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Definition and Examples




Outliers, Anomalies, Novelties

Outlier is a point that is significantly
different from the the rest of the data:

> noise;

» novelties — differs from previous behavior;

» anomalies — differs from the bulk of data.

Image: R. Chalapathy and S. Chawla, Deep Learning for Anomaly Detection: A Survey
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https://arxiv.org/abs/1901.03407

Example: LHC Cryogenic System

» faulty valve behaviour: one of the
cryogenics valves shows an
anomalous range of movementif * |
compared to the other actuators;

» anomaly points indicate a change in =
the system’s state;

QRLAA_29R1_CV910A0.POSST.csv
QRLAA_29L2 CV910A0.POSST.csv
QRLAA_17R1_CV910A0.POSST.csv
QRLAA_21L2 _CV910A0.POSST.csv

111

40

» anomalies can be defined as
significant deviation from the data
sample collected, hence anomalies © |
can be immediately seen in the data.  °°°° 9080 0,00 S120 o

F. Tilaro et al., Model Learning Algorithms for Anomaly Detection in CERN Control Systems
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https://accelconf.web.cern.ch/icalepcs2017/papers/tucpa04.pdf

Example: New Physics as Anomaly

All dta Truth_signal NN selection with signal NN selection, bg only
Heavy jet Heavy jet Heavy }:ie_avy. et
"'3"’?‘%.2;?:
gé 05 .
;Z Heavy jet Heavy jet Heavy jet Heavy jet
» Anomaly becomes a signal; iw 4
» Need to analyse abundance of 0 — - —— —
non-anomalous events; L
» Signal features/characteristics w — — —
are unknown. N
§ 50
° 10° 17 10 10t JDZ
my/GeV my/GeV my/GeV my/GeV

J. Collins et al, Extending the Bump Hunt with Machine Learning
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https://arxiv.org/abs/1902.02634

Out-of-distribution detection

» New test set with several
samples;

Photosphere Jellyfish (99%) Verdigris Jigsaw Puzzle (99%)
—=—-

e

» test whether these samples
come from distribution already
seen;

ImageNet-O

» if not, the performance of ML
solution might degrade

(intentionally or not); » Classes that were not previously seen by
» connected to overconfidence a classifier.
problem for ML algorithm.

D. Hendrycks et al, Natural Adversarial Examples
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https://arxiv.org/abs/1907.07174

Typical setting




Dataset Properties

v

Highly imbalanced: many data points of "normal” class and very few, if any, of
"anomalous” class.

» Dataset can be labeled or not.
» There can be rare and unseen anomalies, that are not present in the training dataset.
» No clear separation between novelty and anomaly.

» Anomaly definition is contextual.
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Output of an Anomaly Detection Algorithm

» Label
— Each test instance is given a normal or anomaly label.

» Score
— Each instance is assigned an anomaly score.

« allows outputs to be ranked
» May require an additional threshold parameter
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Data Model is Everything

fitted
Gaussian

anomalies

4

60 ~—’80 100 120 140 160
height (cm)

probability

A clear candidate to detect an anomaly can be Z-score:

X —X
S

Z =
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Data Model is Everything

FEATUREY

A clear candidate to detect an anomaly can be Z-score:

X =X
S

Z:

It, however, can fail if the normal class has multimodal distribution.
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Basic methods



Usual supervised methods

v

for labeled dataset;

» straightforward idea: use two- or many class classification;
» good performance if:

— the amount of anomalous examples is big;
— we know all types of anomalies.

» anomaly score is naturally the output of classifier;

» is it all we can do?
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One-class methods

What if we say that anomaly is everything beyond the border of "normal” class?
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Feature 2

We only need to define how to find a border.

Uses labels of a single (normal) class only!
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https://www.researchgate.net/publication/228071338_Authentication_of_bee_pollen_grains_in_bright-field_microscopy_by_combining_one-class_classification_techniques_and_image_processing

One-class family

Andrey Ustyuzhanin

Table 1.1: Classification methods and their unsupervised analogs in outlier analysis

Supervised Model | Unsupervised Analog(s) Type

k-nearest neighbor k-NN distance, LOF, LOCI Instance-based
(Chapter 4)

Linear Regression Principal Component Analysis Explicit Generalization
(Chapter 3)

Naive Bayes

Expectation-maximization
(Chapter 2)

Explicit Generalization

Rocchio

Mabhalanobis method (Chapter 3)
Clustering (Chapter 4)

Explicit Generalization

Decision Trees
Random Forests

Isolation Trees
Isolation Forests
(Chapters 5 and 6)

Explicit generalization

Rule-based

FP-Outlier
(Chapter 8)

Explicit Generalization

Support-vector
s

One-class support-vector
machines (Chapter 3)

Explicit generalization

Neural Networks

Replicator neural networks
(Chapter 3)

Explicit generalization

Matrix factorization
(incomplete data
prediction)

Principal component analysis
Matrix factorization
(Chapter 3)

Explicit generalization

https://bit.ly/43IW Lbf

Anomalies detection

16/44


https://bit.ly/43lWLbf

One-class Support Vector Machines

[»] Learns a hyperplane that encloses the
data in high-dimensional space (a)
transforms the input data into a higher-
dimensional space using a kernel function
(e.g., Linear kernel). b) finds a hyperplane
that has the largest margin to the origin
while enclosing most of the data points)

[»] Points located outside the hyperplane are
classified as anomalies

hyperplane

\ 4

[»] Provides a probabilistic score of each C—
point indicating the degree of abnormality Origin
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Isolation Forest

iTree iTree iTree

Anomaly

. —_ . . Potential Anomal
[»] General idea: efficiently detect anomalies in Y

a dataset by isolating data points using an
ensemble of randomized decision trees.

