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Context and Objectives

Standard Model (SM) deficiencies

Many free parameters, (anti)matter paradox, hierarchy problem,
strong CP problem, no gravity, no DE or DM...
Explanation of astrophysical observations of positron excesses

2 BSM Bench mark model considered
→ 2HDM+S Curtin et al. (Phys.Rev.D90,075004(2014).), H.

Davoudiasl et al Phys.Rev.D88.1(2013)015022
It predicts the decay of the Higgs boson to 1 or 2 pseudoscalar a
which is the lightest of the higgs boson.
Only a→ µµ is considered and it’s determined by Yukawa couplings
of a to fermions.
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Context and Objectives

HAHM (Hidden Abelian Higgs Model) → Curtin et al.
(Phys.Rev.D90,075004(2014).), H. Davoudiasl et al
Phys.Rev.D88.1(2013)015022

Introduce an additional U(1) dark gauge symmetry mediated by a
dark gauge boson Zd
Zd Interacts with the SM through kinetic mixing with hypercharge
gauge boson (→ kinetic mixing parameter ε)
Dark Higgs mechanism could spontaneously break the U(1) dark
gauge symmetry (→ mixing between SM Higgs and dark Higss →
mixing parameter κ)
Mass-mixing between the SM Z boson and Zd through mass mixing
parameter δ

Higgs mixing parameter

Dark Higgs

Kinetic mixing parameter MZd < ½ MH, Γ Narrow
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Context and objectif
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Figure 1: Constraint on ε, mZd
for

pure kinematic mixing for
mZd

∼MeV − 10GeV
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Figure 2: BR of a singlet-like
pseudoscalar in the 2HDM+S for Type
II Yukawa couplings.

Curtin et al. (Phys.Rev.D90,075004(2014).), H. Davoudiasl et al
Phys.Rev.D88.1(2013)015022, H. Davoudiasl et al
Phys.Rev.D85(2012)115019, S. Gopalakrishna, S. Jung and J. D.
Wells, Phys.Rev.D78(2008)055002,
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ATLAS Dectector

Tracking System
→ reconstruct charged particles

trajectories

Thin superconducting solenoid
→ to compute particles impulsion

electromagnetic calorimeter
→ measure electromagnetic energy

deposited by e− and γ

muon system
→ designed to identify and reconstruct

muons

trigger system
→ choose either to keep or not events

hadronic calorimeters
→ measure hadronic energy deposited by

hadronic system

Detector surrounded by
Magnetic
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Analysis overview

3 analyses are covered: X = Zd/a
channels of the analysis

channels decay mode X range in GeV final state
high mass H → XX → 4l [15, 60] 4e, 4µ, 2e2µ

ZX H → ZX → 4l [15, 55] 4e, 4µ, 2e2µ, 2µ2e
low mass H → XX → 4l [1, 15] 4µ

Labeling

m12 is the invariant mass of the dilepton that is closer to the (SM) Z
boson mass, and m34 is the invariant mass of the other dilepton in the
quadruplet.
In the case of quadruplets formed from 4e or 4µ, alternate pairings of
same-flavour opposite-sign (SFOS) leptons can be formed, they are
denoted m14 and m23
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Event Selection

H → ZX → 4`
(15GeV < mX < 55GeV )

H → XX → 4`
(15GeV < mX < 60GeV )

H → XX → 4µ
(1GeV < mX < 15GeV )

4l se-
lection

- Require at least one SFOS quadruplet
- Three leading-pt leptons satisfying pt > 20 GeV, 15 GeV, 10 GeV
- 3µ required to be reconstructed by combining ID and MS tracks

- The best quadruplet is
required to have:

each lepton should fire at least 1 trigger.
In the case of multi-lepton triggers, all leptons of
the trigger must match to leptons in the quadruplet

- 50GeV < m12 < 106GeV
- 12GeV < m34 < 115GeV

- m12,34,14,32 > 5 GeV
∆R(l, l′) > 0.10 (0.20) for same-flavour

(different-flavour) leptons in the quadruplet
-

4l rank-
ing

Select first surviving
quadruplet from channels, in
the order: 4µ, 2e2µ, 2µ2e, 4e

Select quadruplet with smallest ∆m`` = |m12 −m34|

Event
selection

115 GeV < m4` < 130 GeV 120 GeV < m4` < 130 GeV
m34 > 0.85×m12 − 0.1125f(m12)×m12

Reject event if:
(mJ/Ψ − 0.25GeV ) < m12,34,14,32 < (mΨ(2S) + 0.30GeV ), or
(mΥ(1S) − 0.70GeV ) < m12,34,14,32 < (mΥ(3S) + 0.75GeV )

