

1

USE OF HIGH-RESOLUTION ΔΕ-Ε GAS IONISATION DETECTOR FOR THE ⁶Li + ¹⁰B

Presented BY

JOHN, Samuel Odumu Ogana^{1,3} Postdoctoral Research Fellow samjoh2014@gmail.com

States and A support of

Co-Authors Prof. John, Carter² Prof. Usman, Iyabo² Prof. Mathuthu, Manny¹

¹CARST North-West University, Mahikeng Campus, South Africa. ²School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa. ³Physics Department, Nasarawa State University Keffi, Nigeria.

The 3rd African Conference on Fundamental and Applied Physics (ACP2023) 24-29 September 2023 at Nelson Mandela University, George, South Africa.

INWU®

Presentation Outline

Introduction

Nuclear Scattering Reaction and Δ*E-E* Technique

Experimental Details

Results and Discussion

Summary and Conclusions

Potential Applications

Introduction

- The main sources of experimental information on nuclei structure, nuclear processes mechanisms and nucleus-nucleus interaction properties, are Nuclear Reaction.
- Varied set up and geometry leads to obtaining new experimental data, an urgent task in nuclear physics.
- > The ΔE -E technique has proved a powerful tool in nuclear particles identification (McGrath, 1999 & Jingo, 2010).
- Identification of elements and isotopes by nuclear scattering reaction forms the basis of this work with potential application.
- The experiment was performed at iThemba LABS Gauteng, using the 6 MV EN Tandem accelerator through Nuclear Structure Research Group (NSRG), School of Physics, University of the Witwatersrand Johannesburg.

Nuclear Scattering Reaction and ΔE -E Technique

- The collision of two or more nuclear particles (projectile and target) results in nuclear scattering yielding ejectile and recoil nuclei in channels.
- Coulomb and Rutherford scattering describes elastic and inelastic scattering.
- An optical interaction potential across space separating the projectile and target nuclei is
- $U(r) = U_C(r) + U_N(r)$
- $U_{C}(r) = \frac{Z_{1}Z_{2}e^{2}}{r}, r > R_{C}$
- $U_N(r) = V(r) + iW(r)$
- $\left[\frac{d^2}{dr^2} + \frac{2\mu}{\hbar^2} \left(E U(r)\right) \frac{l(l+1)}{r^2}\right] f_l(r) = 0$
- ΔE-E technique operates on Energy Loss,
- $\Delta E = K \frac{MZ^2}{E}$

(5)

(6)

(1)

(2)

(3)

(4)

Bethe-Bloch equation describes the rate of energy loss of a charged particle by ionisation in a track for a given ΔE detector of thin gas-ionisation.

$$\frac{dE}{dx} = \frac{4\pi q^4 Z^2}{mV^2} N z \left[ln \frac{2mV^2}{l} - \ln(1 - \beta^2) - \beta^2 \right]$$

Experimental Details

The experiment's geometry is ⁶Li + ¹⁰B, E_{Lab} (⁶Li) = 20 MeV, θ_{Lab} = 35°, Lithium-6 ion (⁶Li³⁺, I = 45 nA) projectile; Boron-10 (Density of 200 μ g/cm²) target.

> C-Line alignment using *Theodolite*, switched on hours to a stable temperature before run.

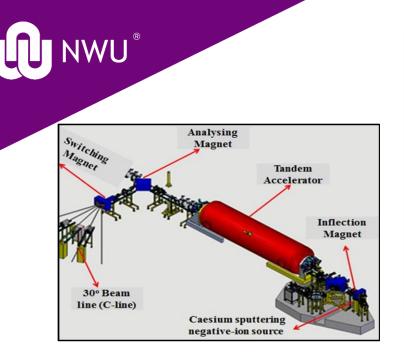

The gas delivery system use Iso-butane gas, operated at average differential pressure of 2.5 kPa, 56%. Safety checks, shutting down and up procedure observed before beam on.

