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What is interpretability?

Interpretability is the degree to which a human can 
understand the cause of a decision.
Miller, Tim. “Explanation in artificial intelligence: Insights from the social sciences.” arXiv Preprint arXiv:1706.07269. (2017).

Interpretability is the degree to which a human can consistently 
predict the model’s result.
Kim, Been, Rajiv Khanna, and Oluwasanmi O. Koyejo. “Examples are not enough, learn to criticize! Criticism for interpretability.” 
Advances in Neural Information Processing Systems (2016).

An interpretable machine learning model is a model that is easy to understand and explain to 
humans, such as domain experts or stakeholders. The model's output and reasoning can be easily 
interpreted, visualized, and communicated in a way that is transparent and accessible to non-
experts. This is especially important in domains where accountability and fairness are critical, such 
as healthcare, finance, and justice. Interpretability can be achieved through various techniques 
such as decision trees, rule-based models, linear models, and feature importance analysis.

ChatGPT
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Contrast

F⃗21=G
m1m2

|r⃗ 21|
2 r⃗ 21

Computer program solving 
three-body problem

LHC event simulation Neural network LHC 
detector simulation

Law of gravity
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My takes
● Interpretable

– Parameters are defined independently of the particular system
– In principle, can be evaluated by a human
– Has a well-defined scope

● Non-interpretable
– Parameters are fully specific to the system, no way adjust 

them for a new system aside from retraining
– Can’t possibly be evaluated by a human
– No way to tell whether it works aside from testing
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Why one wants interpretability?

● Build upon the extracted knowledge
● Guide model development
● Verify correctness
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Inductive vs deductive reasoning
● Usual physical models are inductive: start with assumptions, 

build a complex system, ergo Geant4 and Pythia
– They are not necessary ab initio
– Theoretically, easy to trust: if the assumptions hold, the result is correct
– In practice, validation fails with complexity, e.g. CERN MC

● ML models are deductive: start with data, generalize
– Like human intuition
– Really neat move from manual analysis to ML at CERN, cuts are 

essentially decision trees
– Performance guarantees only on similarly-distributed data

● Almost never the case in practice
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ML mistakes have a cost
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The question of trust

How can I explain my model’s prediction?
Why did it make this decision/mistake?

What features does it rely on?

Is my model certain about what it says?
Is there something wrong with this input?

Can I rely on this prediction?

Can I trust this data?
Is something missing?

Is there any bias?
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Looking inside a model
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What is interpretable?

Simple stuff like K Nearest Neighbors
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What is interpretable?
Simple stuff like Linear models

“Why Should I Trust You? Explaining the Predictions of Any Classifier Ribeiro et al., KDD 2016

https://dl.acm.org/doi/abs/10.1145/2939672.2939778
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What is interpretable?

Simple stuff like Decision Trees

Survival on Titanic
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What is interpretable?

Neural networks are not naturally interpretableNeural networks are not naturally interpretable

https://playground.tensorflow.org

https://playground.tensorflow.org/
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Power vs interpretability
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Power vs interpretability
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Next: explain
powerful models
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Explanation by occlusion
Idea:

● Add noise 
to inputs and see 
what happens!

● For images: slide 
a gray square over
the image, measure 
how it affects 
predictions

Your 
guess?
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Explanation by occlusion
Idea:

● Add noise to 
inputs and see 
what happens!

● For texts: drop
individual words
and measure how 
it affects 
predictions Predicting salary from job description

https://www.kaggle.com/competitions/job-salary-prediction/data

https://www.kaggle.com/competitions/job-salary-prediction/data
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Explanation by gradients

Idea:  use gradients! ∇ ximodel(x)=
∂model(x)
∂ xi
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Explanation by gradients

Idea:  use gradients! ∇ ximodel(x)=
∂model(x)
∂ xi

Gradients are too sensitive
to small changes in x

Q: How would you fix that?
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Explanation by gradients

Idea:  use gradients! ∇ ximodel(x)=
∂model(x)
∂ xi

Gradients are too sensitive
to small changes in x

Smoothgrad: average 
gradients over several

noisy copies of x

(one of many heuristics)
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Explanation by gradients