10GeV < m12,34 < 64GeV 0.88GeV < m12,34 < 20 GeV
4e and 4µ channels:

5GeV < m14,32 < 75GeV
No restriction on alternative

pairing

Note

f(m12) is the modulated function defined for the re-optimization
of the SR. It’s detailed in backup.
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Backgrounds estimates and uncertainties

Dominant
background

H → ZZ∗ → 4l
Non resonant
SM ZZ∗

Sub-dominant background

WZ, ZZ dibosons processes

J/ψ and Υ

tt̄ and Z+ Jet (cross check by data
driven method, for high mass)

heavy flavor (for low mass region)

For high and low mass region: most of them are cross checked in
regions orthogonal to the signal region

For H → ZX → 4l: estimation is done from simulation and
normalised with the theoretical calculations of their cross-section

Uncertainties

Data driven bkg uncertainty is → up to 65%

Statistical uncertainty

Systematic uncertainties from: detector, theory → up to 10%
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H → ZX → 4l full Run 2
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Figure 3: m34 distribution.
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H → XX → 4l full run2
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No significant excess is
observed above SM
background predictions.

Most significant excess
corresponds to a local
significance of 2.5σ at mZd =
28 GeV.
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H → aa→ 4l full run2
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2 3 4 5 6 7 8 910 20 30 40 50 60

 [GeV]am

0

0.05

0.1

0.15

0.2

0.25

0.3

) 
[fb

]
µ

 4
→

 a
a 

→
 H

 
→

(g
g 

σ
95

 %
 C

L 
up

pe
r 

lim
it 

on
 

Observed

Expected

σ 1 ±Expected 

σ 2 ±Expected 

Observed

Expected

σ 1 ±Expected 

σ 2 ±Expected 

ATLAS
-1 = 13 TeV, 139 fbs

 final stateµ4

Figure 10: upper limits on cross-section

No significant excess is observed above SM background predictions.
Therefore, the results are interpreted in terms of exclusion limits.
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Conclusion

1 Summary

Search for light BSM boson in 4l channel is performed.

Data is mostly consistent with expected background.

Upper limits on branching ratio (benchmark model) is set
at 95% CL.
This analysis has been carried out in Run 1, Run 2
already:

Run1 paper https://arxiv.org/abs/1505.07645

Run2 paper https://arxiv.org/abs/1802.03388

Their results are available in the backup.

2 Plan

Research to heavier progenitor scalar

Making use of a more sensitive variable

Improving background estimation

exploring 4τ channel in low mass region
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BACKUP

Backup
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H → ZX → 4l Run 1 results

Figure 11: m34 distribution. Figure 12: upper limits on δ vs mZd

channel ZZ∗ tt̄+ Z + jets Sum Observed H → 4l
4µ 3.1± 0.02± 04 0.6± 0.04± 0.2 3.7± 0.04± 0.6 12 8.3± 0.04± 0.6
4e 1.3± 0.02± 0.5 0.8± 0.07± 0.4 2.1± 0.07± 0.9 9 6.9± 0.07± 0.9
2µ2e 1.4± 0.01± 0.3 1.2± 0.10± 0.4 2.6± 0.10± 0.6 7 4.4± 0.10± 0.6
2e2µ 2.1± 0.02± 0.3 0.6± 0.04± 0.2 2.7± 0.10± 0.5 8 5.3± 0.04± 0.5
all 7.8± 0.04± 1.2 3.2± 0.1± 1.0 11.1± 0.1± 1.8 36 24.9± 0.1± 1.8

Table 1: Expected and observed of events at 20.1fb−1, The uncertainties are
statistical and systematic respectively.
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H → XX → 4l Run 1 results

Process 4e 4µ 2e2µ
H → ZZ∗ → 4` (1.5± 0.3± 0.2)× 10−2 (1.0± 0.3± 0.3)× 10−2 (2.9± 1.0± 2.0)× 10−3