Table 1: Δ*E*-*E* **Detectors' Operating Conditions**

Voltages (V)					Current (µA)		Gain
∨s	$\checkmark_{\scriptscriptstyle M}$	$\vee_{\scriptscriptstyle A}$	V_{G}	V _C	I _S	IM	
+200	+170	+200	+30	- 30	0.31	0.21	1K – 500

- > Best detectors' performance achieved for $(V_G V_C) = 60 \text{ V}$ and $(V_A V_G) = 170 \text{ V}$.
- 6 Runs at average beam time of 3-7 hrs with high (1K) and low (500) gain was achieved.
- Preamps conveyed signals from detector to ADC connected to computer for signal processing.

A computerised MIDAS multichannel online data acquisition system used, MATLAB for data analysis and CATKIN software for reaction Kinematics.

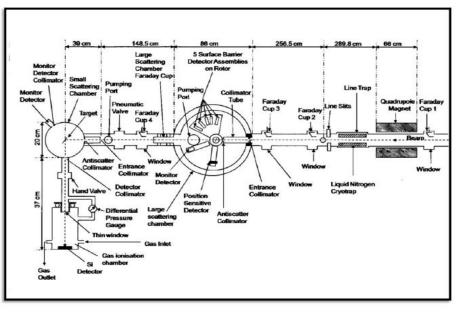


Fig. 1 : Schematic Lay-out of EN Tandem Van de Graaff Accelerator of iThemba LABS (Gauteng).

Beam time session with Prof. (Emeritus) JOHN Carter at iThemba LABS Gauteng S/Africa.

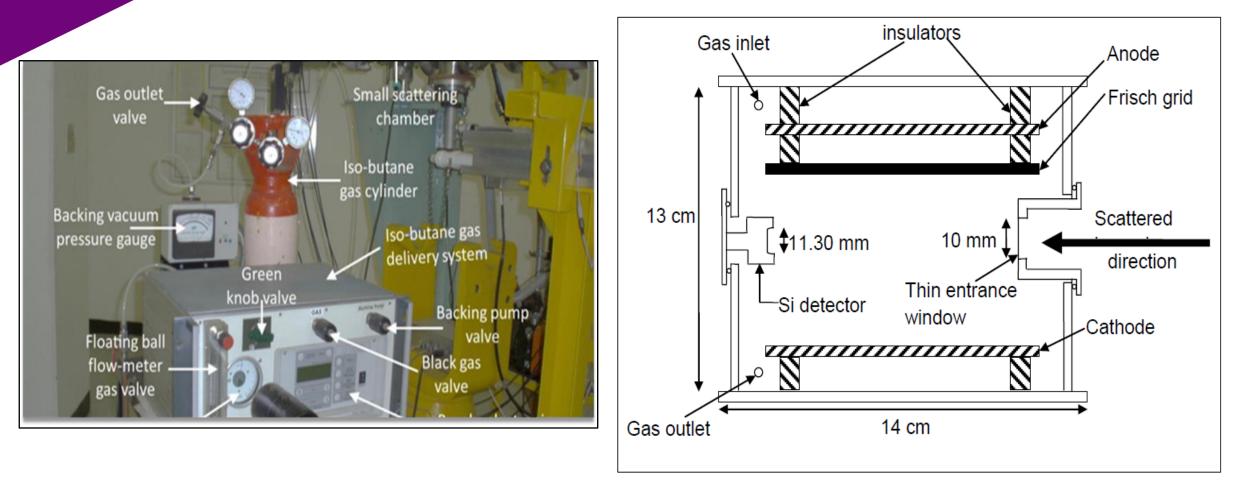


Fig. 2: Part of the Beam line picture of Gas delivery system and ΔE -E gas ionization detector schematic diagram.

Results and Discussion

➤ Total Kinetic Energy loss spectra for various transfer channels have been measured,
 ➤ The signal ΔE plotted against E_{Total}, n for High gain = 0.078, Low gain = 0.156 and from Eq. 7

 $E_{\text{Total}} = E_{\text{stop}} + n\Delta E$

(7)

Calibration of energy spectra are determined by estimating which peaks correspond to known levels at accuracy of 30 – 50 KeV.