Idea:  use gradients! ∇ ximodel(x)=
∂model(x)
∂ xi
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Quick summary

Explaining models can be done by finding 
small changes that affect the output

HEP ideas:
● Occlusion of detector pads during reconstruction
● Occlusion of particles during signal selection
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Explanation by optimization

Idea: build an image that maximizes 
the activation of a particular neuron

Must read: distill.pub/2018/building-blocks

https://distill.pub/2018/building-blocks/
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Explanation by optimization

Idea: build an image that maximizes 
the activation of a particular neuron

Must read: distill.pub/2018/building-blocks

More:
https://distill.pub

https://poloclub.github.io
https://karpathy.github.io

https://distill.pub/2018/building-blocks/
https://distill.pub/
https://poloclub.github.io/
https://karpathy.github.io/
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Don’t trust yourself!

The method outputs a noisy image
you see something reasonable

should you be satisfied?

How can you verify the explanation?
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Don’t trust yourself!

Idea: train a bogus model to see
if the method can “explain” the fake model

Adebayo, Julius, et al. "Sanity checks for saliency maps." Advances in neural information processing systems 31 (2018).

https://proceedings.neurips.cc/paper_files/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html
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Don’t trust yourself!
Idea: replace weights with random
one layer at a time (top to bottom)

Adebayo, Julius, et al. "Sanity checks for saliency maps." Advances in neural information processing systems 31 (2018).

https://proceedings.neurips.cc/paper_files/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html
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Explanation by approximation
Idea:
● Approximate your model

with something explainable
e.g. linear model

● The approximation only
needs to hold locally

i.e. on similar inputs

“Why Should I Trust You? Explaining the Predictions of Any Classifier Ribeiro et al., KDD 2016

https://dl.acm.org/doi/abs/10.1145/2939672.2939778
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Explanation by approximation
Idea:
● Approximate your model

with something explainable
e.g. linear model

● The approximation only
needs to hold locally

i.e. on similar inputs

“Why Should I Trust You? Explaining the Predictions of Any Classifier Ribeiro et al., KDD 2016

https://dl.acm.org/doi/abs/10.1145/2939672.2939778
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Explanation by approximation
Idea:
● Approximate your model

with something explainable
e.g. linear model

● The approximation only
needs to hold locally

i.e. on similar inputs

Left image: model mislabeled 
a husky dog as a wolf;
explanation: snow :)

“Why Should I Trust You? Explaining the Predictions of Any Classifier Ribeiro et al., KDD 2016

https://dl.acm.org/doi/abs/10.1145/2939672.2939778
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Explanation by approximation
Idea:
● Approximate your model

with something explainable
e.g. linear model

● The approximation only
needs to hold locally

i.e. on similar inputs

Read more: 
arxiv.org/abs/1602.04938
arxiv.org/abs/1705.07874
arxiv.org/abs/1904.12991

“Why Should I Trust You? Explaining the Predictions of Any Classifier Ribeiro et al., KDD 2016

https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1904.12991
https://dl.acm.org/doi/abs/10.1145/2939672.2939778
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Explanation by game theory
Idea: features are a “players” that play

a cooperative game of making a prediction
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Explanation by game theory
Idea: features are a “players” that play

a cooperative game of making a prediction

Equivalent “game”:
Alice, Bob and Carol ordered a $1000 meal at a restaurant

Q: How should they split the bill?

Hint: here’s what it would cost for them individually & in pairs

Who goes Alice Bob Carol A & B A & C B & C A, B & C
Total price 400 560 720 740 780 980 1000

Ideas?
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Explanation by game theory
Idea: features are a “players” that play

a cooperative game of making a prediction

Equivalent “game”:
Alice, Bob and Carol ordered a $1000 meal at a restaurant

Q: How should they split the bill?

