

Compact Colliders Of Tomorrow: The Cool Copper Collider & The Muon Collider

Precision Electroweak to Discoveries at the Energy Frontier

based on US Snowmass 2021-22 discussions

Report of the Snowmass 2021 e^+e^- -Collider Forum

Maria Chamizo Llatas, Sridhara Dasu, Ulrich Heintz, Emilio Nanni, John Power, Stephen Wagner Muon Collider Forum Report

Forum Conveners: K.M. Black¹, S. Jindariani², D. Li³, F. Maltoni^{4,5}, P. Meade⁶, and D. Stratakis²,

https://www.muoncollider.us/ https://muoncollider.web.cern.ch/

Report of the Snowmass'21 Collider Implementation Task Force

Thomas Roser (chair)¹, Reinhard Brinkmann², Sarah Cousineau³, Dmitri Denisov¹, Spencer Gessner⁴, Steve Gourlay⁵, Philippe Lebrun⁶, Meenakshi Narain⁷, Katsunobu Oide⁸, Tor Raubenheimer⁴, John Seeman⁴, Vladimir Shiltsev⁹, Jim Strait⁹, Marlene Turner⁵, and Lian-Tao Wang¹⁰

Colliders @ the Energy Frontier! MuCol?

FCC-hh

in machine R&D; more people

26-Sep-23

http://www.slac.stanford.edu/pubs/beamline/27/1/27-1-panofsky.pdf

Sridhara Dasu (dasu@hep.wisc.edu)

Physics Case for the Energy Frontier

From $\sqrt{s} = M_Z \rightarrow M_{WW} \rightarrow M_{Z+H} \rightarrow M_{tt} \rightarrow 500 \text{ GeV} \rightarrow 550 \text{ GeV} \rightarrow 15 \text{ TeV}$

The Science Drivers The U.S. community is implementing its vision for the future based on five intertwined science 6 drivers. These compelling lines of inquiry show great promise for discovery. Higgs Use the Higgs boson as a new tool for discovery 6 Factory Pursue the physics associated with neutrino mass 6 *Identify the new physics of dark matter* 6 Understand cosmic acceleration: dark energy and inflation 6 O(10) *Explore the unknown: new particles, interactions, and physical principles* 6 TeV

Shovel Ready

Further Research

Particles & Interactions of The Standard Model

masses for W+/W- and the Z & massive Higgs. Fermions also get mass interacting with H.

Higgs Field is Special Electro-Weak Symmetry Breaking

50 years ago, gauge theory unified electro-weak interactions, but could not

accommodate non-zero masses for W[±] & Z

Introduction of a doublet of complex scalar fields with **peculiar** potential provided masses for W^{\pm} & Z and left γ massless!

Coupling to Higgs field provides masses to matter particles!!

$$\mathcal{L} = |D_{\mu}\Phi|^2 - \mu^2 \Phi^2 - \lambda \Phi^4$$

For $\mu^2 < 0$, minimum $\upsilon = \sqrt{-\frac{\mu^2}{2\lambda}}$

$$\phi = \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$$

The remnant fourth field degree of freedom is the Higgs Boson discovered in 2012

Asserting the form of the potential requires measuring di-higgs production

Higgs Boson Couplings, Production and Decays

Current Status of Golden Channels @ LHC

Our Higgs boson data sets are enabling detailed studies of the SM

Current Status of Higgs Couplings

What's Next? Sub-percent Level Higgs Couplings -> 10 TeV BSM

Can we use precision measurements to indirectly probe new physics at higher energies? Are higgs couplings to SM particles modified?

HL-LHC
few%Higgs Factory
0.1%Tree-level $\sim \frac{v^2}{M^2}$ ~1 TeV~few TeV
Couplings Deviations found at
C^3 e+e-Higgs FactoryLoop-level $\sim \frac{1}{4\pi^2} \frac{v^2}{M^2}$ ~100 GeV~1 TeV BSM @ 10 TeV Muon Collider

Higgs Central to Many Fundamental Topics

Percent level Higgs couplings deviations from SM values → BSM physics at 10 TeV e⁺ e⁻ Higgs Factory → Energy Frontier (10 TeV) Muon Collider