ZZ∗ → 4` (7.1± 3.6± 0.5)× 10−4 (8.4± 3.8± 0.5)× 10−3 (9.1± 3.6± 0.6)× 10−3

WW,WZ < 0.7× 10−2 < 0.7× 10−2 < 0.7× 10−2

tt̄ < 3.0× 10−2 < 3.0× 10−2 < 3.0× 10−2

Zbb, Z + jets < 0.2× 10−2 < 0.2× 10−2 < 0.2× 10−2

ZJ/Ψ, ZΥ < 2.3× 10−2 < 2.3× 10−2 < 2.3× 10−2

Total background < 5.6× 10−2 < 5.9× 10−2 < 5.3× 10−2

Data 1 0 0

Table 2: Expected and observed events for mass mZd = 25GeV

Process 4e 4µ 2e2µ
H → ZZ∗ → 4` (1.2± 0.3± 0.2)× 10−2 (5.8± 2.0± 2.0)× 10−3 (2.6± 1.0± .2)× 10−3

ZZ∗ → 4` (3.5± 2.0± 0.2)× 10−3 (4.1± 2.7± 0.2)× 10−3 (2.0± 0.6± 0.1)× 10−3

WW,WZ < 0.7× 10−2 < 0.7× 10−2 < 0.7× 10−2

tt̄ < 3.0× 10−2 < 3.0× 10−2 < 3.0× 10−2

Zbb, Z + jets < 0.2× 10−2 < 0.2× 10−2 < 0.2× 10−2

ZJ/Ψ, ZΥ < 2.3× 10−2 < 2.3× 10−2 < 2.3× 10−2

Total background < 5.3× 10−2 < 5.1× 10−2 < 6.4× 10−2

Data 1 0 0

Table 3: Expected and observed events for mass mZd = 20.5GeV
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H → XX → 4l Run1 results

Figure 13: upper limits on κ vs mZd
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H → ZX/XX → 4l analysis Run1 → Run2

Factors that are expected to lead to an improvement in the Run 2
result

The Higgs production cross section in Run 2 (13 TeV) > Run 1 (8
TeV) 43.92 pb vs 19.3 pb

The Luminosity in Run 2 (36.1 fb−1) > Run 1 (20.3 fb−1)

Improvement in the Analysis code, at various levels

Optimization of the signal region cut.

Exploration of the low mass region (mX < 15 GeV).

Improvement expected in the limit setting.
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H → ZX → 4l Run2 results

Figure 14: m34 in the mass range m4`
in [115,130] GeV.

Figure 15: upper limits on δ vs mZd

Some excesses are observed but not statistically significant

Process 2`2µ 2`2e Total
H → ZZ∗ → 4` 34.3± 3.6 21.4± 3.0 55.7± 6.3
ZZ∗ → 4` 16.9± 1.2 9.0± 1.1 25.9± 2.0
Reducible background 2.1± 0.6 2.7± 0.7 4.8± 1.1
V V V , tt̄+ V 0.20± 0.05 0.20± 0.04 0.40± 0.06
Total expected 53.5± 4.3 33.3± 3.4 86.8± 7.5
Observed 65 37 102

Table 4: Expected and observed of events at 36.1fb−1
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H → XX → 4l high mass Run2 results

Figure 16: m34 in the mass range m4`
in [115,130] GeV.

Figure 17: upper limits on κ vs mZd

Some excesses are observed but not statistically significant

Process Yield
ZZ∗ → 4l 0.8± 0.1
H → ZZ∗ → 4l 2.6± 0.3
VVV/VBS 0.51± 0.18
Z + (tt̄/J/Ψ)→ 4` 0.004± 0.004
Other Reducible Background Negligible
Total 3.9± 0.3
Data 6

Table 5: Expected and observed of events at 36.1fb−1
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H → XX → 4l low mass Run2 results

Figure 18: m34 in the mass range m4`
in [120,130] GeV.

Figure 19: upper limits on BR vs mZd

No excess is observed for the low mass region

Process Yield
ZZ∗ → 4l 0.10± 0.01
H → ZZ∗ → 4l 0.1± 0.1
VVV/VBS 0.06± 0.03
Heavy flavour 0.07± 0.04
Total 0.4± 0.1
Data 0

Table 6: Expected and observed events at 36.1fb−1
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Interpretation: fiducial cross-section

Figure 20: Upper limits at 95% CL on
fiducial cross-sections for the
H → XX → 4l process

Figure 21: Upper limit at 95% CL on
the fiducial cross-sections for the
H → ZX process.
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Interpretation: κ and ε parameter

Figure 22: Upper limits at 95% CL on
fiducial cross-sections for the
H → ZX → 4l process

Figure 23: Upper limit at 95% CL on
the branching ratio for the H → ZZd
process.
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H → ZZd → 4` Strategy

Sample of selected 4` events is used, with 115 < m4` < 130 GeV

The H → 4` yield denoted n(H → 4`) is determined by
subtracting the relevant backgrounds from the 4` sample:
n(H → 4`) = n(4`)− n(ZZ∗)− n(tt̄)− n(Z + jets).