Hint: here’s what it would cost for them individually & in pairs

Who goes Alice Bob Carol A & B A & C B & C A, B & C
Total price 400 560 720 740 780 980 1000

Game theorist’s answer: Shapley values!
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Shapley values explained

Who goes Alice Bob Carol A & B A & C B & C A, B & C
Total price 400 560 720 740 780 980 1000

Same old table

∅

A B C

AB AC BC

ABC

Shapley(X) = average increase
in cost from adding X to a group
Note: average over all paths.
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Shapley values explained

Shapley(X) = average increase
in cost from adding X to a group

Who goes Alice Bob Carol A & B A & C B & C A, B & C
Total price 400 560 720 740 780 980 1000

Same old table

∅

A B C

AB AC BC

ABC

Shapley(A) = 2
6
⋅400   +  …

+  1
6
⋅(740−560)  +  1

6
⋅(780−720)  +  

+  2
6
⋅(1000−990)  = 180

Note: averaging over all paths is 
NP-hard
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Explanation by game theory

Links:
● SHAP original paper: tinyurl.com/shap-paper (NeurIPS’17)  
● SHAP explained by paper author: youtu.be/ngOBhhINWb8 
● Shapley values in game theory: youtu.be/w9O0fkfMkx0       

SHAP = Shapley values for features + clever approximation
State of the art in after-the-fact model explanation

https://tinyurl.com/shap-paper
https://youtu.be/ngOBhhINWb8
https://youtu.be/w9O0fkfMkx0
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SHAP - https://github.com/slundberg/shap
(tensorflow, keras, pytorch, sklearn-like)

ELI5 - https://github.com/TeamHG-Memex/eli5
(popular explainers for keras/tf, sklearn-like)

Left, bottom – shap
Right - ELI5

Frameworks

https://github.com/slundberg/shap
https://github.com/TeamHG-Memex/eli5
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So far: explaining black-box models

Now: model-specific methods
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Explanation by design
Idea: design architecture to be interpretable

hidden layer activations



41

Explanation by design
Idea: design architecture to be interpretable

hidden layer activations

x encoder
f(x, θ)

input
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Explanation by design
Idea: design architecture to be interpretable

hidden layer activations

x encoder
f(x, θ)

input

neighbors
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Explanation by design
Idea: design architecture to be interpretable

hidden layer activations

x encoder
f(x, θ)

input

neighbors
average

class “cat”
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Explanation by design

Idea: design architecture to be interpretable

a(x , x̂ i)=
e⟨ f (x , theta) , f ( x̂ i , theta)⟩

∑ j=0

N
e⟨ f (x , theta) , f ( x̂ j , theta)⟩

y pred(x)=∑i
ŷ i⋅ai(x , x̂i)

Prototype objects and answers: ( x̂0, ŷ0) , ... ,( x̂N , ŷN )

“Attention” weights:

Prediction by averaging:
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Explanation by design

Idea: design architecture to be interpretable

Read more: KNN
arxiv.org/abs/1703.05175
arxiv.org/abs/1803.04765
arxiv.org/abs/1809.02847

Read more: Linear
arxiv.org/abs/1705.08078
arxiv.org/abs/1806.07538

a(x , x̂ i)=
e⟨ f (x , theta) , f ( x̂ i , theta)⟩

∑ j=0

N
e⟨ f (x , theta) , f ( x̂ j , theta)⟩

y pred(x)=∑i
ŷ i⋅ai(x , x̂i)

Prototype objects and answers: ( x̂0, ŷ0) , ... ,( x̂N , ŷN )

“Attention” weights:
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Taking it to the extreme
Paper: https://arxiv.org/abs/2010.11929 

https://arxiv.org/abs/2010.11929
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Taking it to the extreme
Paper: https://arxiv.org/abs/2104.14294 

View attention maps: https://epfml.github.io/attention-cnn/ 

https://arxiv.org/abs/2104.14294
https://epfml.github.io/attention-cnn/
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The question of trust

How can I explain my model’s prediction?
Why did it make this decision/mistake?

What features does it rely on?

Is my model certain about what it says?
Is there something wrong with this input?

Can I rely on this prediction?

Can I trust this data?
Is something missing?

Is there any bias?
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Recap: types of uncertainty

example: binary classification
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Recap: types of uncertainty

linear classifier

example: binary classification
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Recap: types of uncertainty

Statistical (aleatoric) uncertainty
“I know there’s randomness”

linear classifier
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Recap: types of uncertainty

Systematic (epistemic) uncertainty
“I have no idea!”