[»] The algorithm exploits the fundamental
property that anomalies are few and different from
the majority of the data. As a result, they can be
isolated more quickly with fewer random splits in
the decision trees.

[»] Anomalies are identified based on their
average path length across all trees in the
ensemble — shorter path lengths indicate a higher
likelihood of being an anomaly.

Normal Instance
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Local Outlier Factor

« Data points
o Outlier scores

O~ oo ©)
©
O © @
5® o ©
o @
» General idea: outliers have low © (1@@"(’9
density with respect to its k Q’é@@ k
neighborhood. @@ @G i
» Anomaly score: proportional to 0@ & ©
inverse distance to k neighbours. ® C 9 o O
©
@
21/44
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Comparison of One-class Techniques

Robust covariance One-Class SVM Isolation Forest  Local Outlier Factor

https://bit.ly/3GBMORM
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https://bit.ly/3GBmORM

Active learning for anomaly detection

» for continuous data flow, use
active learning:

— train algorithm on existing labels; o R | -

— check on new samples arriving; ) !
Labeled Data Machine Learning Pool of Unlabeled
— ask experts to label only new Model poa
examples, where classifier was T 4
_é:N
not sure; )
* <« ¢ <«
— train new classifier. Label for Point That
Difficult Point is Difficult

for Machine

» obtained classifier will be better
in identifying anomalies.

D Pelleg, Active Learning for Anomaly and Rare-Category Detection
Figure from Cloudera blog
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https://papers.nips.cc/paper/2554-active-learning-for-anomaly-and-rare-category-detection.pdf
https://blog.cloudera.com/a-guide-to-learning-with-limited-labeled-data/

Example: CMS Data Certification

v

CMS data certification problem:
— 2010 CMS data, OpenData portal;
— manually labeled;

can be successfully employed in
DQM settings;

approach is able to save up to
20% manual work under tight
restrictions;

quality improves over time.

Loss Rate constraint

Rejection Rate
0.010 (manual work
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0'08%00 0.002 0.004 0.006 0.008 0.010
Pollution Rate constraint

0.7512

0.6611

0.5710

0.4809

0.3909

0.3008

0.2107

M. Borisyak, Towards automation of data quality system for CERN CMS experiment
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https://blog.cloudera.com/a-guide-to-learning-with-limited-labeled-data/

Pre-summary

» Anomalies are often hunted in different tasks and problem settings.

» Understanding of data is very important.

» Main evaluation scores should be used with caution due to imbalanced datasets.
» Straightforward classification might fail due to lack of "anomalous” class.

» Once class methods provide robust outlier detection method.

Andrey Ustyuzhanin Anomalies detection 23/44



Distance scores




Introduction

» we know that anomalies are rare and deviate from the populous "normal’ class;
» “normal’ class is usually concentrated in some area of feature space;

» can we use this property?



Principle component analysis for anomalies

» select an r-dimensional hyperplane that
minimizes the squared projection error
over the remaining dimensions;

PCA outlier map

» all points X can be projected to
the hyperplane (L);

» a data point, which is far away from its
projection is deemed as anomalous.

» anomaly score: normalized distance of

the data point to the centroid of the
sample along main components.

Score distance

Andrey Ustyuzhanin Anomalies detection 26/44



PCA: Explained

» N samples X = {Xy, Xa, ..., XN} € RNXN,
> PCA(X: r): minL:rank(L)=r = ||X_|—| |2




PCA: Outliers

» N samples X = {Xy, Xa, ..., Xn b € RN
> PCAXX,1): MiNLrank)=r = |IX-L[2

Classical PCA fails even with a few outliers



PCA for anomaly detection: issues

» sensitivity to noise
— in presence of multiple outliers PCA can have difficulties in determining the main component.

» normalization issues
— in case of very different feature scale, the variation of one components can eclipse other
variations.

» regularization Issues

— not really stable for small datasets.
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Robust PCA

The presence of many outliers can be overcome by using Robust PCA analysis. The
analysis seeks to separate low-rank trends from sparse outliers within a data matrix:

X L S

Signal trajectory matrix Low-rank feature component Sparse strong background noise

https.//bit.ly/SUWAFi6
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https://bit.ly/3UwAFi6

Robust PCA: some math

» We want to obtain:
X=L+S

» The basic idea:
mingsrank(L) + |[S]]o
not convex, thus hard to optimize.