> The E – detector depletion depth is sufficient to stop 16 MeV protons.

> Particles with charge – one have typical peak widths for narrow residual levels.

Peaks are assigned to energy levels given in the compilation by Tilley and Weller (1999), F. Ajzenberg-Selove (1990) from Nuclear Data Sheet.

At peaks, 5-transfer reaction (inelastic scattering) as well as 5-scattering reactions (elastic) were obtained, Table 2, Figures 6 - 13.

Results and Discussion Contd.

Table 2: Reactions observed in the present experiment

S/N	Channel	<i>Q</i> -Value (MeV)	Type of scattering	Peak Energy (MeV)	Calibration (MeV/Ch)
1	p(⁶ Li , p) ⁶ Li	0	Elastic	6.593	0.023429
2	p(⁶ Li , ³ He)⁴He	4.020	Reaction	11.887	0.024062
3	¹⁰ B(⁶ Li , ³ He) ¹³ C	8.0803	Reaction	25.890	0.02328
4	¹⁰ B(⁶ Li , ⁴ He) ¹² C	23.713	Reaction	39.336	0.024318
5	¹⁰ B(⁶ Li , ⁶ Li) ¹⁰ B	0	Elastic	15.974	0.025019
6	¹⁶ O(⁶ Li , ⁶ Li) ¹⁶ O	0	Elastic	17.423	0.024367
7	²⁸ Si(⁶ Li , ⁶ Li) ²⁸ Si	0	Elastic	18.495	0.023234
8	¹⁰ B(⁶ Li , ⁹ Be) ⁷ Be	- 0.980	Reaction	12.911	0.024509
9	¹⁰ B(⁶ Li , ¹⁰ B) ⁶ Li	0	Elastic	12.583	0.028532
10	¹⁰ B(⁶ Li , ¹² C) ⁴ He	23.713	Reaction	11.503	0.029129

Results and Discussion Contd.

- (a)and (c) acquired at high gain 1K, (b) and (d) acquired at low gain 500.
 (a) and (b) with
- stop energy; (c) and (d) with total energy (applying Eq. 7)

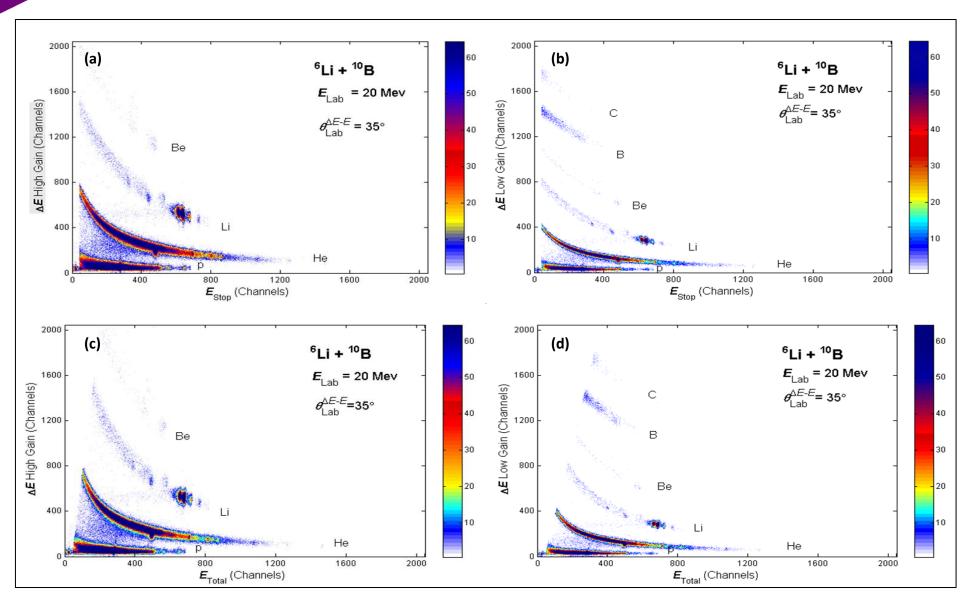


Fig. 6: 2-dimensional ΔE -E spectrum of ⁶Li + ¹⁰B reaction products showing projectile-like fragments

Results and Discussion Contd.