Statistical (aleatoric) uncertainty
“I know there’s randomness”

linear classifier
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Recap: types of uncertainty

Systematic (epistemic) uncertainty
“I have no idea!”

Statistical (aleatoric) uncertainty
“I know there’s randomness”

linear classifier

p=0.5 p=1
no data!
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How to measure uncertainty

Aleatoric uncertainty: use predicted probability!
Exception: neural networks can be overconfident
Fix it by calibrating model predictions after the fact,
Read more: tinyurl.com/sklearn-calibration

p=0.5

https://tinyurl.com/sklearn-calibration
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How to measure uncertainty

Aleatoric uncertainty: use predicted probability!
Exception: neural networks can be overconfident
Fix it by calibrating model predictions after the fact,
Read more: tinyurl.com/sklearn-calibration

Epistemic (systematic) uncertainty: it gets tricky

                                      Ideas?

p=0.5

p=1
no data!

https://tinyurl.com/sklearn-calibration
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How to measure uncertainty

Aleatoric uncertainty: use predicted probability!
Exception: neural networks can be overconfident
Fix it by calibrating model predictions after the fact,
Read more: tinyurl.com/sklearn-calibration

Epistemic (systematic) uncertainty: it gets tricky

Approach A: train autoencoder on input features
  Low reconstruction error = certain or not?
  High reconstruction error = certain or not?

p=0.5

p=1
no data

https://tinyurl.com/sklearn-calibration
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How to measure uncertainty

Aleatoric uncertainty: use predicted probability!
Exception: neural networks can be overconfident
Fix it by calibrating model predictions after the fact,
Read more: tinyurl.com/sklearn-calibration

Epistemic (systematic) uncertainty: it gets tricky

Approach A: train autoencoder on input features
  Low reconstruction error = familiar data
  High reconstruction error = unfamiliar data
         (For NLP: use language models)

p=0.5

p=1
no data

https://tinyurl.com/sklearn-calibration
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How to measure uncertainty

Aleatoric uncertainty: use predicted probability!
Exception: neural networks can be overconfident
Fix it by calibrating model predictions after the fact,
Read more: tinyurl.com/sklearn-calibration

Epistemic (systematic) uncertainty: it gets tricky

Approach A: train autoencoder on input features
  Low reconstruction error = familiar data
  High reconstruction error = unfamiliar data

Approach B: train an ensemble of predictors
  Predictors agree = familiar data
  Predictors disagree = unfamiliar data

p=0.5

p=1
no data

More: tinyurl.com/
uncertainty-ensembles

https://tinyurl.com/sklearn-calibration
https://tinyurl.com/uncertainty-ensembles
https://tinyurl.com/uncertainty-ensembles
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Uncertainty from dropout

Idea:
 measure how robust 
 does your network
 perform under noise

Example (left):
 use dropout and
 estimate variance

Read more in the paper or in a blog post

Systematic uncertainty for different input 
images, source: arXiv:1506.02142

https://arxiv.org/abs/1506.02142
https://towardsdatascience.com/uncertainty-estimation-for-neural-network-dropout-as-bayesian-approximation-7d30fc7bc1f2
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Bayesian Neural Networks

Disclaimer: this is a hacker's guide to BNNs!

It does not cover all the philosophy and general cases.
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Bayesian Neural Networks

Regular
NN

0.3

-0.25 1.3

-0.1

X

tanh

tanh

y

Disclaimer: this is a hacker's guide to BNNs!

It does not cover all the philosophy and general cases.
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X

tanh

tanh

P(y|x)

Regular
NN

Bayesian
NN

0.3

-0.25 1.3

-0.1

N (0.3,0.04 ) N (−0.1,0.043)

N (−0.25,0.1)
N (1.3, 1.97)

X

tanh

tanh

y

Bayesian Neural Networks



63

Idea:
● No explicit weights
● Maintain parametric distribution on them instead!
● Practical: fully-factorized normal or similar

q (θ∣ϕ : [μ ,σ])=∏
i
N (θi∣μ i ,σi)

P( y∣x )=Eθ∼q(θ∣ϕ)P( y∣x ,θ)