» |dea - convex relaxation:
mings|[L| |« + Al[S]]:

.||+ is nuclear norm, given by the sum of singular values, which is a proxy for rank

The relaxed solution converges almost always to exact one, from theory:
-1
A= /\,f max(n, N)
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Nonlinearities

What if we have a more complicated signal manifold?

A

® Autoencoder

PCA
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Autoencoders

Input layer Hidden layer Output layer
Two parts of the network:
rhotenedt » encoder h = f(x);

» decoderr = g(h)
Generally, we want to find a transformation

g(f(x)) = x

The approach can be made more flexible than PCA transform.
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AE: learning manifold

In fact, we learn a manifold, where normal class is situated:

We can keep the same anomaly score as in PCA case.



Robust Deep Autoencoder

» same problem &
approach as in the Robust
PCA case;

» same regularisation
using sparse matrix S;

» can be learned iteratively;

Robust Auto-
encoder Recon

» shows the difference
between error rates for the
features constructed by a
normal autoencoder and a
RDA. Red indicates where
the error rates of the RDA
are superior to those of the
normal autoencoder, and
blue indicates the opposite. . .
. . ) https://bit.ly/3UwAFi6
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https://bit.ly/3UwAFi6

Variational Autoencoders

» “normal” manifold can be created with

probabilistic model;

» anomaly score remains distance based but we
can sample from "normal” distribution several
events and average the distance.

. . . Figure 2.12: 2D plot of autoencoded digits.
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Recap

» Linear methods are quite powerful for anomaly detection.

» Most of the analysis is done in the latent space.

» Issues:
— data need to be correlated and not heavily clustered;
— might be overfit;
— lacks interpretability.
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Probability Scores




Generative modeling

» Some generative modeling produce expilcit estimate of probability of sample:
— Variational autoencoders.
— Flow-based models.

» Can we use it to find anomaly?

Figure: N. Schucher
Andrey Ustyuzhanin Anomalies detection 3



https://medium.com/element-ai-research-lab/neural-autoregressive-flows-f164d6b8e462

Constructing Score Function

. e . . . . W CIFAR-10
» direct probability is overly optimistic for e

B Imagenet32

anomalous samples (tail problem!);

Empirical Distribution

» one can try to construct a different
probability-based measure:

8 7 -6 -5 4 3 -2 1
Negative Bits Per Dimension

— Watanabe-Akaike Information Criterion;

— use in-batch dependenCIes' Figure 1. Density estimation models are not robust to OoD inputs.
A GLOW model (Kingma & Dhariwal, 2018) trained on CIFAR-
10 assigns much higher likelihoods to samples from SVHN than

» empirically these approaches work better. hrsreliler e

H. Choi, WAIC, but Why. Generative Ensembles for Robust Anomaly Detection
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https://arxiv.org/abs/1810.01392

Advanced Ideas




(1 + ¢)-class classification

Two-class classification:

» undefined in empty regions;

» recovers proper probabilities;

One<class classification:
» defined everywhere;

» ignores negative class;

(1 + e)-class classification:
» shifts two-class solution towards a
one-class solution;
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Approach Classification

Numerous approaches have been developed:

» Extreme value analysis (Z-score).

» Probabilistic and statistical models (Generative models).
» Linear models (Principle Component Analysis)/

» Proximity-based models (Clustering)

Information theoretic models (Minimal Description Analysis).

v

» High-dimensional outlier detection (isolation forest).

Methods can be combined into sequential and independent ensembles.

C. Aggarwal, Outlier Analysis
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https://www.springer.com/gp/book/9783319475776

LHC Olympics 2020, https://Ihco2020.qgithub.io/homepage/

Participants were offered two types of data (you could read more about the data here):

» “Monte Carlo Simulation Background” — simulated data that does not have a signal, where
the physics and simulation of the detector are not entirely correct;

+ “Data” — LHCO 2020 black boxes, which may contain some new signals, were revealed to
the participants during this challenge.

Participants were required to report the following:

* A p-value associated with the dataset having no new patrticles (null hypothesis);

* As complete a description of the new physics as possible. For example, the masses and
decay modes of all new particles (and uncertainties on those parameters);

* How many signal events (+uncertainty) are in the dataset (before any selection criteria).

Methods suggested:

» Deep Ensemble Anomaly Detection (combined with a mixture of neural networks with
convolutional layers and Boosted Decision Trees to assign event probabilities in the signal or
background categories,

* GAN-AE, VAE (see tomorrow)
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https://lhco2020.github.io/homepage/
https://zenodo.org/record/4536624#.Y8ZPyuxBxqs

Summary

» Anomaly detection problem attracts a lot attention both from researchers and
practitioners communities.

» Method should be selected based on the problem to be analysed.
» Methods span wide range of families, hence always room for hyperparameter tuning.

» Many recent development in this area.



Thank you!

Q andrey.ustyuzhanin@constructor.org

, e anaderiRu
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