Colliders Of Tomorrow

Many Opportunities at the Energy Frontier

26-Sep-23

With 5 y R&D could get physics rolling by 2040 for ~\$10B

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
FCC-ee ^{1,2}	0.24	7.7(28.9)	0-2	13-18	12-18	290
	(0.09-0.37)					
$CEPC^{1,2}$	0.24	8.3(16.6)	0-2	13-18	12-18	340
	(0.09-0.37)					
ILC ³ - Higgs	0.25	2.7	0-2	$<\!\!12$	7-12	140
factory	(0.09-1)					
CLIC ³ - Higgs	0.38	2.3	0-2	13-18	7-12	110
factory	(0.09-1)					
$\left(\operatorname{CCC}^{3} \left(\operatorname{Cool} \right) \right)$	0.25	1.3	3-5	13-18	7-12	150
Copper Collider)	(0.25-0.55)					
CERC ³ (Circular	0.24	78	5-10	19-24	12-30	90
ERL Collider)	(0.09-0.6)					
ReLiC ^{1,3} (Recycling	0.24	165 (330)	5-10	$>\!25$	7-18	315
Linear Collider)	(0.25-1)					
$ERLC^3$ (ERL	0.24	90	5-10	> 25	12-18	250
linear collider)	(0.25-0.5)					
XCC (FEL-based	0.125	0.1	5-10	19-24	4-7	90
$\gamma\gamma$ collider)	(0.125 - 0.14)					
Muon Collider	0.13	0.01	> 10	19-24	4-7	200
Higgs Factory ³		Sridhara Dasu (d	usu@hen wisc ed	D.		

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
Muon Collider	10	20 (40)	> 10	$>\!25$	12-18	~300
	(1.5-14)					
LWFA - LC	15	50	> 10	$>\!\!25$	18-80	~ 1030
(Laser-driven)	(1-15)					
PWFA - LC	15	50	> 10	$>\!25$	18-50	~ 620
(Beam-driven)	(1-15)					
Structure WFA	15	50	>10	> 25	18-50	$\sim \!\! 450$
(Beam-driven)	(1-15)					
FCC-hh	100	30 (60)	>10	$>\!\!25$	30-50	~ 560
SPPS	125	13(26)	>10	> 25	30-80	$\sim \! 400$
	(75-125)					

Higgs Factory Physics Timeline vis-à-vis Integrated Luminosity

Caveat - run plans are adjustable; start of physics times are different

- Technically feasible times: ILC < 12y, FCC-ee, CLIC, CEPC, C3 : 13-18y
 - ILC "shovel ready" + C3 Short R&D –potential for earliest start
 - FCC-ee, CLIC post HL-LHC
- Circular colliders have shorter runs, higher luminosity
- Linear collider runs have access to polarization and higher energy
- Both provide good precision on Higgs Couplings & EWK

time	то			T+5		T+10			T+1	15			T+20		T	-25		T+	30		
		150	/ab	10/ab	5/ab		1	.7/ab													
FCC-ee		Μ	lz	2Mw	240 GeV		2	mtop		mΗ											
	100/a	b	6/ab		10,	/ab				1/ab-:	1										
CEPC	Mz		2Mw		240	GeV				2mto	р										
				2/ab			0.1/ab	0.1/ab													
ILC (and C3)				240 GeV			MZ	2mtop				4/a	b 500 (GeV			8	/ab 1	TeV		
			1	.1/ab				3.	5/ab						5.6/a	b					
CLIC			38	0 GeV				1.5	5 TeV						3 Te	V					

C3 – Cool Copper Collider – New Option

SLAC (1)

Breakthrough in the Performance of RF Accelerators

- RF power coupled to each cell no on-axis coupling
- Full system design requires modern virtual prototyping

Electric field magnitude produced when RF manifold feeds alternating cells equally

Cryogenic operation improves performance

First C³ structure at SLAC

High Gradient Operation at 150 MV/m

The vast majority of ~30,000 currently operating accelerators globally are electron accelerators.

Electron accelerator R&D ranges from industrial applications to the cutting-edge development of ultimate storage rings and linear accelerator based XFELs.

This fortunate situation allows e⁺e⁻ colliders to leverage these global efforts to provide a viable path to a collider reducing the R&D costs to the HEP budget. Possibly an interesting option

for the African Light Source

 $C^3 - \sqrt{s} = 250 - 550$ GeV - Potential Coordinates

Can fit in FNAL site with BDS improvements

Higgs Couplings from Factories

Higgs Coupling	HL-LHC	ILC250	ILC500	ILC1000	FCC-ee	CEPC240	CEPC360	CLIC380	CLIC3000
(%)		+ HL-LHC	+HL-LHC	+ HL-LHC	+ HL-LHC	+ HL-LHC	+HL-LHC	+ HL-LHC	+HL-LHC
hZZ	1.5	.22	.17	.16	.17	.074	.072	.34	.22
hWW	1.7	.98	.20	.13	.41	.73	.41	.62	1
$hb\overline{b}$	3.7	1.06	.50	.41	.64	.73	.44	.98	.36
$h au^+ au^-$	3.4	1.03	.58	.48	.66	.77	.49	1.26	.74
hgg.	2.5	1.32	.82	.59	.89	.86	.61	1.36	.78
$hc\overline{c}$	-	1.95	1.22	.87	1.3	1.3	1.1	3.95	1.37
$h\gamma\gamma$	1.8	1.36	1.22	1.07	1.3	1.68	1.5	1.37	1.13
$h\gamma Z$	9.8	10.2	10.2	10.2	10	4.28	4.17	10.26	5.67
$h\mu^+\mu^-$	4.3	4.14	3.9	3.53	3.9	3.3	3.2	4.36	3.47
$ht\overline{t}$	3.4	3.12	2.82	1.4	3.1	3.1	3.1	3.14	2.01
Γ_{tot}	5.3	1.8	.63	.45	1.1	1.65	1.1	1.44	.41