X

tanh

tanh

P(y|x)

N (0.3,0.04 ) N (−0.1, 0.043)

N (−0.25,0.1)
N (1.3, 1.97)

Bayesian Neural Networks
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Idea:
● No explicit weights
● Maintain parametric distribution on them instead!
● Practical: fully-factorized normal or similar

q (θ∣ϕ : [μ ,σ ])=∏
i
N (θi∣μi ,σi)

X

tanh

tanh

P(y|x)

N (0.3,0.04 ) N (−0.1, 0.043)

N (−0.25,0.1)
N (1.3, 1.97)

P( y∣x )=Eθ∼q(θ∣ϕ)P( y∣x ,θ)

Bayesian Neural Networks
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Idea:
● No explicit weights
● Inference: sample from weight distributions, predict 1 “sample”
● To get distribution, aggregate K samples (e.g. with histogram)
● Yes, it means running network multiple times per one X

X

tanh

tanh

P(y|x)

N (0.3,0.04 ) N (−0.1, 0.043)

N (−0.25,0.1)
N (1.3, 1.97)

P( y∣x )=Eθ∼q(θ∣ϕ)P( y∣x ,θ)

Bayesian Neural Networks
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Idea:
● No explicit weights
● Maintain parametric distribution on them instead!
● Practical: fully-factorized normal or similar

● Learn parameters of that distribution (reparameterization trick)
● Less variance: local reparameterization trick.

wanna explicit formulae?          d = dataset

q (θ∣ϕ : [μ ,σ ])=∏
i
N (θi∣μi ,σi)

ϕ̊ =argmaxϕ Ex i , y i∼d Eθ∼q (θ∣ϕ )P( y i∣x i ,θ)

P( y∣x )=Eθ∼q(θ∣ϕ)P( y∣x ,θ)

Bayesian Neural Networks
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Evidence Lower bound

−KL(q(θ∣ϕ )∥p (θ∣d))=−∫
θ
q(θ∣ϕ )⋅log q(θ∣ϕ )

p(θ∣d )

−∫
θ
q(θ∣ϕ )⋅log q (θ∣ϕ )

[
p(d∣θ)⋅p(θ)

p(d )
]
=−∫

θ
q (θ∣ϕ)⋅log q(θ∣ϕ )⋅p (d )

p(d∣θ)⋅p(θ)

−∫
θ
q(θ∣ϕ )⋅[ log q(θ∣ϕ )

p(θ)
− log p (d∣θ)+ log p (d )]

[Eθ∼q(θ∣ϕ) log p (d∣θ)]−KL(q (θ∣ϕ)∥p(θ))+ log p (d )

loglikelihood -distance to prior +const

d = dataset
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Evidence Lower bound

ϕ=argmax
ϕ

(−KL(q(θ∣ϕ )∥p (θ∣d)))

argmax
ϕ

([Eθ∼q (θ∣ϕ ) log p (d∣θ)]−KL(q(θ∣ϕ )∥p (θ)))
don’t  be too

certain
fit to the data
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Evidence Lower bound

Can we perform gradient ascent directly?

ϕ=argmax
ϕ

(−KL(q(θ∣ϕ )∥p (θ∣d)))

argmax
ϕ

([Eθ∼q (θ∣ϕ ) log p (d∣θ)]−KL(q(θ∣ϕ )∥p (θ)))
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Reparameterization trick

Eθ∼N (θ∣μϕ ,σϕ ) log p (d∣θ)=Eψ∼N (0,1) log p(d∣(μϕ+σϕ⋅ψ))

BNN likelihood

Use reparameterization trick

ϕ=argmax
ϕ

(−KL(q(θ∣ϕ )∥p (θ∣d)))

argmax
ϕ

([Eθ∼q (θ∣ϕ ) log p (d∣θ)]−KL(q(θ∣ϕ )∥p (θ)))

What does this log 
P(d|...) mean?

 simple formula
(for normal q)
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Reparameterization trick

Eθ∼N (θ∣μϕ ,σϕ ) log p (d∣θ)=Eψ∼N (0,1) log p(d∣(μϕ+σϕ⋅ψ))

BNN likelihood

ϕ=argmax
ϕ

(−KL(q(θ∣ϕ )∥p (θ∣d)))

argmax
ϕ

([Eθ∼q (θ∣ϕ ) log p (d∣θ)]−KL(q(θ∣ϕ )∥p (θ)))

In other words,
Σx,y~d log p(y|x,µ+σψ)
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Bayesian Neural Networks

Estimating uncertainty: 
 1. sample weights several  times
 2. predict by averaging outputs
 3. uncertainty = standard deviation
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Read more...

