Investigating octupole correlations in Xe nuclei with mass A < $\mathbf{1 2 0}$

S.K. Chamoli
Department of Physics \& Astrophysics, University of Delhi, Delhi 110007.

Nuclei with mass A <120 are perfectly placed to study the shape-driving properties of different quasiparticle configurations. For these nuclei, the Fermi surface for the protons lies close to the low- Ω $\mathrm{h}_{11 / 2}$ orbitals which drives the nucleus towards prolate shape, while the neutron fermi surface lies near the mid- $\Omega \mathrm{h}_{11 / 2}$ orbitals which induces an oblate deformation [1]. Due to the conflicting deformation driving properties, the nuclei observe prolate, oblate or triaxial shape in this mass region. Also, the presence of octupole driving $h_{11 / 2}$ and $\mathrm{d}_{5 / 2}$ orbitals near the Fermi surface make them suitable to exhibit octupole correlation. In this mass region, octupole correlations have been reported earlier in several isotopes of Xe-Cs-Ba having $\mathrm{N}<70$ [5-7]. In previous high spin gamma ray spectroscopy measurements in ${ }^{118} \mathrm{Xe}$ nuclei though the octupole correlations have been reported in Refs. [8-10] but in almost all the cases a precise data on parity assignments, was missing. For example, in Ref. [10], though the issue of octupole collectivity has been discussed in relation to the observed inter-band transitions, $1022 \mathrm{keV}\left(7^{-} \rightarrow 6^{+}\right), 846 \mathrm{keV}\left(9^{-} \rightarrow 8^{+}\right), 726 \mathrm{keV}\left(11^{-} \rightarrow 10^{+}\right)$and $924 \mathrm{keV}\left(8^{-} \rightarrow 8^{+}\right)$, however, the quoted $B(E 1)$ values have errors in the range from 4% to 28%. In the present work, the excited states in ${ }^{118} \mathrm{Xe}$ nucleus were reinvestigated with the aim: 1) to update the level scheme with inclusion of more γ transition in the non-yrast bands (if any), 2) to fix the missing parities with polarisation measurements and 3) to provide a more precise data on the octupole collectivity (transition). We have also performed the triaxial projected shell model (TPSM) calculations to investigate the observed band structures further.

High spin states in ${ }^{118} \mathrm{Xe}$ have been populated via ${ }^{93} \mathrm{Nb}\left({ }^{28} \mathrm{Si}\right.$, xpyn) ${ }^{118} \mathrm{Xe}$ fusion-evaporation reaction at a beam energy of 115 MeV provided by the 15 UD pelletron accelerator facility at the Inter University Accelerator Center, New Delhi. In the experiment, several new γ-transitions have been found and are placed appropriately in the level scheme. Theoretical study using the triaxial projected shell model (TPSM) approach suggests that the first band-crossing is due to the alignment of two neutrons, and a parallel band tracking the yrast configuration is the γ-band built on the two-quasiparticle state. Enhanced E1 transition rates have been obtained between opposite parity bands, involving $v h_{1 / 2}$ and $v d_{5 / 2}$ orbitals having $\Delta \mathrm{j}=\Delta \mathrm{l}=3$, indicates the presence of octupole correlation in this nucleus. More details of the analysis and the physics outcomes will be discussed during the presentation.

References :

1. Liyang, et al., Phys. Rev. C 45 (1992) 1041.
2. K. Selvakumar, et al., Phys. Rev. C 92 (2015) 064307.
3. J. Smith, et al., Phys. Rev. C 57 (1998) R1037.
4. P. Mason, et al., Phys. Rev. C 72 (2005) 064315.
5. E. Paul, et al., Phys. Rev. C 51 (1995) R2857.
6. S. Törmänen, et al., Nuclear Physics A 572 (1994) 417.
7. J. M. Sears, et al., Phys. Rev. C 57 (1998) 2991.