Top-Yukawa and Higgs Self-Coupling

Advantages of Energy Reach

Double Higgs production

Innovative Muon Collider Concepts **Energy Efficient Path to O(10)-TeV Colliders** Accelerator Ring LHC Tunnel? Or FNAL Site Filler? IP 1 Minimize civil engineering cost. Accelerator Muon Collider µ Injector Ring >10TeV CoM ~10km circumference *IP 2* 4 GeV Target, π Decay μ Cooling Low Energy Proton & µ Bunching Channel µ Acceleration Channel Source

Muon Collider Advantages

arxiv:1901.06150

Precision physics

Higgs coupling sensitivities k-framework

	HL-LHC	HL-LHC	HL-LHC
		$+10 \mathrm{TeV}$	+10 TeV
		,	+ee
κ_W	1.7	0.1	0.1
κ_Z	1.5	0.4	0.1
κ_{g}	2.3	0.7	0.6
κ_{γ}	1.9	0.8	0.8
κ_c	-	2.3	1.1
κ_b	3.6	0.4	0.4
κ_{μ}	4.6	3.4	3.2
$\kappa_{ au}$	1.9	0.6	0.4
$\kappa^*_{Z\gamma}$	10	10	10
κ_t^*	3.3	3.1	3.1
* No in	mut used for	allidan	

No input used for μ collider

 1σ sensitivities (in %) from a 10-parameter fit in the k-framework at a 10 TeV muon collider with 10 ab⁻¹, compared with HL-LHC. The effect of measurements from a 250 GeV e⁺e⁻ Higgs factory is also reported.

High-energy muon colliders open the way to direct measurements of the Higgs trilinear selfcoupling, λ_3 , and at above 10 TeV, even the potential observation of multi-Higgs production, which is sensitive to the quartic self-coupling. We find that the precision in the determination of λ_3 of the 3 TeV muon collider would substantially benefit from an increase in the total luminosity by a factor~ 2 with respect to the proposed benchmark of 0.9 ab⁻¹, suppressing a second mode in the likelihood for λ_3 and allowing a determination at the 15% level. Percent level uncertainties will be achieved at the higher energy stages.

Energy Frontier Workshop 28 March-1 April 2022

Dark Matter Reach

Higgs Smashers Guide, arXiv: 2103.14043

Discovery potential for 10-TeV scale WIMPs for a variety of color/ew/hypercharge multiplets

Towards Muon Collider

Critical concepts to demonstrate

- Target Solenoid
 - Similar Low Temp Superconductor parameters to ITER Central Solenoid
 - Performance can be improved with a radiation resistant HTS or Cu insert
- Muon 6D Cooling
 - MICE Demonstration of Emittance Cooling
 - High gradient demonstration of RF operating in Tesla-class magnetic fields
 - Cooling channel concepts and detailed simulation consistent with operational targets
- Muon Final Cooling
 - Advances in HTS conductor/cable/magnet technology
 - High Field User Magnet program operationally demonstrating magnet parameters that are rapidly approaching the MC requirements

Towards Muon Collider

Critical concepts to demonstrate

- Muon Acceleration
 - Significant recent advancement in HTS-based fast-ramping magnets
 - Focused effort on studying the integrated magnet/power supply efficiency issues for TeV-scale acceleration
- Collider and Detector
 - · Detailed studies of backgrounds that may impact physics
 - Detector performance studies now demonstrate the ability to successfully measure key processes
 - Concepts in development to manage off-site neutrino radiation issues

See dedicated JINST Volume for key references:

Muon Accelerators for Particle Physics (MUON)

Muon Collider Challenges

10+ TeV is NEW Territory ⇔ Key Areas of Investigation:

Evaluation of physics potential (including detector technology)

- Impacts of beam induced background

Neutrino Flux Mitigation

– Straight accelerator sections produce intense v beam - safety

High Energy Systems

- Acceleration sections can impact the energy reach due to cost, power, technical risk, and impact on beam quality
- 10+ TeV Collider designs must be developed and fully evaluated

Cooling string demonstration to verify high brightness μ beam delivery

Path Forward

Summary + Invitation

Proposals emerging from Snowmass 2021 for a US based collider

Welcome African participation in studies – starting with simulations Accelerators, detector technologies, machine-detector interface ... Studentships, Fractional postdocs, Guest & Visitor programs ...

<mark>44</mark>

CERN-based International Muon Collider Collaboration "timeline"

Fig. 2: A technically limited timeline for the Muon Collider R&D programme