategies, train multivariate classifiers, study kinematic-induced 

correlation effects in the analysis-level quantities, or in general when theoretical 

uncertainties on the decay model are large.

As of today, these use-cases are mostly covered with Detailed Simulation.
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