- The spectrum Z = 1 4 were observed only at high-gain.
- At low-gain, two additional spectrum were observed Z = 5 and 6.
- Lowering the gain open channel providing for more counts for higher Z to be observed.
- Comparison of the spectrum indicates channel shift as Z increases.

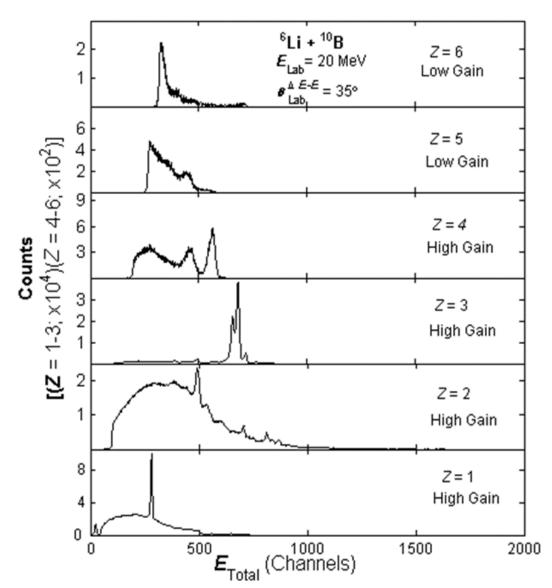
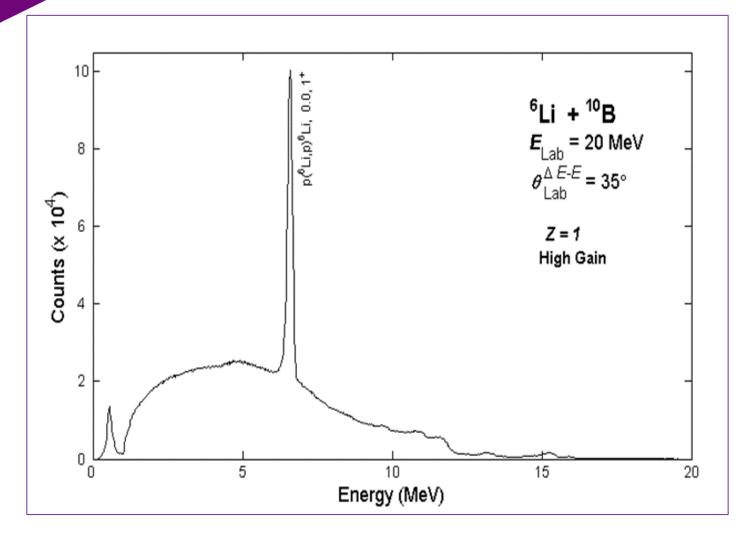



Fig. 7: 1-dimensional step-plot Energy(Channels) Spectra for each Isotope and Element

Energy Spectra (Z=1)

- Elastically scattered protons contaminating target caused the Z = 1 spectrum near low energy cutoff.
- 6.593 MeV corresponds to groundstate (0.0 MeV, 1⁺ state) of ⁶Li.
- Large continuum peaks from groundstate group of ¹⁵N not observed.
- About 30 groups observed for E_{Lab} (⁶Li) = 3.05 MeV, ϑ_{Lab} = 20° (McGrath, 1966).
- Hydrogen (proton) peak identified.

Fig. 8: 1-dimensional Spectrum for Proton (H) Z = 1, High Gain. Peak Energy in MeV

Energy Spectra (Z=2)

Proton contamination in the target produces p(⁶Li , ³He)⁴He peak whose energy (11.887 MeV) corresponds to 0⁺ groundstate of ⁴He.