Papers on uncertainty

bayesian neural networks:                       blog post
prior networks:                arxiv.org/abs/1802.10501
batchnorm:                     arxiv.org/abs/1802.04893
dropout:                          arxiv.org/abs/1506.02142
video stuff:   youtube.com/watch?v=HRfDiqgh6CE

https://docs.pymc.io/notebooks/bayesian_neural_network_advi.html
https://www.youtube.com/watch?v=HRfDiqgh6CE
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The question of trust

How can I explain my model’s prediction?
Why did it make this decision/mistake?

What features does it rely on?

Is my model certain about what it says?
Is there something wrong with this input?

Can I rely on this prediction?

Can I trust this data?
Is something missing?

Is there any bias?
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Exploratory data analysis

Q: How many dimensions can you show on a plot?

aka “seeing for yourself what’s in your data”
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2d scatter-plot 3d scatter-plot

Exploratory data analysis

Q: How many dimensions can you show on a plot?
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2 dimensions

Exploratory data analysis

Q: How many dimensions can you show on a plot?
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3 dimensions

Exploratory data analysis

Q: How many dimensions can you show on a plot?
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4 dimensions

Exploratory data analysis

Q: How many dimensions can you show on a plot?
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5 dimensions

Exploratory data analysis

Q: How many dimensions can you show on a plot?
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Your data has 200 dimensions...
any ideas?

Exploratory data analysis

Q: How many dimensions can you show on a plot?
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Recap: Principal Component Analysis

Idea:
● Linearly project data
to lower-dim space

 
 
 Minimize MSE

X≈(X×W 1)×W 2

argminW 1,W 2
‖X−(X×W 1)×W 2‖
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Recap: Principal Component Analysis

Idea:
● Linearly project data
to lower-dim space

● Attempt to preserve
as much variance
as possible
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Recap: Principal Component Analysis

Idea:
● Linearly project data
to lower-dim space

● Attempt to preserve
as much variance
as possible

Q: What if linear projection is not enough?
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Recap: Principal Component Analysis

Idea:
● Linearly project data
to lower-dim space

● Attempt to preserve
as much variance
as possible

Q: What if linear projection is not enough?
deep autoencoders… or better
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Manifold learning

Idea: let’s directly “learn” 2d point coordinates
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Multidimensional Scaling
try preserving pairwise distances

x̂=argminx̂
2

N 2−N
∑
i≠ j
(‖xi−x j‖−‖x̂ i− x̂ j‖)

2
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Stochastic Neighborhood Embedding
try preserving neighbor “probabilities”

x̂=argminx̂−
1
N∑i ∑j P j∣i⋅log P̂ j∣i

P j∣i=
e−‖x i−x j‖2

2

∑
k
e−‖xk−x j‖2

2

● large for nearest neighbors
● small for distant points
● adds up to 1

P̂ j∣i=
e−‖x̂ i−x̂ j‖2

2

∑
k
e−‖x̂k− x̂ j‖2

2

● same as P 
● but in learned space

optimize crossentropy w.r.t. x̂
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T-SNE
Like SNE from prev slide, but
● P is now Student’s t-distribution

● A lot of optimization hacks
● By far the most popular method

P̂ j∣i=
(1+‖x̂ i− x̂ j‖2

2)−1

∑
k≠l
(1+‖x̂k− x̂l‖2

2)−1

Read More:
Original paper

Interactive demo

http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://distill.pub/2016/misread-tsne/
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T-SNE + deep encoder
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T-SNE + deep encoder (CIFAR10)
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T-SNE + deep encoder (atari DQN)
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Thank you

[question time!]
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