A template fit of the m34 distribution, using histogram-based
templates of the H → ZZd → 4` signal and backgrounds.

m34 mass spectrum is extracted to test for a local excess
consistent with the decay of a narrow Zd resonance.

In the absence of any significant local excess, the search can be
used to constrain a relative branching ratio RB, defined as:

RB = BR(H→ZZd→4`)
BR(H→4`) = BR(H→ZZd→4`)

BR(H→ZZd→4`)+BR(H→ZZ∗→4`)

A likelihood function is defined as: L(ρ, µH , ν) =∏Nbins
i=1 P(nobsi |n

exp
i ) =

∏Nbins
i=1 P(nobsi |µH × (nZ

∗
i + ρ× nZdi ) + bi(ν))

RB = ρ
ρ+C
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ATLAS Detector

Tracking System
→ reconstruct charged particles

trajectories

Thin superconducting solenoid
→ to compute particles impulsion

electromagnetic calorimeter
→ measure electromagnetic energy

deposited by e− and γ

muon system
→ designed to identify and reconstruct

muons

trigger system
→ choose either to keep or not events

hadronic calorimeters
→ measure hadronic energy deposited by

hadronic system

Detector surrounded by
Magnetic
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Analysis overview in Run1

2 channels are covered: X = Zd
channels of the analysis

channels decay mode X range in GeV final state
high mass H → XX → 4l [15, 60] 4e, 4µ, 2e2µ

ZX H → ZX → 4l [15, 55] 4e, 4µ, 2e2µ, 2µ2e

Labeling

m12 is the invariant mass of the dilepton that is closer to the (SM) Z
boson mass, and m34 is the invariant mass of the other dilepton in the
quadruplet.
In the case of quadruplets formed from 4e or 4µ, alternate pairings of
same-flavour opposite-sign (SFOS) leptons can be formed, they are
denoted m14 and m23
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Event Selection in Run1

H → ZX → 4`
(15GeV < mX < 55GeV )

H → XX → 4`
(15GeV < mX < 60GeV )

4l
selection

- Require at least one SFOS quadruplet
- Three leading-pt leptons satisfying pt > 20 GeV, 15 GeV, 10 GeV
- 3µ required to be reconstructed by combining ID and MS tracks
- The best quadruplet is required

to have:
each lepton should fire at least 1 trigger.

In the case of multi-lepton triggers, all leptons of
the trigger must match to leptons in the quadruplet

- 50GeV < m12 < 106GeV
- 12GeV < m34 < 115GeV

- m12,34,14,32 > 5 GeV
∆R(l, l′) > 0.10 (0.20) for same-flavour (different-flavour) leptons in the quadruplet

4l rank-
ing

Select first surviving quadruplet
from channels, in the order: 4µ,

2e2µ, 2µ2e, 4e

Select quadruplet with smallest ∆m`` = |m12 −m34|

Event
selection

(Higgs window cut) 115GeV < m4` < 130GeV
(Z veto cut)|m12,34 −mZ | < 10GeV

(Loose SR cut) m12 < mH/2 andm34 < mH/2 GeV
Reject event if:

m12 andm34 < 12 GeV (suppress J/Ψ and Υ)
(Tight SR cut) |mZd −m12| < δm and |mZd −m34| < δm

δm = 5/3/4.5 for 4e/4µ/2e2µ
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Signal generation

H → ZX → 4l and H → XX → 4l (high mass)

Higgs boson is produced in gluon-gluon fusion mode (ggF) using
HAHM model, with MH = 125GeV
MADGRAPH5 AMC@NLO and NNPDF23 are used as event generator

Pythia8 was used for modeling of the parton shower, hadronisation and
underlying event.

The model parameters ε and κ were adjusted so that only H → ZX → 4l
(ε >> κ) or H → XX → 4l (ε << κ) decays were generated
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Backgrounds estimates and uncertainties

Dominant
background

H → ZZ∗ → 4l
Non resonant
SM ZZ∗

Sub-dominant background

WZ, ZZ dibosons processes

J/ψ and Υ

tt̄ and Z+ Jet (cross check by data
driven method, for ZX channel)

For H → XX → 4l: estimation is done from simulation and
normalised with the theoretical calculations of their cross-section

Uncertainties

Data driven bkg uncertainty is → up to 65%

Statistical uncertainty

Systematic uncertainties from: detector, theory → up to 10%
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P value for High mass result

Figure 24: Observed local p-values under the background-only hypothesis
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