- 13 peaks from reaction ¹⁰B(⁶Li, ³He)¹³C whose energy corresponds to ground and excited states of ¹³C are observed.
- The low energy peaks are due to H, ¹²C and ¹³C produced.
- 4 peaks correspond to ground and excited state of ¹²C are observed, including Hoyle ground state.
- Helium isotopes ³He, ⁴He are identified.

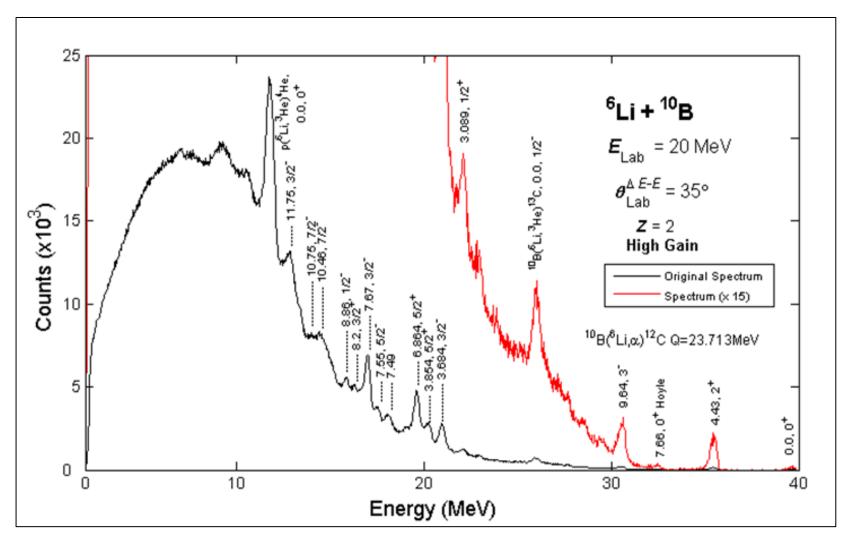


Fig. 9: 1-dimensional Spectrum for Alpha (He) Z = 2, High Gain. Peak Energy in MeV.

Energy Spectra (Z=3)

- Elastically scattered peak from ¹⁰B(⁶Li, ⁶Li)¹⁰B of energy 15.974 MeV correspond to 3⁺ ground state and 6 excited states of ¹⁰B are observed.
- Two elastically scattered peaks from ¹⁶O and ²⁸Si contamination populated ⁶Li at energy of 17.423 MeV and 18.495 MeV.
- Low energy peaks are due to contamination from oxygen and silicon.
- ⁶Li energy spectrum peak identified but
 ⁷Li not observed.
- Study on elastic scattering of ${}^{10}B({}^{6}Li , {}^{6}Li){}^{10}B$ reaction at $E_{Lab}({}^{6}Li) = 5.8$ MeV and 30 MeV also identified strong peak of ${}^{6}Li$ from ${}^{10}B$ (NNDC).

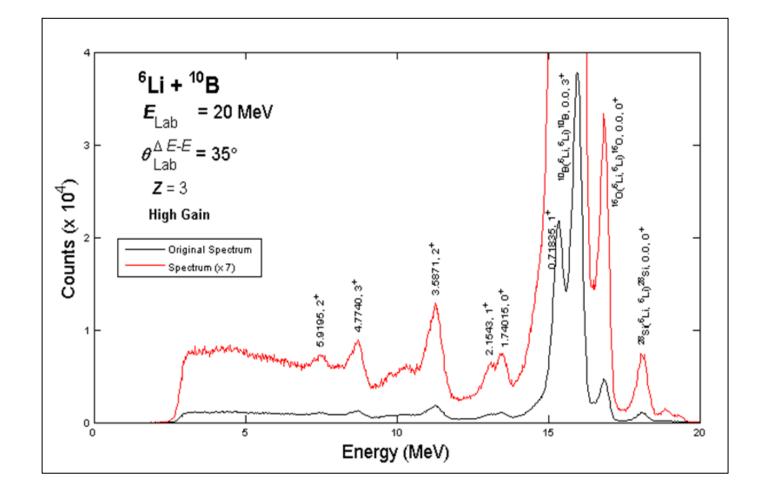
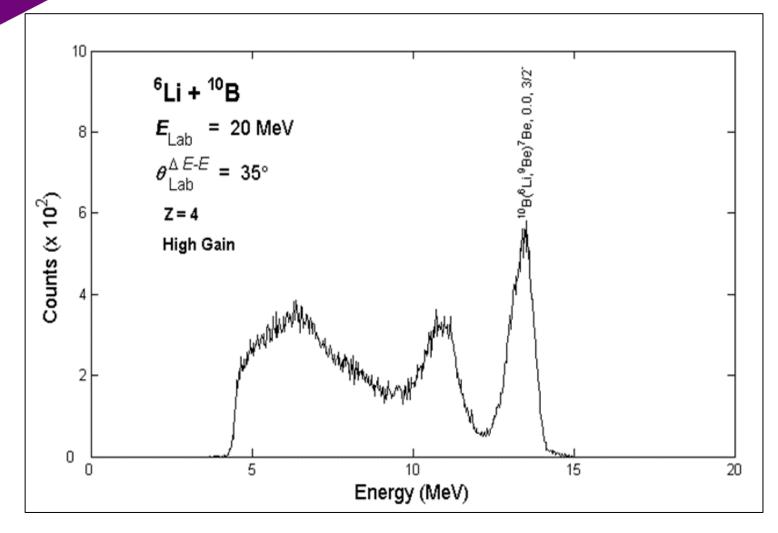
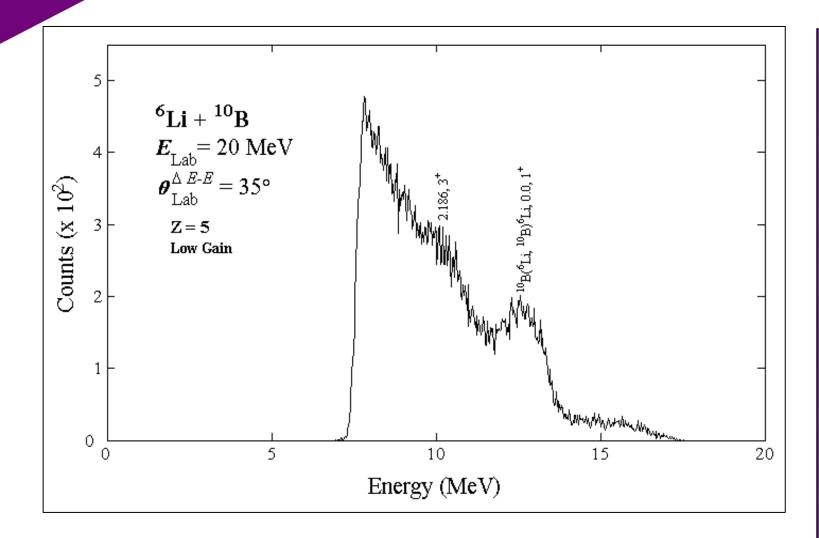



Fig. 10: 1-dimensional Spectrum for Lithium (Li) Z = 3 High Gain. Peak Energy in MeV

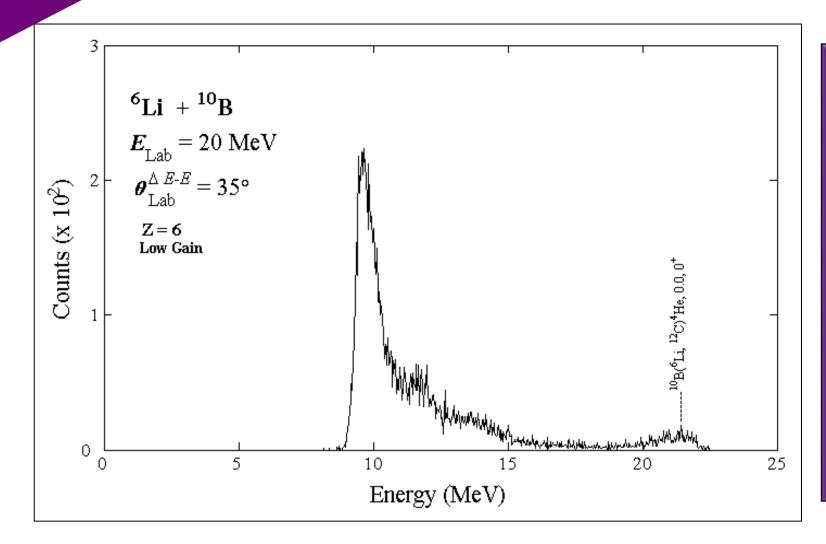
Energy Spectra (Z=4)



- ⁹Be is in-elastically populated from ¹⁰B(⁶Li, ⁹Be)⁷Be reaction with energy 12.911MeV, correspond to the 3/2⁻ ground state of ⁷Be.
- The run with high-gain used in the spectra analysis.
- Low count observed due to weak population of spectrum in the channel compared to Z = 1 – 3 spectra.
- ➢ ⁹Be isotope identified.

Fig. 11: 1-dimensional Spectrum for Beryllium (Be) Z = 4 High Gain. Peak Energy in MeV

Energy Spectra (Z=5)

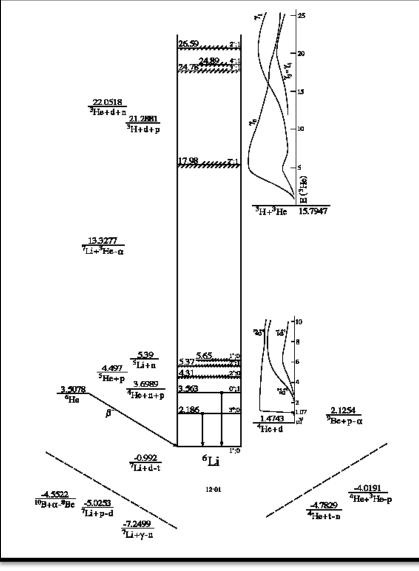

¹⁰B isotope weakly populated from elastic scattering reaction ¹⁰B(⁶Li , ¹⁰B)⁶Li. at energy 12.583 MeV, correspond to 1⁺ ground state and 3⁺ excited state of ⁶Li.

- Low count observed possibly due to reaction geometry which favoured high population of Z = 1 - 3 channels.
- The Boron, Z = 5 spectrum was observed only at low-gain run.
- ➢ ¹⁰B isotope identified.

Fig. 12: 1-dimensional Spectrum for Boron (B) Z = 5 Low Gain. Peak Energy in MeV

Energy Spectra (Z=6)

¹²C is weakly populated from in-elastic scattering reaction at energy 11.503 MeV, corresponding to the 0⁺ ground state of ⁴He, with no excited state corresponding peak.


The Carbon spectrum is only observed at lowgain run.

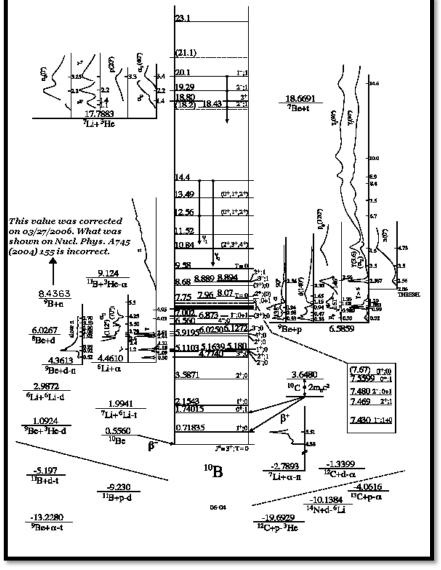
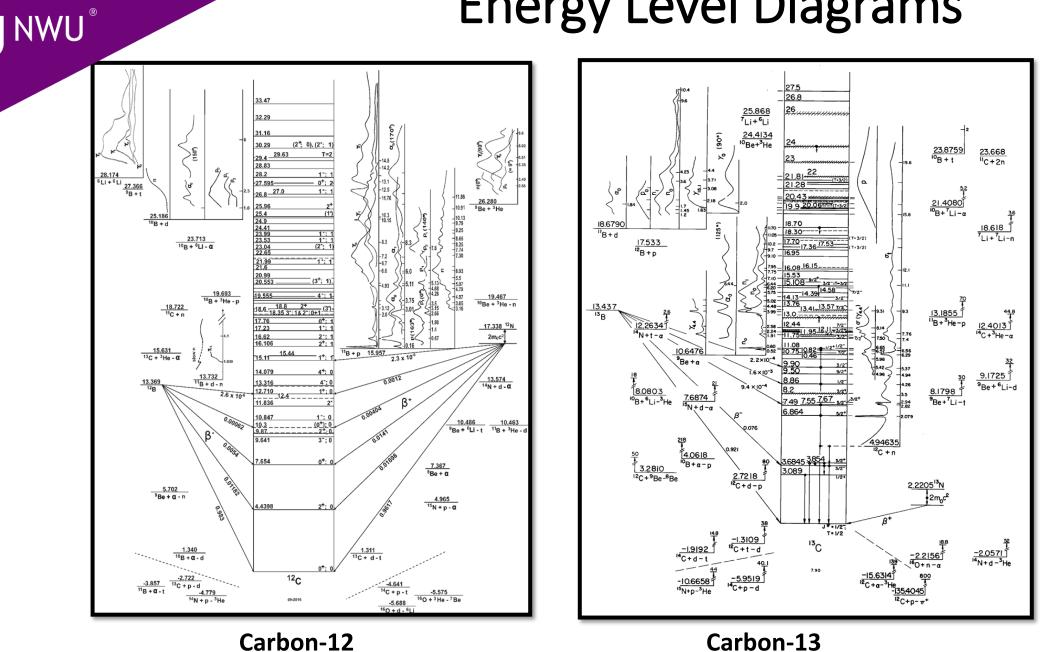

¹²C isotope identified

Fig. 13: 1-dimensional Spectrum for Carbon (C) Z = 6 Low Gain. Peak Energy in MeV

Energy Level Diagrams



Lithium-6

Boron-10

Energy Level Diagrams

Summary and conclusion

- The scattering ⁶Li + ¹⁰B reaction experiment was performed using the 6 MV EN Tandem Accelerator of iThemba LABS Gauteng.
- ➤ Due to high energy resolution of Δ*E*-*E* gas ionization detector, coupled with effective electronic system and geometry E_{Lab} (⁶Li) = 20 MeV, ϑ_{Lab} = 35°, led to Low-*Z* elements and isotopes were identified such as: protons (¹₁H), ³₂He₁ and ⁴₂He₂, ⁶₃Li₃, ⁹₄Be₅, ¹⁰₅B₅, ¹²₆C₆ and ¹³₆C₇.
- Cross section of the reaction can further be determined which will provide more information on the nuclear properties.

Potential Applications

- Provide experimental information on the parameters describing the structure of nuclei, mechanism of nuclear reaction and nucleus-nucleus interaction.
- Validate the use of high resolution ΔE-E spectrometer technique in charged particle energy discrimination and identification at a geometric condition.
- Provide experimental base to confirm the prediction of a 2⁺ excited state 2 MeV above the Hoyle state.
- Applied to production of isotopes in industry, agriculture, medical, etc.
- Protons, High-Let Sources and Boron Neutron Capture Therapy

NWU®

Thank you for listening

Beam time session with Prof. (Emeritus) JOHN Carter at iThemba LABS Gauteng S/Africa.